Grassmann duality for D-modules
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Abstract — We generalize the main results on projective duality (see [2], [4], [12]) to the case of the correspondence
between “dual” Grassmann manifolds G and G*. The new aspect is that the “incidence variety” S C G x G* is no longer
smooth, a fact which requires the tools of the theory of b-functions ([7], [17]). In particular, we obtain an equivalence
between the categories of sheaves on G and G*, as well as between those of D-modules; then, quantizing this equivalence,
we explicitly calculate the transform of a D-module associated to a holomorphic line bundle.

Résumé — Nous généralisons les résultats principaux sur la dualité projective (voir [2], [4], [12]) au cas d’une corre-
spondance entre variétés de Grassmann “duales” G et G*. Le nouvel aspect est que la “variété d’incidence” S C G x G*
n’est plus lisse, ce qui demande de faire appel a la théorie des b-fonctions ([7], [17]). En particulier, nous obtenons une
équivalence entre les catégories des faisceaux sur G et G*, ainsi que entre celles des D-modules; ensuite, en quantifiant cette
équivalence, nous calculons explicitement la transformée d’un D-module associé & un fibré holomorphe en droites.
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Grassmann duality for D-modules

Introduction

The aim of this work is to extend some properties of the projective duality, i.e. the natural
correspondence between a complex projective space and its dual (see [2], [4]), to the more
general setting of “dual” complex Grassmann manifolds G and G*. The new aspect in the
general case is the non-smoothness of the “incidence variety” in G x G*: an essential tool in
treating these singularities will be the theory of b-functions (see ([7], [17]).

Let V' be a complex vector space of dimension n > 2, and p € Z such that 1 <p < 5. We
denote by G the Grassmann manifold of p-dimensional linear subspaces of V' and by G* the dual
manifold of (n — p)-subspaces; recall that G and G* are complex analytic compact manifolds of

complex dimension N = p(n — p), homogeneous under the action of G = SL(V).

Integral transforms. Let ¢; and ¢ be the projections from G x G* onto G and G*. Any
object K of the derived category DP(Cgxg+) of complexes of sheaves on G x G* with bounded

cohomology is the kernel of a sheaf integral transform
-0 K :DP(Cg) — DP(Cg:), FoK = Rga(q'F®K).

Similarly, for any object K of the derived category DP(Dgxg+) of complexes of left D-modules

on G x G* with bounded cohomology, one defines a D-module integral transform of kernel K

0 K:D"(Dg) » DP(Dg-), MoK=gq (g~ 'Ma" K),

Ogxe*

where qffl and gz are the inverse and direct image in the sense of D-modules. The integral

transforms from G* to G are defined in a similar way.

Kernels associated to the transversality relation. Let
Q={(z,y) e GxG*: xny={0}},

7 :  — G x G* the open embedding and S the complex hypersurface complementary to €2; note
that  (resp. S) is the open “transversality” (resp. closed “incidence”) relation in G x G*. In the
case of projective duality (p = 1), the hypersurface S is smooth. This is no longer true in the
general case, where .S admits a Whitney stratification by the locally closed smooth submanifolds
of G x G*

S; ={(z,y) € G xG" : dim(z Ny) = j} (j=1,...,p).

Let us introduce the perverse sheaves
Ko =Cq=jij 'Coxg- and K= RHom (Cq,Cgxg+) ~ Rj.j 'Coxc

Using the functor 7hom of Kashiwara (see [11]), we may consider the regular holonomic D-
modules
Ko =Thom(Kq,Ogxg+) and K& =Thom(Kg,Coxg)-
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Grassmann duality for D-modules

Observe that Kgq is isomorphic to the sheaf Ogxg+(*S) of meromorphic functions on G x G*

with poles on S, and that K, is its dual in the sense of D-modules.

Equivalences of categories. Using a geometric criterion, we show that the kernels K and
K§ (and, through 7 hom, also Kq and K§) are “inverse” to each other:

Theorem 1. The sheaf (resp. D-module) integral transforms defined by the kernels Kq and
K3 (resp. Kq and lC;il) are quasi-inverse to each other, and thus define equivalences of categories
between DP(Cg) and DP(Cg+) (resp. D?(Dg) and DP(Dg-)), as well as between the full sub-
categories of objects with R- and C-constructible (resp. good coherent and regular holonomic)

cohomology.

Quantization. Let us study the action of these functors on the family of D-modules associated
to holomorphic line bundles. The family of holomorphic line bundles on G is described (up to
isomorphism) by {Og (i) : p € Z}, where Og(p) is the —pth tensor power of the determinant
of the tautological vector bundle on G (in particular, the canonical bundle Q¢ is isomorphic to

Og(—n)). Hence one has the family of locally free D-modules of rank one

{Dg (1) = Dg @, Oc(p) : p € L}

Let A € Z, and set \* = —n — A. Following an approach proposed in [4], we will show that the
image of Dg(—\) by the functors- o Kq or- o IC;i2 (according to A) is isomorphic to Dg«(—A*).

In this direction, we observe that:

(1) The natural isomorphism
0y : (G x G5 K5 (=2, 3%)) = Hom g (D (—A"), Da(—)) © Ka),

where IC&N’O)(—/\, A*) = ql_l((’)@,(—/\)@OG QG)&ZIIO@ K:Q®q2—10({}* g5 *Og+(\*), describes the
D-linear morphisms between Dg+(v) and Dg(u) o Kq in terms of twisted global sections

of Kq (one can argue similarly for £g));

(2) the microlocal correspondence associated to €2
T*G &+ SS(Cq) 25 T*G*

(here the maps p; and ps are the natural projections, a is the antipodal map on T*G* and
p§ = a o pa) induces a contact transformation between two open dense subsets U C T*G
and U* C T*G* with an open dense subset A C Tgp(((} x G*) as graph.

The group G acts naturally on G x G* by the diagonal action, and (G;G x G*) is a prehomoge-
neous space with open dense orbit € (see [17]) with associated b-function b(s) = (s+1)--- (s+p).
Using this fact, we find a G-invariant section sy € I'(G x G*; IC§2N70)(—/\, X*)) (resp. s} €

[(GxG*; K50 (=X, X*)) ) which generates Kq (resp. k) microlocally (i.e. as microdifferential
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module) on A for any A\ > —n + p (resp. A € Z). Then, by Theorem 1 and the theory of [16],
we prove that ajg (sy) (resp. aky (s})) is an isomorphism for any A > —n +p (resp. A < —p),
the inverse morphism being the image of ags (83+) (resp. ax,(Sx+)) by the functor - o Kq (resp.

-0 K§,), and therefore we obtain:

Theorem 2. One has D-linear isomorphisms:
(i) De(—A)o Ko <= Dg+(—A*) for any A > —n + p;
(ii) Dg(—A)o K < Dg=(—A*) for any X < —p.

Some applications. In the case of projective duality (p = 1), let P = P*~1(C), P* =
P"~1(C)* and A C P x P* the smooth incidence relation. Using the kernel

Ka = Thom(Cy[—1], Opxp+) =~ Bypxp+

D’Agnolo and Schapira proved in [4] that Dp(—\) o Ky «— Dp«(—\*) for any —n+1 < A < —1.
From Theorem 2, we obtain the following generalization with the kernel Kg = 7T hom(Cgs[—1], Ogxc+ )}

Dg(—N) o Kg <~ Dg(—\*) for any —n+p <A< —1.

Moreover, using the adjunction formulas of [3] and [11], we get the following isomorphisms
for any F' € DP(Cg) and —n+p < A < —p:

RI'(G; F ®Og(A\)) =~ RI(G%(FoCq)® Og+(\))[N],
RI(G; RHom (F,Og(\))) =~ RI(G*; RHom (F o Cq, Og-(\*)))[~N],

as well as similar isomorphisms when F' € DF§7 -(Cg) with ® and RHom replaced respectively by
the functors ¢ and 7 hom (see [11]). Here, the calculation of the transform F o Cg is essentially
a geometrical problem. For example, let ¥ = Cp for some D C G: then, for any y € G* one
has (Cp o Cq)y >~ RI'. (Lp(y); C), where Lp(y) = {z € D : 2Ny = {0}}. We give the following

examples.

(1) Let D # @ be a compact subset of G, and set
D¥ ={y e G*:xNy={0} for any z € D}.

Let D = G*\ D#. We say (cf. [4, Ch. 5.1]) that D is Q-trivial if (a) R[(D;C) ~ C and
(b) RI'(D \ Lp(y); C) ~ C for any y € D. (E.g. take D = {zo} for some zo € G.) Let D
be Q-trivial, and let D¥ # @: then D (resp. D¥) is contained in an affine chart £ C G
(resp. E* C G*). Since Cp o Cq ~ Cp#, we get the following isomorphisms:

RI(D;O0p) ~ RI(D¥;0p-)[N]
RI'p(E;Op)[N] ~ RI(D¥;0p),
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where all complexes are concentrated in degree zero. This generalizes the results of Mar-
tineau [14] (recovered in this language in [4]) on the “linearly convex” compact subsets of

the complex projective space.

(2) Let H be an Hermitian form of signature (p,n —p) on V, and let U = {z € G :
H|, is positive definite} and U* = {y € G* : H|, is negative definite}; then U (resp.
U*) is a relatively compact open subset of an affine chart £ C G (resp. E* C G*). We
prove that Cz o Cq ~ Cy+, and hence we get

RI(U;0p) =~ RI(U*;Op:)[N]
RI'7(E; Op)[N] =~ RI(U*;Op-).

Z

Moreover, all these complexes are concentrated in degree zero.

(3) Finally, we give a “non-affine” example. Let z be an hyperplane of V, and consider the
embedded Grassmann manifolds G, = {zr € G: 2z C z} and G} = {y € G* : y C z}. We
show that Cg, 0 Cq =~ Cg«\g:[~2(N —p)] and then we get the following isomorphisms for
any —n+p <A< —p

RI(G. 0s(N) =~ RI(GLOg-(\)[~(N — 2p+1)]
RIG.(G;0s(\) =~ RIg:(G,Og-(\)IN — 2p+1].

12

Comments. Let us recall the main results in the case of projective duality, where the classical
point of view was to consider the natural geometric correspondence between P = P™(C) and
P* = P*(C)* given by the smooth hypersurface S = A C P x P*. (In the formalism of kernels,
this correspondence is associated to Ky = Cp[—1] and Ky = Byjpyp-.) Brylinski [2] obtained
an equivalence of categories for perverse sheaves on P and P* modulo constant sheaves, as well
as for coherent D-modules modulo flat holomorphic connections. D’Agnolo and Schapira [4]
quantized the underlying contact transformation using a suitable twisted form due to Leray
[13] and proved the isomorphism (no more modulo flat connections) of D-modules recalled
above. Finally, Kashiwara and Tanisaki [12] observed that the kernel associated to the open
complementary of the incidence relation and its dual give equivalences between some derived
categories of sheaves and D-modules on P and P* when n = 1.

The main stimulus in doing this work was to understand the ideas and the results of [4]
in the more general situation of Grassmann manifolds. The alternative point of view of [12]
suggested to consider the kernels associated to the open transversality relation, a remark that
was necessary for the study of the general case, and turned out to be useful also for the basic
case of projective duality.

In the real case, similar results in the category of sheaves were obtained using the transver-
sality relation in Sato-Kashiwara-Kawai [16] for projective sphere bundles and in Kashiwara-

Schapira [10, Ex. II1.15] for real Grassmann manifolds.
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The results of this paper have been announced in [15].
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1 Reviews on integral transforms for D- and £-modules

1.1 Notations

We refer to [10] for the theory of sheaves in the framework of derived categories, to [6] for the
theory of D-modules and to [16] for the theory of £-modules (see also [19] and [18] for detailed

expositions).

Geometry. Given two manifolds X and Y, we denote by 7 : X x Y — Y x X the canonical
map r(z,y) = (y,x), and by g1 and g2 the projections from X X Y onto X and Y. If Z is
another manifold, we denote by qi2 (resp. ¢13, g23) the projection from X XY x Z onto X x Y
(resp. X x Z, Y x Z). We denote by 6 : X — X x X the diagonal embedding §(z) = (z,z),
and we set Ax = 6(X). Let # : T*X — X be the cotangent bundle, (-)* the antipodal
map of 7% X and Ty X the conormal bundle to a smooth submanifold ¥ of X; in particular,
T5% X represents the zero-section of T*X, and we set T*X = T*X \ T%X. To a morphism
f: X — Y of real analytic manifolds one associates the morphisms T*X L X xy T*Y 43 Ty .
In local symplectic coordinates (z;¢) € T*X and (y;n) € T*Y, one has (z;£)* = (x;—=¢),
Y, f()in) = (@7 f'(2)(n)) and fx(z, f(x);n) = (f(x);n). We denote by pi and py the
projections from 7T*(X x Y') onto T*X and T*Y, and by pi2 (resp. pi3, pes) the projection from
T*(X xY x Z)onto T*(X xY) (resp. T*(X x Z), T*(Y x Z)).

Sheaves. Let X be a locally compact topological space, and let Mod(Cyx) be the category
of sheaves of C-vector spaces on X. For a locally closed subset A of X, we denote by Cy
the sheaf on X whose restriction to A is the constant sheaf with fiber C and which is zero on
X\ A. We denote by DP(Cy) the derived category of complexes in Mod(Cy) with bounded
cohomology, and by D __(Cx) (resp. D&__(Cx)) the full triangulated subcategory of DP(Cy)
whose objects have R- (resp. C-) constructible cohomology groups. We shall consider the full
subcategory Perv (Cx) of perverse sheaves in D __(Cx). If F € DP(Cx), we denote by SS(F)
the microsupport of F, which is a closed conic involutive subset of T*X. The six classical
operations in the derived category of sheaves are RHom (-, -), - ® -, Rf,, f~%, Rf, and f',
where f is a continuous map. The duality functor RHom (-,Cx) : D?(Cx)°® — DP(Cyx) is
denoted by D’(-) for short.
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D-modules. Let X be a complex analytic manifold. We write dx = dim¢(X). We denote by
Ox the sheaf of holomorphic functions, by x the canonical line bundle and by Dx the sheaf of
holomorphic linear partial differential operators on X. Let Mod(Dyx ) be the category of left Dx-
modules, and let Mod.on(Dx) be the thick subcategory consisting of coherent objects. We shall
consider in Mod¢on(Dx) the full subcategories Modgood(Dx) of good coherent objects (recall
that a coherent Dx-module M is good if it admits, in a neighborhood of any compact subset of
X, a finite filtration by coherent Dx-submodules M, such that each quotient Mj/My_1 can
be endowed with a good filtration), and Mod,,(Dx) of regular holonomic objects.

We denote by DP(Dx) the derived category of complexes in Mod(Dx ) with bounded cohomology,
and by D, (Dx) (resp. D'gDOOd(DX), DP, (Dx)) the full triangulated subcategory whose objects
have coherent (resp. good, resp. regular holonomic) cohomology groups. Recall the operations in
the derived category of left D-modules RHomp (-, - ), - ®LDX - i_l and f , where f: X — Y
is a morphism of complex analytic manifolds. In particular, if M € D(Dx) and N € D"(Dy),
then

iilN = Dx_y ®Lf—1Dy fﬁlN,
fM = Rf(Dyexe, M)

where Dx .y and Dy« x are the transfer bimodules associated to f. The external product is

MEN =Dxyy ®p, gDy (MK N). We denote by D(-) the duality functor RHomp_(-,Kx) :
®—1

D"(Dx) — DP(Dx), where Kx = Dy 0,y Qy [dx] is the dualizing complex for left Dy-

modules, and by Sol(-) the functor RHomp, (-, Ox) : D! | (Dx) — DP(Cx)°P of holomorphic

solutions. Moreover, we shall consider the functors

. &% O0x : D} (Cx)— D"(Dy)
Thom(-,0x) : DX (Cx)®® — D"(Dy)

of formal and moderate holomorphic cohomology, which allow one to treat C*°-functions and
distributions on a real analytic manifold in a functorial way (see Kashiwara [7] for TH(-) =
Thom(-,Ox) and Kashiwara-Schapira [11] for - & Ox).

Given M € DP (Dx), we denote by char (M) the characteristic variety of M, which is a
closed conic involutive subvariety of T*X; recall that char (M) = SS(Sol(M)). If Y is a closed
smooth complex submanifold of X of codimension d, we denote by By|x = RI'\y)(Ox)[d] ~
T hom(Cy[—d], Ox) the regular holonomic Dx-module of holomorphic hyperfunctions along Y.

We denote Ba|xxx by Bay for short.

E-modules. Let Ex denote the sheaf (on T*X) of microdifferential operators of finite or-
der on X, Mod(£x) the category of left £x-modules, and DP(£x) the derived category of
complexes in Mod(Ex) with bounded cohomology. Given M € DP(Dx), we denote by EM =
Ex® ip, 771 M € DP(Ex) the microlocalization of M. (In particular, if Y is a smooth complex
submanifold of X we set Cy|x = EBy|x, the sheaf of microfunctions along Y'.) We use the same
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symbol to denote a section s of M and the image of s by the canonical morphism 7'M — EM.

The external product of M € Db(SX) and N € Db(Ey) is MRHAN = Exxy Qe ey (MXN).

Moreover, given a morphism f : X — Y, one defines the microlocal inverse and direct images as
f’uN = Rtf/!(gX—>Y ®Lfflgy f;lN),

iHM = Rfﬂ'!(gY<_X ®Ltf/7lgx tf/_lM)v

where £x—y and £y« x are the microlocal transfer bimodules associated to f.

1.2 Kernels for sheaves and D-modules

We recall the language of integral transforms as treated in D’Agnolo-Schapira [3], [4], [5] and
Kashiwara-Schapira [11]. We also recall some results therein that we shall need in the sequel.

In this section, the manifolds are assumed to be complex analytic and compact.

Kernels. Let X, Y and Z be manifolds, and let K € DP(Cxyy), K’ € D?(Cyyxz). One
defines the composition K o K' as

K oK' = Rqi3 (q12 K ® g5 K') € DP(Cxy2).
Similarly, let K € D?(Dxyxy) and K’ € DP(Dyz). One defines the composition Ko K’ as

KoK = q3, (m_llc QF QQ3_1’C,) € Db(DXXz).

Oxxyxz ===
Observe that these operations are associative.
Proposition 1.1. Let X and Y be manifolds.
(i) Let K € D} (Cxyy) and K' € D} _(Cyxz), and assume
(SS(K) x T3 Z) N (TxX x SS(K")) C Txyyxz(X xY x Z). (1.1)
Then one has K o K' € Dﬁ,C(CXxZ)~ The same result holds replacing “R-c¢” by “C-c¢”.

(ii) Let K € Dgood(DXXy) and K' € Dgood(DyXZ), and assume

(char(K) x T3 Z) N (Tx X x char(K')) C Txyyxz(X xY x Z). (1.2)

Then one has Ko K' € Dgood(DXXz). Moreover, the same holds if one replaces “good” by
({rh”'

The functor of moderate cohomology. Let us recall the Riemann-Hilbert correspondence
in the formulation of Kashiwara [8], which allows one to associate to any C-constructible sheaf a

regular holonomic D-module. Let X be a complex analytic manifold, and consider the functors
Thom( * OX) : DFI%—C((CX)OP —DP (DX)a
Sol(-) : DP, (Dx)— DP(Cx)°P.

coh
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Theorem 1.2. ([8]) The functors Thom(-,Ox) and Sol(-) are quasi-inverse to each other,
and define equivalences between Dl[é_c((CX)op and DEh(DX). Moreover, they induce equivalences
between the full subcategories Perv (Cx)°? and Mod,(Dx).

Hence, to K € DE_C(CXxY) one naturally associates K = Thom(K,Oxxy) € D}?h(DXXy),
and one has K ~ Sol(K) and SS(K) = char (K).

Some commutation properties. We observe the following commutation properties for

the operations introduced above.
Proposition 1.3. ([5]) Let X and Y be manifolds.

(i) Let K € DY (Cxxy) and K' € DY __(Cyxz), and assume (1.1). Then one has

D'(KoK')~D'K o D'K'[2dy].

(ii) Let K € Dgood(DXXy) and K' € Dgood(DyXZ), and assume (1.2). Then one has

D(Ko K') ~ DKo DK'.
Proposition 1.4. ([5]) Let K € D2__(Cxxy) and K' € D2_ _(Cyyxz). Then, there is a natural
isomorphism in DEh(DXXZ):
Thom(K,Oxxy)o Thom(K',Oyxz) ~ Thom(K o K',Ox«z)[—dy].
Proposition 1.5. ([5]) Let F € D2 _(Cx). Then, there is a natural isomorphism in D®, (Dx):

Thom(D'F,Ox) ~ DT hom(F,Ox).

Integral transforms. Let X and Y be manifolds. By identifying {pt} x X to X and {pt} xY
to Y above, one associates to any K € DP(Cxxy) a functor

- oK :DP(Cx) — DP(Cy), FoK =Rg(¢;'FRK),

called the sheaf integral transform from X to Y of kernel K. Thus, if Z is another manifold and
K' € D’(Cyyz), then (Fo K)o K' ~ Fo (K o K') in D?(Cy).
Similarly, one associates to any K € DP(Dxxy) a functor

.0 K:D"(Dx) - D"(Dy), MoK=g (g 'Ma" K)

Oxxy

called the D-module integral transform from X to Y of kernel K; as above, given K' € DP(Dy « z),
one has (Mo K)o K/ ~ Mo (Ko K') in D(Dy).

From Proposition 1.1 and a well-known result we get

Corrado Marastoni 9



Grassmann duality for D-modules

Corollary 1.6. Let K € DE,C(CXxY) and K = Thom(K,Oxyxy) € DEh(DXXy). Assume:

SS(K)YN(T*X xTyY) C Ty y (X xY). (1.3)
Then:
(i) if F € DX (Cx), then Fo K € D% (Cy) (and also with “R-c” replaced by “C-c”);

(i) if M € D]goood(DX), then Mo K € D]gaood(DY) (and also with “good” replaced by “rh”),

and
Sol(Mo K) ~ Sol(M) o K[dx].

Invertible kernels. When X =Y, the identity transforms are obtained for K = Ca, and
K = Thom(Ca,[—dx],Oxxx) =~ Bay. This leads immediately to the following invertibility

criterion, which we shall apply in the next section:
Proposition 1.7. (see [10, Corollary 3.6.5]) Let X and Y be manifolds.

(i) Let K € DP(Cxxy), K' € D*(Cyxx) and assume that K o K' ~ Ca[l] and K' o K =~
Cay [l] for somel € Z. Then, the functors - o K and - o K' are quasi-inverse to each other

and thus they are equivalences of categories between DP(Cx) and DP(Cy).

(ii) Let K € D*(Dxxy), K’ € D*(Dyxx) and assume that Ko K' ~ Ba, and K'o K ~ Ba,, .
Then, the functors - o K and - o K' are quasi-inverse to each other and thus they are

equivalences of categories between DP(Dx) and DP(Dy).

Adjunction formulas. Let X and Y be manifolds, and let K € DP, (Dxxy) and K =
SOZ(IC) € D(b:_c(CXXy). Set

K=r,KeDX (Cyyx) and K*=D'r,KeD2 (Cy.x).
One has the following adjunction formulas relating the transforms for sheaves and for D-modules.

Proposition 1.8. ([4], [11]) Assume (1.3). For any M € D*(Dx) and G € DP(Cy) there are

isomorphisms

RI'(X; RHomp (M, (G o K) ®Ox))[dx]
~ RI(Y; RHomp, (Mo K,G®Oy)),
RI(X; RHomp, (M, RHom (G o K*,0x)))[dx]
~ RI'(Y; RHom p (Mo K, RHom (G, Oy)))[2dy].

Moreover, if G € D%_C((Cy) there are similar isomorphisms with ® and RHom replaced respec-
tively by @ and Thom.
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1.3 Twisted sections and integral transforms of line bundles

In this section we still assume that the manifolds are complex analytic and compact.

Twisted sections and D-linear morphisms. Let X and Y be manifolds. Given K €
Mod,»(Dxxy), we set
KO = K @, a7 Ox.

Let F and G be holomorphic line bundles on X and Y respectively, and set
dx, _ 1 dx, —1
KSNF,G) =4 ' F @010, K016 4G
Proposition 1.9. ([4]) For any M € D(Dx) one has a natural isomorphism in DP(Dy)

Mo K =~ Rgy (g ' Ma* K00y,

;' Dx
The following proposition provides a description of the Dy-linear morphisms between DG

and DF o K in terms of twisted sections:

Proposition 1.10. ([4], [5]) There is a natural isomorphism
ax : HORT(X x Y; KUO(F,G*)) & Hompy p,) (DG, DF o K).

Hence to any section s € HORT'(X x Y; K(@x:0 (F G*)) one can associate a morphism o (s) :
DG — DF o K in D?(Dy).
In particular, let X =Y, K = Ba,, and F a holomorphic line bundle on X. By Proposition

1.10 one gets a natural isomorphism
ar : T(X x X; BYXO(F, 7)) % End pu ) (DF). (1.4)
We denote by dx r € I'(X x X; Bglj:’o) (F,F*)) the canonical section corresponding to id pr.

Composition of sections. Let X, Y and Z be manifolds, K € Dgood(DXXy) and K' €
Dgood (Dy «z). There is a natural C-linear morphism

012 K @ g5 K'D0 = Dy g xtoy wz @F (2 'K C0x vy rn g3 'K). (1.5)

Dxxyxz

Assume that £ € Mod,;(Dxxy) and K € Mod,,,(Dy«z), and let F, G and H be holomor-

phic line bundles on X, Y and Z. From (1.5) one gets a composition morphism
o - HRI(X x Y; KU O(F G*) @ H'RD(Y x Z; K'¥0(G, 1)) (1.6)
— HORI(X x Z; (Ko K)4x0(F H*)).
Remark 1.11. In the regular holonomic case, one can construct the above morphism also with
the functor 7 hom(-, ©), using Proposition 1.4 and the Leray-Grothendieck integration morphism

qu:&!@g?’xdg;f)z — Oxxz[—dy].
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The composition (1.6) is compatible with the isomorphism «:

Proposition 1.12. ([4]) Let s € H'RI'(X x Y;K@x0(F G*)), t € H'RT(Y x Z; K'(4:0(G, H*)),
and denote by ax(s)o K' the image of the morphism ax(s) by the functor - o K'. Then one has

(Oé}C(S)Q ’C,) ¢} Oélc/(t) = QKo ]C'(S o] t)
as Dz-linear morphisms from DH to DF o (Ko K').
In particular, we shall be concerned with the following special situation.

Proposition 1.13. Let K € Mod,,(Dxxy), K' € Mod,,(Dyxx), F, G holomorphic line bun-
dles on X and Y respectively, s € T(X x Y;K4xX0(F G*)) and t € (Y x X; K4 :0(G, F*)).
Suppose that:

(i) Ko K'~Ba, and K'o K~ Ba,;
(ii) sot=0x 7 and tos=0dyg (up to a nonzero multiplicative constant).
Then the morphisms
ax(s): DG —DFo K and ax/(t): DF —DGo K’
are isomorphisms (in particular, DF o K and DG o K' are concentrated in degree zero).

Proof. By (1.4) and Proposition 1.12 we have (up to a nonzero multiplicative constant)
(a(t)2 K) 0 ax(s) = ag(t o ) = id p.

For the same reasons, we have (ayc(s)o K') o axr(t) = ar(sot) = id pr. Applying the functor
o K, we get ax(s) o (e (t)o K) = idpro k, and hence axs(t) o K is a two-sided inverse of
ai(s). One argues similarly for oy (t). O

1.4 Microlocal sections

Here we microlocalize the preceding construction, using some results of Sato-Kawai-Kashiwara
[16] and Kashiwara-Schapira [10].

We still assume that the manifolds are complex analytic and compact.

Let X, Y and Z be manifolds, K € Mod,,(Dxxy), K' € Mod,;(Dyxz), W = char (K)
and W' = char (K'). Let F, G and H be holomorphic line bundles on X, Y and Z, and let
s € HORD(X x YV; KUx:0(F G*)) and t € HORD(Y x Z; K'(40(G, H*)).

Composition of Lagrangians. Let A (resp. A’) be a Lagrangian submanifold of W (resp.

W’). In [10] the composition of Lagrangians is described in a set-theoretical way, as

Ao =pig(A xFy A) C T(X x 2), (1.7)
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where - x{.y - denotes the fiber product with respect to the projections p§ : T*(X xY) — T*Y
(i.e. po composed with the antipodal map a on 7*Y") and py : T*(Y x Z) — T*Y. In the smooth

case, one has:
Proposition 1.14. ([10, Lemma 7.4.1]) Let A and A" be smooth Lagrangians, and suppose that
Pila : A = T*Y and pi|a : A — T*Y are transversal. (1.8)

Then Ao A" is a smooth Lagrangian.

M:icrolocal composition. Let §y : X XY X Z — X xY xY x Z be the diagonal embedding.

One defines the microlocal composition of K and K’ as
EK 0 u€K' = qu3, Oy (EK B EX) € DP(Exxz).
Proposition 1.15. ([5]) Assuming (1.2), one has an isomorphism in D®(Exxz)
EK o LEK ~ E(Ko K').
The composition morphism (1.6) can be microlocalized. Set
EKO(F,G*) = n7 1, (F 00, %) @ 14010y EL@piyi0, © 1 '
We look at s and t as globally defined microlocal sections, i.e.
s € H'RI(T*(X x Y); EKYXO(F, G*)) and t € HRD(T*(Y x Z); EK'W0/(G, H*)).

Let Ux (resp. Uy, Uz) be an open subset of T*X (resp. T*Y, T*Z) and set

Wy=WnUx xT*Y) and W, =W N (T"Y xUy).
Let us suppose that Wy and WY, are smooth, and consider the restrictions

slwy, € HORT(Wy; ECO)(F,G%)) and tly; € HORD(W; ELC' (G, 1)),

Proposition 1.16. ([1], [10]) Assume (1.2), (1.8) and

Wy Cc Ux x Uy, (1.9)
p1 : Wy — Ux is proper, (1.10)

and the analogous conditions (1.9)" W{, C Uy x U% and (1.10)" p§ : W, — Uy is proper. Then:
(i) there is a well-defined microlocal composition

-0, - H'RD(Wyy; EC(F G*)) @ HORD(W; EK' W 0(G, 1))
— HORT(Wy o Wip; E(K o K90 (F H*));
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(ii) one has
slwy o tlwy, = s o tlwyowy,

where s ot is the composition (1.6).

We will not enter into details about these facts. We just mention that, since our kernels are
regular holonomic, then the statements follow from analogous statements for the perverse sheaves
K = Sol(K) and K’ = Sol(K') by means of the microlocal analogous 7 phom of the functor
T hom, due to Andronikov [1] (e.g. one has EK ~ Tphom(K,Oxxy)). In particular, using
Proposition 1.15, the claim (i) follows from [1, Proposition 3.3.12], and (ii) from an application
of [10, Proposition 7.1.2] to the functor 7 phom.

Quantized contact transformations. In the above situation, let Z = X, H = F, Uy =
Ux, A a smooth Lagrangian submanifold of W, W/ = W = b/ =L (W) and A’ = A = t/~1(A).

Assume the following;:

(W x TEX) N (TEX X W) C Ty xx(X XY x X) (1.11)
the maps pi|p : A — Ux and p§|a : A — Uy are isomorphisms (1.12)
py (Ux) = p5~'(Uy) = A. (1.13)

(In other words, (1.12) says that A is the graph of a contact transformation p§|s opi|,* between
Ux and Uy, and (1.13) means that there is no “interference” of W \ A over Uy and Uy.)

Proposition 1.17. Let A’ = Ao A, and assume (1.11), (1.12) and (1.13). Then:

(i) A° is a smooth Lagrangian submanifold of Tx, (X x X). Moreover, the composition s| oy,
t|5 is a well-defined section of HORT' (A% E(K o KX 0)(F, F*¥)) and coincides with sot| o;

(ii) if s|a generates EK on A and t|; generates EX' on A, then the section s|s out|3 generates
E(Ko K') on A°.

Proof. (i) A" is a Lagrangian submanifold of TA, (X x X) since A and A are graphs of contact
transformations, and is smooth by Proposition 1.14, since (1.12) implies (1.8). Conditions (1.9)
and (1.10) are satisfied since Wiy = A and W[, = A by (1.12) and (1.13), and (1.11) is nothing
but (1.2). Then we may apply Proposition 1.16. The claim (ii) follows from the theory of
[16]. O

2 Invertible kernels associated to an open relation

Following an idea of [12] (already introduced in [16] and [10, Ex. II1.15] in the real case), we
introduce a pair of kernels defined by an open relation between two manifolds, and we study

necessary geometrical conditions for their invertibility.
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2.1 A geometric criterion

Let X and Y be real analytic compact orientable manifolds of the same dimension n, {2 an open
subanalytic subset of X x Y. Set Q = (), and denote by j (resp. j) the embedding of £ into
X x Y (resp. of Q into Y x X). For any 2 € X we set

Q. ={yeY:(zr,y) €Q}CY,
and similarly for y € Y. Let us consider the kernels

Ko = Cq=jij 'Cxxy € DR_(Cxxy), (2.1)
K§ = D'Cq~ Rj,j 'Cxxy € DR _(Cxxy). (2.2)
Following a suggestion of M. Kashiwara, we shall give a geometric criterion which ensures

that
Kq o Ksiz ~ Cay[-n] and Kg o Kg >~ Cay[-n].

We shall consider the following geometrical hypotheses.

X is simply connected; (2.3)
) [0 forz#a
RF(QxaCQx/) - { C forz=2x"" (24)

SS(Cq) N (TEX x T*Y) € Th,y (X x Y), (2.5)

and the similar conditions (2.3)’, (2.4)’ and (2.5)" obtained from above by interchanging X and
Y.

Remark 2.1. We observe the following facts.

(i) Let x # 2/: then, applying the functor RI'(€2,; ) to the exact sequence
0 — Cq,na,, — Co, — Cq,\q,, — 0,
one sees that (2.4) is equivalent to requiring that the natural morphism
RI'(Q;Cq,) — RI(Q \ Q23 Co 0 ,)
is an isomorphism.

(i) (2.5) implies (1.1) for Z = X, K = Kq and K' = K%, since SS(KZ) = t'SS(Kq)®.
(Recall that, if F/ € DY (Cx), then SS(D'F) = SS(F).)

Lemma 2.2. Assume (2.3), (2.4), and (2.5). Then

Koo K5 ~Cay[-n]
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Proof. We set
C':I(QOI(S:‘;2 :qug,Co, s :D/CXXQ R Caxx-
Our first aim is to prove that C|y = 0, where U = (X x X)\ Ax. Let (z,2') € U (i.e. x # /),

and consider the diagram

{x}xYx{x’}MXxYx{x’}LXxYxX

I, x x’/
l‘é;; =) leJ lq13

(o} x {2/} —2 o X x {2/} X x X.

Gt

Sometimes we shall identify {x} x Y x {2’} with Y.

Lemma 2.3. Let X and Y be real analytic compact manifolds, U a subanalytic open subset of
X xX,Co€DE_(Cxxyxx) and C = Rqi3,Co € DY (Cxxx). Then Cly =0 if and only if
RI(Y;i,'7,C5) = 0 for any (z,2') € U.

Proof of the lemma: First note that, if Z is a real analytic manifold and F' € D} __(Cz), one
has FF =0 < DF =0 (where DF = RHom (F,wz) and wz = orz[dz] is the dualizing complex)
& i 1DF = Dz'!ZF =0 forany z € Z & Z'ZF =0 for any z € Z. In our case, let us first suppose
that U = U; x Uy for some open subsets U; and Uy of X. Then we have that Cly = 0 <
(g 0 i(xl7x))!c = z'!(x,w)iic,C’ =0 for any (z,2') € U & i,,C =0 for any 2’ € U, & i(_xl,,z)i;,c =
fi(—;,r)i!x,qug!C'o = 0 for any (z,2') € U & R(q%/’x))!ia’z)%/C@ = RF(Y;i(_ml,’m)i;,Co) = 0 for
any (z,2') € U (for the last equivalence, note that the projections are proper and the square
diagrams are cartesian). As for the general case, it suffices to note that U is covered by open

subsets of the form U; x Us. The lemma is proved.

Therefore, let us verify that RI'(Y; i(_zl, w)i;,C'o) = 0. We have:

~|
1, /Co

LCo ~ i, RHom(Cy 5.Caxx)  (by (25))
~ RHom (i;/chxﬁ,'iivl(CQXX) (as a sheaf on X x Y x X)
~ RHom (ix/ﬂ;,lCXXﬁ,(CQX)(>
~ RHom (Cxxq,,Cq) (identifying X x Y x {2/} to X x Y)
~ D/CXXQI, ® Cq (by (2.5)).
Then we get

RI(Y; z(;l, »iwCs) = RI(Y;D'Cq, ®Cq,) (identifying {x} x ¥ to V)
RI(Q; D'Cq_,)
RI'(Q;Cq, )*[—n] (by Poincaré duality),

IR

where (-)* = Hom (-, C), and therefore RT'(Y;7} 7',C.) = 0 by (2.4). Thus the support of C

(! z) e’
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is contained in Ax, and hence
C ~ C®Cay
= Raqs, (D'CXXQ ®CQxX) ®Cay
~ Rqs, (D,CXXQ ® Caxx ®C(X><Y)><XX>
~ Rauyy (D'Cy, 5 Coxx ) -
Now, SS(Cy, g) = TxX x ''7185(Cq) and SS(Caxyx) = SS(Cq) x4 x T*X (we mean that

the fiber product over T*X is made with respect to the natural projection and the antipodal
map): hence, by (2.5) we have SS(C, &) N SS(Caxyx) C Ty (X xY), and we get

C ~ Rqi31RHom ((CXXQ-(CQXXX)a
Since 2 x x X is a closed subset of X x SNI, we obtain
C ~ Rq13Cax x ~ RO Rq,Cq.

Since g1 is proper, we have SS(Rq1,Cq) C ¢i+'¢; 1SS(Ca) = q1x'q) 1 (SS(Co)N(T*X x T}Y)),
and thus SS(Rq1,Cq) C T%X by (2.5)". In other words, Rq;,Cq is locally constant on X, and
hence constant by (2.3). Let x € X: since (Rq1,Cq)s ~ RI'.(;Cq,) ~ RI'(Qy;Cq, ) [—n] ~
C[—n] by Poincaré duality and (2.4), we get Rq1,Cq ~ Cx[—n], and thus C ~ Ca,[-n]. O

2.2 The complex case

Let X and Y be complex analytic compact manifolds of the same complex dimension n, and
let © be an open subset of X x Y such that the complementary closed set S = (X x Y)\ Q is
complex analytic (in particular, € is subanalytic). Then, the kernels introduced in (2.1)—(2.2)
have C-constructible cohomology groups. Therefore, by the Riemann-Hilbert correspondence,

we have the associated D-module kernels

Ko = Thom(Kq,Oxxy) € DEh('DXXy), (2.6)
K Thom(K§, Oxxy) € D (Dxxy). (2.7)

Theorem 2.4. Assume (2.3), (2.4), (2.5) and (2.3)’, (2.4)’, (2.5)’. Then:
(i) the functors
-0 Kq:D*(Cx) — D°(Cy) and - oK%:D(Cy)— D"(Cx)

are quasi-inverse to each other, and thus they define equivalences of categories between
DP(Cx) and D(Cy), between D} _(Cx) and D} _(Cy) as well as between D__(Cx)
and D2__(Cy);
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(ii) the functors
-0 Ko :DP(Dx) = DP(Dy) and - o KS D(Dy) — DP(Dy)

are quasi-inverse to each other, and thus they define equivalences of categories between
D"(Dx) and DP(Dy), between Dgood(DX) and Dgood(Dy) as well as between DY, (Dx)
and D, (Dy).

Proof. We have Kq o K ~ Cay[-2n] and K¥ o Ko ~ Ca,[-2n] by Lemma 2.2. Then, by
Proposition 1.4 we obtain Kq o IC;% ~ Ba, and lC;iz o Kq =~ Ba, . Finally, we apply Proposition
1.7 and Corollary 1.6. O

3 Grassmann duality

Let us apply the abstract construction above to the case of a pair of “dual” Grassmann manifolds

of a fixed complex vector space.

3.1 Perverse sheaves associated to the transversality relation

Let n and p be positive integers such that n > 2 and 1 < p < n/2, and let V be a n-dimensional

complex vector space. We set

G = {x:zis a p-dimensional subspace of V'},

G* = {y:yisa (n— p)-dimensional subspace of V'},
Q {(z,y) eGx G :any={0}},

S (G xG")\ Q.

In other words, G is the Grassmann manifold of p-subspaces of V', G* is the “dual” Grassmann
manifold of (n — p)-subspaces (which is canonically isomorphic to the Grassmann manifold of
p-subspaces of the dual vector space V*), Q is the open “transversality” relation in G x G*
and S is the “incidence” relation, a closed complex hypersurface of G x G*. We denote by
7:Q — G x G* the embedding, and by (NZ, S and 7 the similar objects in G* x G. Recall that

G and G* are both complex analytic (in fact, also algebraic) compact manifolds of dimension
N =p(n—p).

Group actions. The grassmannians G and G* are homogeneous manifolds under the natural
action of the complex Lie group G = SL(V'), whose associated Lie algebra is g = s[(V) = {a €
Endc(V) : tr (o) = 0}. The group G acts naturally also on G x G* with the diagonal action
g(z,y) = (9, gy), and the set of G-orbits is {€2,51,...,S5,}, where

S; ={(z,y) €e G x G : dim(zx Ny) = j} (j=1,...,p) (3.1)

is a locally closed smooth submanifold of G x G* (with codim gxg+S; = j?): in particular,

note that (G,G x G*) is a prehomogeneous space (see [17]) with open dense orbit . Similar
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considerations hold for the diagonal action of G on G x G, where the G-orbits are {(z,z') €
G x G :dim(zNa’) =j} for j =0,...,p (in particular, for j = p, one obtains Ag).

Homogeneous coordinates. Let us consider the manifold of p-frames in V'
F,(V)={v=(vi,...,vp) € VP : vy A--- Awy, # 0},
an open dense subset of VP ~ C" (e.g. F1(V) =V \ {0}). There are GL,(C)-bundles

q: F,(V)— G, q(v) = (v1,...,vp),
¢ Fp(V*) — G, g (v*) = (v], .. .,v;)L. (3:2)

We introduce a system of Stiefel (resp. dual Stiefel) coordinates [{] on G (resp. [n] on G¥), i.e. a
system of GL,(C)-homogeneous coordinates on Fy, (V) (resp. on F,(V*)). In other words, fixed
any basis {v,...,v,} of V, the matrix { € M, ,(C) is associated to the p-subspace z of V'
spanned by its p row vectors ({1, ...,&,), while n € M, ,(C) denotes the (n — p)-subspace y of
V' orthogonal to the p-subspace of V* spanned by the p column vectors (7,...,7,) of n in the
dual basis {v],...,v}} of V*. It is clear that:

(i) these coordinates satisfy the homogeneity conditions [A¢] = [¢] and [nA’] = [n] for any
A, A e GL,(C);

(ii) If z = [¢] and y = [n], then for any g € G one has gz = [£g] and gy = [g7 7] (note that
g~ 'n="("n'g™").
Geometry. We observe the following geometrical facts.

(1) The closed complex hypersurface S is the set of zeros of the homogeneous equation in
G x G*

f(@(€), y(n)) = det(én), (3-3)

where &n is the usual product of matrices; observe that
f(AE nA") = (det A)(det A') f(&,n) for any A, A" € GL,(C),
and that f is G-invariant (for the diagonal action on G x G*), i.e.
flgz,gy) = f(z,y) for any x € G, y € G* and g € G.
(2) A subanalytic stratification of S is given by S = U§:1 S;.

(3) The projections
alo:2—=G,  @lo:2—-G"

have affine fibers. Namely, let © € G and fix any basis in V' such that z = [1,, 0], where 1,
is the identity matrix of GL,(C): then, setting Q, = {y € G* : (z,y) € Q}, one has

Q, = { Bﬂ M e Mn_p,p(C)} ~ V.
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Kernels assoctiated to Q). The open subset Q of G x G* defines integral transforms between
G and G* by means of the kernels introduced in (2.1) and (2.2):

Kq=Cq=jij 'Cgxg- and K& =D'Cq=~ Rj,j 'Cgxg

Since € is the complementary of a closed complex hypersurface, the kernel K¢, is a perverse
object of DP(Cgxg+) (see for example Kashiwara-Schapira [10, ch. X]) and hence so is K&
by duality. By the Riemann-Hilbert correspondence, we get the associate regular holonomic
D-modules

Ka=Thom(Kq,Ogxg+) and KG=Thom(K,Ogxgr).

Remark 3.1. By definition of 7 hom, the sections of Kq are the meromorphic functions on
G x G* with singularities along S (i.e. Ko ~ Ogxg+(xS) in the more classical notation of
Appendix A), and K& ~ D Kq by Proposition 1.5.

Remark 3.2. For p = 1 one obtains the projective duality between a complex (n — 1)-dimensio-

nal projective space P and its dual P*. In this case, S is a smooth hypersurface of P x P* (see

(2], [4)).
3.2 Microlocal geometry

In order to study the microlocal geometry of our correspondence, we use the action of the group

G.

Group actions and microlocal geometry. Let X be a complex analytic manifold with a
transitive action of a simply connected complex Lie group G with Lie algebra g. Let g x T X —
TX be the tangent action and p : T*X — g* be the moment map. Since the G-action on X is
transitive, 7% X is identified to a subset of X x g* by the map (7, p). Let Y be another complex
analytic manifold with a transitive G-action, and let S be a smooth G-orbit in X x Y for the
diagonal action. One has T§(X xY) — T*(X xY) > T*X xT*Y, and T* X x T*Y is embedded
n (X xY) x (g" x g*) by the map (7x, 7y, px,py). Let p = (x,y;&,n) € T*(X xY) with
&,n € g*: recalling that the pairing T(X x V) x T*(X x Y) — C is related to the pairings
TX xT*X — Cand TY x T*Y — C by ((v,w);(&,n)) = (v,€) + (w,n), we observe that

p € T§(X xY) if and only if (z,y) € S and n = —¢.
In our case (where G = SL(V), g = sl[(V), X = G and Y = G*) the above considerations
lead to the following useful identifications, where we identify g* with g by the Killing form:

TG =~ {(x;€):2€G, £e€sl(V), z Cker(€), im(£) C x}

~ {(z;0) 12 €G, o € Hom (YL, )},
°G" =~ {(ym):yeG", nesl(V), y Cker(n), im(n) C y}
~ {(y;8):y€G", BeHome(3,y)}, (3.4)
T;j(GXG*) ~ {xy, a,fB):(z,y) €55, EI'yEHomC(ﬁ,xﬂy)
a:% gH_ylmﬂny G ——»m—VxﬁyHy}

=~ {(x,yw) (wy) €55, v € Homc(zﬂ,,xﬁy)}
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and the projections from Tgij (G x G*) on T*G and T*G* are given by

pLiTE (G xG) = TG, pile,yin) = (wa: L — L 2any—a), .
p2:T5 (G x G*) = T*G*, pa(z,yi7) = (v B: Yy — 25 = xNy— ), '
where % —» x—‘iy and % —» sz (resp. Ny — x and Ny — y) are the natural projection (resp.

injection) maps.

Remark 3.3. With these identifications, one can easily prove that the stratification S = U§:1 S
satisfies the p-condition (see [10, Definition 8.3.19])

(ng(G x G*) F T%, (G x G*)) N (Sk) C T%, (G x G*) forany 1< j <k <p,

and hence is a Whitney stratification of S.

M:icrolocal G-actions. The G-actions on G, G* and G x G* induce also natural G-actions
on T*G and T3, (G x G*). In the description above, one has e.g. g(x,a) = (gx,ga) where
ga € Homc(g%, gz) is defined as follows: the isomorphism ¢ induces natural isomorphisms
g € Hom(¥, X) and ¢” € Hom(, gz), and one sets ga = ¢g” o a o g'~1. Tt follows that the

T’ gx

G-orbits in T*G are
{(z:0) € T"G :rank (@) =j}  (j=0,...,p)
and the G-orbits in T (G x G*) are
{(07) €T3 (G x G) srank (v) = 1} (1=0,....5).

One argues similarly for 7%(G x G): in particular, the G-orbits in TX (G x G) ~ T*G are
{(z,x;0,—a) :x € G, a € Hom(c(%,y:), rank (o) = j} (=0,...,p).

The b-function associated to f. We have just observed that (G,G x G*) is a prehomoge-

neous space. Let us compute the associated b-function bs(s) (see Appendix A). Since the problem
1"
is local, we choose local coordinates (1,,a’,a”) in G and I;)’ in G* (where a”,b" € M,(C),
a' € My ,—2,(C) and b' € M,,_3,,(C)). The function f(&,n) %?ecomes
f(a',a" b, b") = det(b” + a't’ + a"). (3.6)
By means of the change of variables

(a/7 a”,b/,b”) — (al,a//,b/7g//), g//(a/7 a”,b/,b”) — b// +a/b/ + al/?

one has f(da/,a", b, b") = det(g” ), and hence we are locally in the situation of the determinant

function in X = CP” (see Proposition A.6). Hence we have

bp(s) =(s+1)---(s+p). (3.7)
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The characteristic variety. Set
W = SS(Cq) = char (Kq) C T*(G x G¥).

Proposition 3.4. One has

W =T¢yg-(GxG")U (G x GY). (3.8)

|| C”S

Proof. The inclusion C holds since the S;’s form a Whitney stratification of S (see Remark
3.3); on the other hand, by (3.6) the prehomogeneous space (G, G x G*) is locally isomorphic to
(GL,(C), CP*) (where the invariant function is the determinant), and then the opposite inclusion
follows from the the theory of [17] since (GL,(C), CP”) is regular and the conormal bundles to
the orbits are good Lagrangians (see [9]). O

The irreducible components of W are
A() — TéXG* (G X G*),
A = T;j(G x G*) = {(z,y;7) : (z,y) € Uf:jSi, v € Homc(z+y,a: Ny),

rankfygj} (.7:17ap_1)a
A, = T (GxG).

Therefore (see Appendix A) the local b-functions on the A;’s are

bAo (3) 1,
ba(s) = (s+1)-(s+5) (G=L1....p). (3.9)

The contact transformation. The microlocal correspondence associated to our transforms
is

T*G LW 25 T*G* (3.10)

(recall that p§ denotes the composition of pa with the antipodal map a of T*G*). Let us consider
the open dense subsets

U = {(z;a) € T*G : ranka = p} C T*G
U* = {(y:8) € T*G* : rank § = p} C T*G* (3.11)
A = {(z,y;7) € T5 (G x G") : rank y = p} CTgp(GxG*).

Note that A is a G-orbit in Tg (G x G¥).
Proposition 3.5. Conditions (1.11), (1.12) and (1.13) are satisfied in our case.

Proof. This follows easily from (3.8), (3.4) and (3.5). O
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Example 3.6. In the case of projective duality, the microlocal correspondence (3.10) induces a
globally defined contact transformation between 7*P and T*P*, since A = T(P x P*) (see [4]).
The b-function is bs(s) = s + 1.

In particular, by Proposition 1.17(i), A = A o A is a smooth Lagrangian submanifold of
TX.(G x G*). In fact, A% is the open dense G-orbit in TR (G x G"):

Ay ~ {(x,x;a, —a):z€G,ac Homc(%,x), Jdy e G*
st. x Cuy, H’YEISO(%,ZL‘): a:%e%lxx} (3.12)

= {(m,az;a, —a):z€G,ac Homc(g,x), rank o = p} )

3.3 Equivalences of derived categories

We show that the geometric hypotheses for the invertibility of Kq and K siz are fulfilled in this

case.

Lemma 3.7. The triplet (G,G*;Q) satisfies hypotheses (2.3), (2.4), (2.5) and (2.3)’, (2.4),
(2.5).

Proof. The hypotheses are symmetric in G and G*; hence it is enough to check (2.3), (2.4) and
(2.5).

Condition (2.3) is clearly verified.

In the above description (3.4) of Tg, (G x G*), notice that if &« = 0, then 7 = 0 and then also
B = 0. Thus,

T5,(G x G*) N (IgG x T*G") C Tgye+(G x GY)

for any j = 1,...,p, and hence (2.5) is satisfied thanks to (3.8).

Finally, in order to prove (2.4), let 2,2’ € G with x # 2/; in general, we have dim(zNz') = j
with 0 < j < p— 1, and hence let us choose a basis {v1,...,v,} of V such that = (v1,...,vp)

and «’ = (v1,...,0j,Vps1,. .., V2p—j). In Stiefel coordinates, we have

(1, 0 00 , (1, 0 0 0
(8 0a) e =50, 0),

where the orders of the row blocks are j and p — j, and the orders of the column blocks are
jy,p—Jj,p—jand n —2p + j. On the other hand, Q, is an affine chart of G* (and hence
RI'(24;Cq,) ~ C): in terms of dual Stiefel coordinates, we have

1, 0
0 1pj

Q=190 =, 3’ ~CV,
by by

where the orders of the row blocks are j, p — j, p — j and n — 2p + j, and the orders of the
column blocks are j and p — j. Thus, we have Q, \ Q. = {y(b) € Q5 : det(b3) = 0}, a closed
conic subset of ;. Therefore we have RI'(€2; \ 2./;Cq,\q_,) ~ C, and hence RI'(Q2;;Cq_,) = 0.
The proof is complete. ]
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Theorem 3.8. (i) The functors - o Ko and - o Kg% are quasi-inverse to each other, and
thus they define equivalences of categories between DP(Cg) and DP(Cg+). Moreover, they
induce equivalences between DY (Cg) and DY (Cg+) as well as between D _(Cg) and
D{_(Cg).

(ii) Similarly, the functors - o Kq and - o IC;% are quasi-inverse to each other, and thus they de-
fine equivalences of categories between DP(Dg) and DP(Dg+). Moreover, they induce equiv-

alences between D'gJOOd(Dq;) and DP _(Dg+) as well as between DY, (Dg) and DP, (Dg+).

good

Proof. This is a consequence of Lemma 3.7 and Theorem 2.4. O

Remark 3.9. One has char (Ko ng) C W oW (see (1.7)), where W = char (Kq) and W =
t/=1(W) = char (IC;%) In fact, this is a bad estimation in our case (due to the non-smoothness

of W), since one can compute that
WoW ~ {(:U,x';é) cx,2' €G, d € Homc(#,xﬂx’)} CT*(G xG)

whereas char (Kq o IC;%) = char(Ba;) = Tx (G x G) by Theorem 3.8.

3.4 Quantization

In this section we want to describe concretely the action of the quasi-inverse functors - o K and
- 0 Kf, on a certain class of locally free D-modules. More precisely, we consider the D-modules

Dg Do JF associated to a holomorphic line bundle F on G.

The holomorphic line bundles on G. It is well-known that the Picard group Pic(G)
of G (i.e., the set of isomorphism classes of holomorphic line bundles on G endowed with the

operation ®OG) is isomorphic to Z. In fact one has
Pic (G) = {Og(X) : X € Z},

where Og () is the holomorphic line bundle on G whose sections over an open subset U are (see
(3.2))
L(U; 0g(\) = {s € T(¢" 1 (U); Or,(v)) & 8(Av) = (det A s(v) VA € GLy(CT)}.

Remark 3.10. One has Og ~ Og(0), Qg ~ Og(—n) and Og(A)* ~ Og(—A) for any A € Z.
Moreover, Og(—1) is the determinant of the tautological holomorphic vector bundle of rank p

on G, i.e. the subbundle of G x V whose fiber over = € G is the p-vector space x C V itself.

A generalization of Leray’s form. Since Qg ~ Og(—n), there is a natural isomor-
phism of holomorphic line bundles (determined up to a nonzero multiplicative constant) Qg Doy

Og(n) = Og, which holds in particular at the level of global sections:

I'G, Qg ®OGOG(TL)) = T(G,0g) ~C.
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Hence we get a nowhere vanishing section
w&k} € F(Ga QG ®O@OG(n))’ (313)

which generalizes in a natural way the twisted form (see Leray [13])
n—1 ) .
wh =Y (~1)gdég A NdgG A+ ANdEu1 € T(P, Qp ®p Op(n))
§=0

on the complex projective space P 3 [y, ...,&,—1] when p = 1.

Quantization. Let us set
N=-—-n—-A\

To any Og(A) one associates the locally free Dg-module of rank one
De() = Dg @, Oc(N),

and similarly for G*. Our aim is to show that the image of Dg(—\) by the integral transforms
-0 Kq or - o K¢ (according to \) is isomorphic to Dg+(—\*). An initial remark is the concen-
tration in degree zero of these transforms (this will also follow later by other methods, using

Proposition 1.13).

Proposition 3.11. For any p € Z the Dg+-modules D (1) o Kq and Dg(p) o K5y are concen-

trated in degree zero.

Proof. Tt is convenient to work in the algebraic setting. Let G,; be the algebraic manifold under-
lying to G, (9(‘{;} the structural sheaf, Q?Gf the canonical sheaf and D(‘éf the sheaf of linear algebraic
differential operators on G,;. The canonical morphism of C-ringed spaces G — (,; defines
a canonical functor (+)g, : DP(D¥) — DP(Dg). Since Dg (1) o Ko ~ (DE (1) o K&)an, where
K& ~ j.j7 0% . (recall that Ko ~ Ogxg+(xS)), it is enough to show that D¥(u)o K¥ is
concentrated in degree zero. Set ¢; = ¢;|q (¢ = 1,2). From an algebraic analogous of Proposition

1.9, recalling that Q% ~ O%(—n) and that ¢ is proper we get:
DE(n)o K¢ =~ Rap.Rjj (a7 O8 (1 —n) @100 O ccr)
~ Rio, (47 O%(u—n) Ry 0 o).

Then the conclusion follows since ¢» has affine fibers. Using Proposition 1.3, one may argue by
duality for Dg(u) o K. O

Let us write for short
Ko (1,v) = KG " (Og (), Og- (v)).
Proposition 3.12. There is a natural isomorphism
ag : T(G x G K4 (<A, X%)) = Hompup,_(Dg- (—X*), Dg(~A) o Ka),

and a similar isomorphism ag, with Kq replaced by K.
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Proof. Apply Proposition 1.10 for X =G, Y = G*, K = Kq (resp. K = K£§), F = Og(—A) and
G = Og+(—X\%). O

By (1.6), (1.4) and Theorem 3.8 we get the following composition morphism, where we write

Q- = apg(—y) for short:

(G x G55 (=M, A)) @ T(G* x G; K5O (=A%, \)

oo
R . (N70) &
ST(G x Gy By, (=\,A)) &> End py(p) (Da(—A)),

and similarly for Kf,. Our aims are:
(1) to find some sections

sy €T(G x G END(“A A7) and 85 € T(G x G5 K50 (=X, A7)

(and, in the other direction, similar sections sy« € I'(G* x (G;IC%N’O)

D(G* x G; g0 (=%, N));

(=A*,A)) and 53, €

(2) to show that they are microlocal generators of the regular holonomic £-modules EXq and
ELE on A (the graph of the contact transformation in (3.11) );

(3) to show that sy o 55, = dg,—» and §}. 0 sy = dg+,—x+ (up to a nonzero multiplicative

constant).

Let f(&,n) be the function on G x G* defined in (3.3), and let P(s) = P(&,n, O¢, Oy; s) be a section
of Dgxe+[s] such that P(s) 5T = bs(s)f*, where bs(s) = (s +1)--- (s + p) is the b-function
associated to f. Recall (see Appendix A) that Ko = Ogxg+(*5), and that K§, = D (Og g+ (*5))
has a canonical generator Y; and a canonical section 0?Y; = H;‘L:1 P(—37)Y} for any a € Z>;.
We set:

&M = 16 5 () €T(C x G kG "™ (-A M)
e ={ J§1 et @ 2D enE x Brikp MO (- ),

where w( () is the twisted form on G described in (3.13).

Remark 3.13. We have observed that the prehomogeneous space (G,G x G*) is locally iso-
morphic to (GL,(C), CP*). Therefore in our case the operator P is locally the determinant of a
matrix of partial derivatives (see Remark A.7) and hence it does not depend on s. In particular,

one has Yy = P*Yy for any a € Z>1.

Lemma 3.14. The section sy (resp. si) is a generator of EKq (resp. EKG) on A for any
A > —n+p (resp. for any A\ € Z).
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Proof. Let bp(s) be the local b-function on A: then one has ba(s) = bs(s) = (s+1)--- (s+p) since

A is contained in the conormal bundle T'g (GxG*), and Sy, is the orbit of minimal dimension (see

(3.9)). By Proposition A.5, the section f(£,1)"" generates EKq on A if and only if by (\* —v) # 0

for any v € Z>1, i.e. if and only if A > —n + p. On the other hand, the section f(¢,n)" Yy

generates £, on A if and only if bpA(A + v) # 0 for any v € Z>g, i.e. if and only if A > 0.

Finally, the section 9*Y} is a generator of £, on A for any a € Z~, since the principal symbol
v

o(P) does not vanish on A: namely, for any (z,y;v) € A (where v : & = x, see (3.11)) one has

o(P)(x,y;) = det(y) # 0. O

Proposition 3.15. For any A > —n + p, one has s) 0 55. = dg,—x and 83. 0 sy = g —r+ (up

to a multiplicative constant).

Proof. We shall only prove that sy o 5Y. = dg,— for any A > —n + p, since the other statement
can be verified by similar arguments. By Proposition 3.5, the conditions (1.11), (1.12) and
(1.13) are satisfied. Therefore, setting A = Ao A C TA.(G x G) (see (3.12)) and recalling that
Koo K% ~ Bag (Theorem 3.8), by Proposition 1.17(i) we get that sx|s o, 33.|5 is a well-defined
section of F(AO;C(A];;’O)(—/\, A)) and coincides with sy o 55.|y0. Moreover, by Lemma 3.14 and

Proposition 1.17(ii) the section sy o §3.[p0 is a generator of Ca, on A for any A > —n + p.

Since Ca,, is simple and A is a G-orbit of TA, (G x G), there is a unique G-invariant generator
(up to a multiplicative constant) of F(AO;C(AZ’O)(—/\, A)). (Namely, a generator u is univoquely
determined by its principal symbol o(u), and if u; and uy are G-invariant generators on the
G-orbit A% then o(u1) = co(ug) on A° for some nonzero constant c: this implies u1 = cus.)
The restriction of the canonical section dg,—x|po0 is obviously G-invariant, and so is s) 0 53. |0 by
construction: therefore we get sy 0 §3.|p0 = dg,—x[p0 for any A > —n +p (up to a multiplicative
constant). Finally, since A" is a nonempty (in fact, dense) open subset of TA.(G x G) and both
5) 0 5y, and dg,—y are globally defined sections of C(A]i’o)(—)\, A), they coincide (up to a nonzero

multiplicative constant) on all of TX (G x G) by analytic continuation. O

One proves in a similar way that s} o5y« = dg,—) and sy« 0s} = dg,—x+. By Propositions 3.15
and 1.13 we get that axg(sz) (vesp. axy (s})) is invertible for any A > —n + p (resp. A < —p),
the inverse morphism being the image of ags (83+) (resp. ax,(Sx+)) by the functor -o Ko (resp.

-0 K§,) and hence we obtain:

Theorem 3.16. One has D-linear isomorphisms:
(i) De(-A)eKa < Dg-(=X\*)  for any A > —n+p;
(i) Da(-A)oKf < Dg-(—N)  for any A< —p.

Remark 3.17. (1) In fact, the statement (ii) of Theorem 3.16 is an immediate consequence

of (i) and Proposition 1.3, since in our case the dualizing complex Kg is isomorphic to
Dg(n)[N].
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(2) Observe that there is an overlap in the ranges of A in (i) and (ii), which are both valid for
—n+p < A < —p (recall that we assumed p < n/2).

Applying Sol( - ) to both sides of (i) and (ii) in Theorem 3.16 and recalling Corollary 1.6, we

obtain the analogous results for the complexes of solutions:
Corollary 3.18. One has C-linear isomorphisms:
(i) Og(A)oKq = Og+(A\)[-N]  for any A > —n +p;

(i) Og(A) o Kf = Og-(\)[=N]  for any A < —p.

4 Applications
4.1 Integral transforms defined by the incidence relation

Let us treat the integral transform given by the regular holonomic kernel
Ks = Thom(Cg[—1], Ogxg*),

which is used in the classical approach to projective duality (see [2], [4]). We recall the following
well-known fact (Bott-Cartan-Serre) on the twisted holomorphic cohomology of G:

I'(G; Og(A)

)
HI(G;0c(\) = 0 for 0 < 7 < N and for every A,
HY(G;06(N)) =~ T(G;Og(\),

_ {Ofor)\<0,

# 0 and finite dimensional for A > 0, (4.1)

where N = dg and (-) denotes the dual of a finite dimensional complex vector space. In

particular, from (4.1) one has
RI(G;0g(N)) = RT(G*; Og+(A*)) =0 forany —n+1 <A < —1. (4.2)
Applying the functor Dg(—\) o Thom(-,Ogxg+) to the distinguished triangle
Cg[-1] = Cq — Cgxg- =, (4.3)
we get
De(—A) o Ogxe+ — De(—A) e Ko — De(-A) o Ks . (4.4)
On the other hand, we have

~ Rga(q; ' Oc(X") @10, Ocxcr) (4.5)
~ RI'(G;O0g(\")) ® Og-,

2
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where the first isomorphism is in Proposition 1.9, the second holds since Qg ~ Og(—n) and the
third follows from the analytic Kiinneth formula and the finiteness (see (4.1)) of the holomorphic
cohomology of G. Hence by (4.4) and (4.5) we may conclude that Dg(—\) o Kg ~ Dg(—A) o Kq
if and only if RI'(G; Og(A\*)) = 0. By (4.2), this is verified when —n +1 < A* < —1, ie.
—n+1 < XA < —1. One can argue similarly for the kernel £f = Thom(D'Cg[—1], Ogxg+) (or
again by duality, using Proposition 1.3) and therefore, by Theorem 3.16 we get

Proposition 4.1. One has D-linear isomorphisms:
(i) Dg(—A)o Kg < Dg+(—=X\*)  forany —n+p< A< —1;
(ii) Dg(=A)o K& <~ Dg+(—A*)  forany —n+1 <\ < —p.
Remark 4.2. When p = 1 one has Kg ~ K§ ~ Bgpyp+, and we recover Theorem 4.3 of
D’Agnolo-Schapira [4].
4.2 Adjunction formulas and examples
From Proposition 1.8, we get the following adjunction formulas.
Proposition 4.3. For any —n+p < XA < —p and F € DP(Cg) we have isomorphisms

RT(G; F ® Og(\)) =~ RI(G";(FoCq)®Og+(\"))[N],
RI(G; RHom (F,0g()\))) ~ RI(G*; RHom (F o Cq, Og-(\*)))[-N],

l

and similarly for ® and RHom replaced by & and Thom when F € Dﬁ_c((@g).

Proof. In order to obtain the formulas for ® and ® (resp. for RHom and 7 hom) apply Propo-
sition 1.8 for X = G*, Y = G, M = Dg+(—-X"), K = Kg (resp. £ = K%) and hence K = Cq
(resp. K* = Cgq). Finally, recall Theorem 3.16. O

Let us give some applications of these formulas with F' = Cp, for D a compact subset of G.
Note that for any y € G* one has

(CpoCq)y ~RI(Lp(y);C),  Lp(y)={zreD:zny=0} (4.6)

(1) Q-trivial compact subsets. Here we argue in the spirit of [4, Section 5.1]. Let D C G be
compact, and set
D# ={yeG*:zNy=0 for any z € D}

and D = G* \ D#. Observe that for any y € D# one has Lp(y) = D. Moreover, it is immediate
to verify that D is nonempty (resp. affine) if and only if D? is affine (resp. nonempty). (Here

“affine” means “contained in an affine chart”.)

Definition 4.4. (cf. [4, Definition 5.1]) Let D be a compact nonempty subset of G. We say
that D is Q-trivial if (i) RI'(D;C) ~ C and (ii) RI'(D \ Lp(y); C) ~ C for any y € D.
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Remark 4.5. In the case p = 1, the Q-triviality implies the “linear convexity” a la Martineau,
i.e. D## = D (see [4, Proposition 5.3])

Lemma 4.6. Let D be an Q-trivial compact subset of G, and assume that D¥ # @. Then
(CD o CQ ~ CD# .

Proof. Let us compute Cp o Cg. Set g = q2|qf1(D)mS‘ since qfl(D) ns = q{l(lA)), from

1

the natural morphism id — Rg,g™" one gets C5 — Rg,C LD)ns = Cp o Cg, which is an

a
isomorphism by (ii). Applying the functor Cp o - to the triangle Cq — Cgxg+ — Cgs &+ and
noticing that Cp o Cgxg+ ~ RI'(D;Cp) ® Cg+ ~ Cg+ by (i), the lemma follows. d

Remark 4.7. Since Cq o D'Cg ~ Ca,[-2N], by Lemma 4.6 one gets Cpy o D'Cg ~ Cp[—2N].
Applying Proposition 4.3 and Lemma 4.6 we get the following result:

Corollary 4.8. Let D be a compact Q-trivial subset of G, and assume that D¥ # @&. Letxg € D,
Yo € D¥ and consider E = {x € G : xNyg = {0}} ~ CN and E* = {y € G* : 29Ny = {0}} ~ CV.
Then D C E, D¥ C E* and one has the following isomorphisms:
RI(D;0p) ~ RI.(D#;0p)[N]
RI'p(E;Og)[N] =~ RI(D¥;0p).

Moreover, all complexes are in concentrated in degree zero.

In the case p = 1, these isomorphisms were firstly obtained by Martineau [14], and reformu-

lated in this language by D’Agnolo-Schapira [4, Theorem 5.5].

Example 4.9. Let 29 € G, and set D = {zo}: then D is obviously Q-trivial, and D# = E*
CN. In this case, Corollary 4.8 gives well-known identifications: e.g., one has RI'({zo}; OF)
C{z} (the convergent power series in z = (21,...,2y) € E ~ CV) and RI'.(E*; Op+)[N]
[(E*;Qp+)" (the analytic functionals of Martineau).

12

1

12

(2) Indefinite Hermitian form. Let H be an Hermitian form of signature (p,n — p) on V, and
set

U = {xe€G: H|; >0},

U = {yeG*:H|, <0}
(Here, and in what follows, > 0, > 0, < 0, < 0 mean positive or negative (semi)definiteness.)
Remark 4.10. We observe the following facts.

(i) Let H = (é _(1]), where the orders of the diagonal blocks are p and n — p, and consider
the affine charts £ = {z = [1,,4] € G: A € My, ,(C)} and E* = {y = [%’] e G*:
B e My ,(C)}. Then U (resp. U¥) is a relatively compact subset of E (resp. E*). More
precisely, one has U = {z = [1,, 4] : 1, — AA* > 0} and U* = {y = HET;] : 1, — BB* > 0},
where (-)* =*(-).
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(ii) The real Lie group SU (p, n—p) is a real form of the complex semisimple Lie group SL(n,C),
which acts transitively on G and G*. The SU(p,n — p)-orbits in G and G* are

Upy = {z€G:H|, has signature (p',q¢')},
Upr v = {y € G": H|, has signature (p”,q¢")}

for p' +¢' <pand p” <p, ¢’ > n—2pand p”+¢” <n—p. In particular, one has U = Uy
and U* = Ug,,_,-
Lemma 4.11. One has C o Cq ~ Cy-.

Proof. (M. Kashiwara) We argue on each SU(p,n — p)-orbit in G*. Let y € Uy ., and let us
calculate ((Cﬁ o (Cg)y ~ RI'. (Lﬁ(y); (C). We may suppose that the dual Stiefel coordinates of y

are [lop], and that H is associated to the hermitian (n X n)-matrix

0
-1

My =

[N eNoNoNol S
o o oo
OO OO O
[N eNel ol
O OO oo
o O o oo

-1

where the orders of the diagonal blocks are p”, ¢, n—p—p"—¢' . n—p—p"—¢", ¢ —n+2p
and p”. The generic element of £, = {x € G: x Ny = 0} ~ CV has Stiefel coordinates
a;1 a2 a3z 1 0 0
X = as1 a2 a3 010 N
a1 asz a3 0 0 1
where the orders of the row blocks are n —p —p” — ¢”, ¢" —n+2p and p”, and the orders of the

column blocks are p”, ¢, n—p—p" — ¢, n—p—p" —¢", ¢" —n+2p and p”. The condition
x € U is expressible as the positive semidefiniteness of the hermitian (p x p)-matrix X My X* =

aj1011™ — a12a12” +a13* + a1z aras’® — aipase™ +axs®  aijas’™ — aizaze” + ags”
as1a11™ — aseai2”™ + ass as1a21™ — aggaze™ +1 a1a31™ — azzazs” ;
az1a11™ — azza12”™ + ass az1a21™ — a32022" as1az1” — agzaz2” — 1
where the orders of the diagonal blocks are n —p —p” — ¢, ¢" — n + 2p and p”.
Let p”"+¢" < n—p, i.e. suppose that H|, is degenerate. Then, up to a change of coordinates, it is
not restrictive to suppose X Mg X* = (ym* Z‘) with z € R, y € CP~! and A a positive semidefinite
hermitian (p — 1) x (p — 1)-matrix. Since for aanixed y and A the set {v € R : (y’“; Y) >0} is
either empty or a closed half real line, and RI'.(R*; C) = 0, we get RI'.(L(y); C) = 0.

Therefore, we may suppose that n —p — p” — ¢’ = 0, and hence we write
X:<a11 a2 1 0>7
a1 az 0 1
where the orders of the row blocks are p — p” and p”, and the orders of the column blocks are

p',n—p—p", p—p"and p”. Set u= (1) and v = (2'2). One has

a21 a22

Ly(y) = {a = (u,v) € By :uu* + (é _(1]) — vt > O}.
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For fixed ug, L7(y) N {u = up} is a compact subset in the space of v stable under multiplication

by ¢ € C with |¢| < 1. Moreover, Li(y) N {u = uo} # @ if and only if uu* + (é _?) > 0.

Therefore, it is not restrictive to set v = 0, i.e. we have RI'.(Lg(y); C) ~ RI'.(Z;C), where

z={u= (1) w + () 20}

Observe that Z is closed. If p” # 0, then clearly 0 ¢ Z. In addition, Z is stable under
multiplication by ¢ € Rt with ¢ > 1. Therefore the fibers of the natural map Z — Z/R*
are closed half real lines, and one has again RI'.(Z;C) = 0. Finally, if p” = 0 (and hence
yeUs,,=U") onehas Z ={a € Myn,(C) : 1 —aa” > 0}, and thus RT.(Z;C) ~ C. Since
Ci7 0 Cq is locally constant on the SU(p,n — p)-orbits, the proof is complete. O

By Proposition 4.3 and Lemma 4.11 we get:

Corollary 4.12. One has the following isomorphisms:

RI(U;0p) =~ RI.(U*;Op)[N]
RI';(E; Op)[N] RI(U*; Op-).

12

Moreover, all these complexes are concentrated in degree zero.

(8) Embedded Grassmann manifolds. Let us give a “non-affine” example. Fix any hyperplane
z C V and set

G, = {zeG:zCz}

G, = {yeG :ycCz}.

Then G, (resp. G) is the Grassmann manifold of p- (resp. (n — p)-)subspaces of z, and hence its
complex dimension is N — p (resp. N — (n — p)). It is easy to verify that Lg,(y) = @ if y € G}
and Lg, (y) ~ CN~P otherwise. Since Cg. o Cq is locally constant on G* \ G*, which is simply

connected, we get
Lemma 4.13. One has Cg, o Cq ~ Cg\g:[-2(N —p)].
We then obtain

Corollary 4.14. For any —n +p < XA < —p one has the following isomorphisms:

RI(G:; Og(A)) ~ RI(GZ; Og-(AY))[—(N —2p+1)]
RI'g,(G;O0g(N) =~ RIg:(G*,Og+(\"))[N —2p+1].
Proof. One has the distinguished triangle Cgr\gx — Cg+ — Cg: +! Applying the functor

RT:(-;Og+(A*)) and recalling (4.2), the first isomorphism follows from Proposition 4.3 and
Lemma 4.13, and the second is proved similarly by using the functor RT'(-; Og+(A*)). O
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Example 4.15. Let P be a m-dimensional projective space and let P’ be a (m — 1)-dimensional
projective space embedded in P. Applying Corollary 4.14 for n = m + 1 and p = 1, we recover
that for any —m < XA < —1 the complex RT'(P’; Op(\)) (resp. RIp/ (P; Op(N))) is concentrated

in degree m — 1 (resp. 1) and is infinite dimensional.

A b-functions

In this appendix we recall the results on the theory of Bernstein-Sato’s b-functions which are
used here. We refer to the works of Kashiwara [7] and Sato-Kashiwara-Kimura-Oshima [17] for

the proofs of the statements below, and to Kashiwara [9] for an introductory exposition.

Let X be a complex analytic manifold, z, € X, and let f € (Ox),, be a germ of holomorphic
function at x, such that f(z,) =0. Set S = f~1(0) and Q@ = X \ S.
Let J¢r = (f) C Ox, and let

Ox (xS) = lim Hom o (J7', Ox)
neN

be the sheaf of meromorphic functions on X with singularities on S. Recall that Ox (xS), and its
dual DOx (xS), are regular holonomic left Dx-modules. There is a natural injective morphism
Ox — Ox ( %S )

The b-function. Let s be an indeterminate on Dy, and set Dx[s] = Dx ® C[s]. We define
the ideal
T ={P(x,0y;s) € Dx|[s] : P(s)f(z)° =0 for s € Z>g, = €}

and we set
N =Dxls|/T = Dx]s] f*,

where f* is the canonical generator 1 + Z.

Definition A.1. The b-function by(s) associated to f is the monic generator of the ideal of
polynomials b(s) in C[s| such that

P(x,0p;8) f(x)T = b(s)f(x)?, s€Z, z€Q (A1)
for some P(z,dy; s) € Dx|s].
For a € C, set
Z(a) = {R(x,0y) € Dx;3Q(x,0y;8) € T s.t. R(z,0,) = Q(x,,;a)}

and define
M, =Dx/Z(a) = Dx ug,

where u, is the canonical generator 1 + Z(a) of M,. Observe that in general one has Z(a) #
I'(a) = {R(z,0;) C Dx : R(x,0;) f(z)* = 0, x € Q}, and hence the natural morphism

M, — Dx/Z'(a) is not necessarily an isomorphism.
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Proposition A.2. Let a € Z.

(i) Ifbpla —v) # 0 for any v € Z>1, then Mg ~ Ox (x5);

(ii) Ifbg(a+v) #0 for any v € Z>q, then M, ~ DOx (xS).
Remark A.3. Let us note some consequences of Proposition A.2.

(i) By Kashiwara [7], the roots of bs(s) are negative and rational. Therefore, one has
Mo ~ DOx (x5).

The image of u” by this natural isomorphism provides a canonical generator of DOx (x5),

which is usually denoted by Y} by analogy with the smooth case.

(ii) Moreover, for any a € Z>1 one gets a canonical section 9*Y; of DOx (xS) as follows. Let

P(s) = P(z,0y;s) € Dx|[s] be an operator satisfying eq:bfctn). Since
P(s—a)---P(s—1)f*=bs(s—a)---bp(s—1) f*°,

the section 0%f° = H‘;:l P(s — j) f* € N does not depend on P. Hence, one obtains
the desired section as the image of 9”f° by the canonical morphism N° — DOx(xS),
R(s)f*— R(0) Yy, i.e.

0*Yy = [[ P(-) Y7. (A.2)

j=1
Observe that 0°Y is not necessarily a generator of DOx (xS), even on a single irreducible
component of W = char DOx (xS) (see below).

Local b-functions. The above considerations can be refined microlocally. In other words, let

A be a good irreducible component of W = char Ox (xS): then one can ask only whether
EOx(xS) ~ EM, on A.
(Recall that we set EM = Ex 1Dy 7~ M for a Dx-module M.)

Proposition A.4. If A is a good Lagrangian, there exists a monic polynomial bp(s) of degree m
(where my is the order of zero of f ow|w along A) and an invertible microdifferential operator
Py of order my such that Py f5t! = by (s)f* on A.

This polynomial, which in fact divides bs(s), is called the local b-function of f along A. One

has a microlocal analogue of Proposition A.2.
Proposition A.5. Let a € Z.

(i) Ifba(a —v) #0 for any v € Z>1, then EM, ~ EOx(xS) on A;
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If bp(a+v) #0 for any v € Z>q, then EM, ~ EDOx (xS) on A.

When all irreducible components {Aj,...,A,} of W are good Lagrangians, then b(s) is the

least common multiple of the by’s.

If two components A; and A; (1 < 4,5 < r) have good intersection and mp; > my;, then it

is possible to calculate the ratio by, (s)/ba;(s) (see e.g. [17]). This gives an useful algorithm to

compute the local b-functions, as well as the b-function itself.

We refer to Kashiwara [9] for some examples. In particular, let us recall one of these results,

which is useful for our purposes:

Proposition A.6. Let X = M,(C) = C" and f(z) = det(z). Then the b-function associated

to f

is by(s) = H?:1(3 +37).

Remark A.7. In this case, observe that:

(i)

(i)

(iii)

as an operator satisfying (A.1) one can choose P(z;0;) = det(9y,; )i j=1,..n- In particular,
P does not depend on s, and therefore 0°Y; = det(9,)*Y} for any a € Z>.

One has a natural action of G = SL,(C) on X, and (G, X) is a prehomogeneous space
with open dense orbit 2 = {x € X : x is nonsingular} = X \ f~1(0). The other G-orbits
in X are the locally closed submanifolds S; = {z € X :rank (z) =n—j} (j=1,...,n).

Moreover, (G, X) is a regular prehomogeneous space (see [17]), and this implies the equality

W = char Ox(xS) = Tx X U | J T§, X.
j=1

The irreducible components of W are Ag = T X, A; = ngX (j =1,....,n—1) and

A, = {*()}X' One can check that the Ag, Ay, ..., Ap_1, A, are good Lagrangeans, that
the multiplicity of zero of f o7 on Aj is my; = j and that the pairs (A;_1,A;) have good
intersection for j = 1,...,n. The local b-functions are by, (s) = 1 and by, (s) = [I/_, (s +1)
(j=1,...,n).
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