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Abstract

In this paper we deal with Radon transforms for generalized flag manifolds in the frame-
work of quasi-equivariant D-modules. We shall follow the method employed by Baston-
Eastwood and analyze the Radon transform using the Bernstein-Gelfand-Gelfand resolution
and the Borel-Weil-Bott theorem. We shall determine the transform completely on the level
of the Grothendieck groups. Moreover, we point out a vanishing criterion and give a suffi-
cient condition in order that a D-module associated to an equivariant locally free O-module
is transformed into an object of the same type. The case of maximal parabolic subgroups is
studied in detail.
Keywords: Integral transforms; D-modules; Generalized flag manifolds.
MS classification: 35A22, 43A85.

Introduction

Let G be a reductive algebraic group over C, P and Q two parabolic subgroups containing
the same Borel subgroup of G. Let X = G/P , Y = G/Q, and let S be the unique closed
G-orbit in X × Y for the diagonal action. Then we can identify S with G/P ∩Q. The natural
correspondence

X ←−f S −→g Y,

where f and g are the restriction to S of the projections of X × Y on X and Y , induces an
integral transform from X to Y which generalizes the classical Radon-Penrose transform. This
subject has been investigated intensively both in the complex and real domains (see e.g. Baston-
Eastwood [1], D’Agnolo-Schapira [5], Kakehi [6], Marastoni [10], Oshima [12], Sekiguchi [14],
Tanisaki [15]).

Our aim is to study the above transform in the framework of quasi-G-equivariant D-modules
(see Kashiwara [7]), i.e. the functor

R : Db
G(DX)→ Db

G(DY ), R(M) = g∗f
−1M, (0.1)

1



Radon transforms for quasi-equivariant D-modules

where Db
G(D.) denotes the derived category of quasi-G-equivariant D-modules with bounded

cohomologies, and g∗ and f−1 are the operations of direct image (integration) and inverse image
(pull-back) for D-modules. More precisely, we consider a DX -module of type M = DL =
DX ⊗OX

L, where L is an irreducible G-equivariant locally free OX -module. In this case it is
easily seen that

Hp(R(DL)) = 0 for any p < 0 (0.2)

(see Lemma 1.4 below). Note that the Grothendieck group of the category of quasi-G-equivariant
DX -modules of finite length is spanned by elements corresponding to the objects of the form
DL.

As in Baston-Eastwood [1] our analysis relies on the Bernstein-Gelfand-Gelfand resolu-
tion and the Borel-Weil-Bott theorem. Using the Bernstein-Gelfand-Gelfand resolution in the
parabolic setting (see Bernstein-Gelfand-Gelfand [2], Lepowsky [9], Rocha-Caridi [13]) we obtain
a resolution of the quasi-G-equivariant DS-module f−1(DL) of the form:

0→
rn⊕

k=1

DLnk → · · · →
r0⊕

k=1

DL0k → f−1(DL)→ 0, (0.3)

where Lik are irreducible G-equivariant locally free OS-modules (see § 2.2 for the explicit de-
scription of Lik). Then we have

g∗(DLik) = DY ⊗OY
Rg∗(Lik ⊗OS

Ωg)

by the definition of g∗, where Ωg denotes the sheaf of relative differential forms with maximal
degree along the fibers of g. Moreover, the Borel-Weil-Bott theorem tells us the structure of
Rg∗(Lik⊗OS

Ωg). In particular, we have either Rg∗(Lik⊗OS
Ωg) = 0 or there exist a non-negative

integer mik and an irreducible G-equivariant OY -module L′ik such that Rg∗(Lik ⊗OS
Ωg) =

L′ik[−mik]. Thus setting

I = {(i, k) ; 0 ≤ i ≤ n, 1 ≤ k ≤ ri, Rg∗(Lik ⊗OS
Ωg) 6= 0},

we have

g∗(DLik) =
{
DL′ik[−mik] ((i, k) ∈ I),
0 ((i, k) 6∈ I) (0.4)

(see §2.2 below for concrete descriptions of I and Lik,mik for (i, k) ∈ I).
Then we can study the structure of R(DL) = g∗f

−1(DL) using (0.2), (0.3) and (0.4). For
example we have the following result.

Theorem 0.1. Let the notation be as above.

(i) We have ∑
p

(−1)p[Hp(R(DL))] =
∑

(i,k)∈I

(−1)i−mik [DL′ik]

in the Grothendieck group of the category of quasi-G-equivariant DY -modules.

(ii) If I = ∅, then R(DL) = 0.
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(iii) If I consists of a single element (i, k), then R(DL) = DL′ik[i−mik].

(iv) If i ≥ mik for any (i, k) ∈ I, then Hp(R(DL)) = 0 unless p = 0.

(v) If i > mik for any (i, k) ∈ I with i > 0 and if m01 = 0, then there exists an epimorphism
DY L′01 → H0(R(DL)) (note that r0 = 1 ).

Assume that L is invertible and that there exists a G-equivariant invertible OY -module L′
satisfying f∗L⊗OS

Ωg = g∗L′. We call such a pair (L,L′) an extremal case for the correspondence
(if P ∪ Q generates the group G and if G is semisimple, then there exists a unique extremal
case). In this case there exists a natural nontrivial DY -linear morphism

Φ : DL′ → H0(R(DL)). (0.5)

Theorem 0.2. Let (L,L′) be an extremal case.

(i) We have Hp(R(DL)) = 0 for any p 6= 0 if and only if i ≥ mik for any (i, k) ∈ I.

(ii) Assume that Hp(R(DL)) = 0 for any p 6= 0. Then Φ is an epimorphism if and only if
i > mik for any (i, k) ∈ I with i > 0.

(iii) Assume that Hp(R(DL)) = 0 for any p 6= 0. Then Φ is an isomorphism if and only if I
consists of a single element (0, 1).

We do not know an example of an extremal case (L,L′) such that Hp(R(DL)) 6= 0 for
some p 6= 0. Anyway, we have checked that Hp(R(DL)) = 0 for any p 6= 0 by a case-by-case
analysis in several situations, e.g. when G is of classical type and P and Q are maximal parabolic
subgroups, or when the rank of G is ≤ 6. In general the morphism Φ for an extremal case (L,L′)
is not necessarily an epimorphism nor a monomorphism. It would be an interesting problem to
determine the kernel and the cokernel of Φ.

The transform of a D-module, a problem of analytic nature, is not sufficient to cover the
general problem of integral geometry. In order to do this, one should couple the transforms in
the frameworks of D-modules and sheaves. This is better described in the adjunction formulas
(see D’Agnolo-Schapira [5]), and we shall briefly discuss this point with an example in the case
of G = SLn+1(C).

1 Preliminaries on D-modules

1.1 Functors for D-modules

Let Z be an algebraic manifold (smooth algebraic variety) over C. We denote by OZ the
structure sheaf, by ΩZ the invertible OZ-module of differential forms of maximal degree, and by
DZ the sheaf of differential operators. In this paper an OZ-module means a quasi-coherent OZ-
module and a DZ-module means a left DZ-module which is quasi-coherent over OZ . We denote
by Mod(DZ) the category of DZ-modules and by Db(DZ) the derived category of Mod(DZ)
whose objects have bounded cohomology.

If f : Z → Z ′ is a morphism, we set

Ωf = ΩZ/Z′ = ΩZ ⊗f−1OZ′
f−1Ω

⊗−1

Z′ ;
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and, for an OZ′-module L′, we set

f∗L′ = OZ ⊗f−1OZ′
f−1L′, Lf∗L′ = OZ ⊗L

f−1OZ′
f−1L′.

We denote by f∗ and f−1 the direct and inverse image for left D-modules:

f∗ : Db(DZ)→ Db(DZ′), f∗M = Rf∗(DZ′←Z ⊗L
DZ
M),

f−1 : Db(DZ′)→ Db(DZ), f−1M′ = DZ→Z′ ⊗L
f−1DZ′

f−1M′,

where a (DZ , f−1DZ′)-bimodule DZ→Z′ and an (f−1DZ′ ,DZ)-bimodule DZ′←Z are defined by

DZ→Z′ = OZ ⊗f−1OZ′
f−1DZ′ , DZ′←Z = ΩZ ⊗OZ

DZ→Z′ ⊗f−1OZ′
f−1Ω

⊗−1

Z′ .

Note that for a DZ′-module M we have f−1M ' Lf∗M as a complex of OZ-modules. Note
also that we have canonical morphisms OZ → DZ→Z′ and Ωf → DZ′←Z of OZ-modules.

The following result is well-known and easy to prove.

Lemma 1.1. Let f1 : Z → X1 and f2 : Z → X2 be morphisms of algebraic manifolds.

(i) We have

DX2←Z ⊗L
DZ
DZ→X1 →∼ f−1

1 ΩX1 ⊗L
f−1
1 OX1

(DX1×X2←Z ⊗L
DZ
OZ).

(ii) Assume that Z → X1 ×X2 is an embedding. Then we have

DX2←Z ⊗L
DZ
DZ→X1 = DX2←Z ⊗DZ

DZ→X1 ,

and the canonical morphism of (f−1
2 OX2 , f

−1
1 OX1)-bimodules

Ωf2 → DX2←Z ⊗DZ
DZ→X1

is a monomorphism.

For a locally free OZ-module L, we set

DL = DZ ⊗OZ
L,

and for a closed submanifold Z of an algebraic manifold X we define a DX -module BZ|X sup-
ported on Z by

BZ|X = Hd
[Z](OX) = i∗OZ ,

where d = codimXZ and i : Z → X denotes the embedding.
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1.2 Radon transforms

Let X and Y be algebraic manifolds over C, and denote by q1 and q2 the projections of X × Y
onto X and Y respectively. Let S be a locally closed submanifold of X×Y and let i : S → X×Y
be the embedding. The geometric correspondence

X ←−f S −→g Y (1.1)

where f and g are the restrictions of q1 and q2, induces a functor

R : Db(DX)→ Db(DY ), R(M) = g∗f
−1(M), (1.2)

called the Radon transform.

Lemma 1.2. Let M be a DX-module.

(i) We have

R(M) = Rg∗((DY←S ⊗DS
DS→X)⊗L

f−1DX
f−1M)

= Rg∗(f−1(ΩX ⊗OX
M)⊗L

f−1DX
(DX×Y←S ⊗DS

OS)).

(ii) If S is closed in X × Y , then we have

R(M) = q2∗(q1
−1M⊗L

OX×Y
BS|X×Y ).

Proof. (i) follows from the definition and Lemma 1.1, and (ii) is a consequence of the projection
formula for D-modules.

Let us consider the special case where M = DL = DX ⊗OX
L. By Lemma 1.2 we have the

following.

Lemma 1.3. Let L be a locally free OX-module.

(i) We have

R(DL) = Rg∗((DY←S ⊗DS
DS→X)⊗f−1OX

f−1L)

= Rg∗(f−1(ΩX ⊗OX
L)⊗f−1OX

(DX×Y←S ⊗DS
OS)).

(ii) If S is closed in X × Y , then we have

R(DL) = Rq2∗(q−1
1 (ΩX ⊗OX

L)⊗q−1
1 OX

BS|X×Y ).

An immediate consequence of Lemma 1.3(i) is:

Lemma 1.4. For any locally free OX-module L we have Hp(R(DL)) = 0 for any p < 0 .

Definition 1.5. Let L (resp. L′) be a locally free OX - (resp. OY -)module. We say that the pair
(L,L′) is an extremal case for the correspondence (1.1) if there is an OS-linear isomorphism

Ωg ⊗f−1OX
f−1L ' g∗L′.
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Proposition 1.6. Let (L,L′) be an extremal case for (1.1). Then there exists a natural non-
trivial DY -linear morphism

DL′ → H0(R(DL)). (1.3)

Proof. The canonical morphism Ωg → DY←S ⊗DS
DS→X induces a monomorphism

g∗L′ ' Ωg ⊗f−1OX
f−1L → DY←S ⊗DS

DS→X ⊗f−1OX
f−1L

of g−1OY -modules. Applying g∗ we obtain a sequence of morphisms

L′ → L′ ⊗OY
g∗OS ' g∗(g∗L′)

→ g∗(DY←S ⊗DS
DS→X ⊗f−1OX

f−1L) = H0(R(DL))

of OY -modules. The morphism L′ → L′ ⊗OY
g∗OS is nontrivial by the definition, and the mor-

phism g∗(g∗L′)→ g∗(DY←S ⊗DS
DS→X ⊗f−1OX

f−1L) is a monomorphism by the left exactness
of g∗. Thus the composition L′ → H0(R(DL)) is nontrivial. Hence it induces a canonical
nontrivial morphism DL′ → H0(R(DL)) of DY -modules.

1.3 Adjunction formulas

In this subsection we consider topological problems, and hence we work in the analytic category
rather than the algebraic category.

For a complex manifold Z we denote by OZ the sheaf of holomorphic functions on Z and
by DZ the sheaf of holomorphic differential operators. For an algebraic manifold Z over C we
denote the corresponding complex manifold by Zan, and for a morphism f : Z → Z ′ of algebraic
manifolds we denote the corresponding holomorphic map by fan : Zan → Z ′an. For an algebraic
manifold Z and an OZ-module F we set Fan = OZan ⊗OZ

F .
In the correspondence (1.1), let us consider also a functor in the derived category Db(C·) of

sheaves of C-vector spaces, going in the opposite direction:

r : Db(CYan)→ Db(CXan), r(F ) = Rgan∗f
−1
an (F ).

For example, let D be a Zariski locally closed subset of Yan and take F = CD (the constant
sheaf with fiber C on D and zero on Yan \D): then, for any x ∈ X one has

r(CD)x ' RΓc(SD,x;CSD,x
), SD,x = {y ∈ D : (x, y) ∈ S}. (1.4)

One has the following “adjunction formulas” (see [5]).

Proposition 1.7. Let L be a locally free OX-module and F ∈ Db(CYan). Then, setting l =
dim Y − dim S and m = dim S + dim Y − 2 dim X, we have

RΓ(Xan; r(F )⊗L∗an) ' RHomDYan
(R(DL)an, F ⊗OYan)[l], (1.5)

RHom(r(F ),L∗an) ' RHomDYan
(R(DL)an, RHom (F,OYan))[m]. (1.6)

Once the calculation of R(DL) has been performed, these formulas will give different appli-
cations by computing r(F ) for different choices of the sheaf F (a problem of geometric nature).

C. Marastoni and T. Tanisaki 6
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1.4 Quasi-equivariant D-modules

Let us recall the definition of (quasi-)equivariant D-modules (we refer to Kashiwara [7]).
Let G be an algebraic group over C, and let g be its Lie algebra. We denote the enveloping

algebra of g by U(g). Let Z be a G-manifold, i.e. an algebraic manifold endowed with an action
of G. Let us denote by µ : G × Z → Z the action µ(g, z) = gz and by p : G × Z → Z the
projection p(g, z) = z. Moreover, define the morphisms qj : G × G × Z → G × Z (j = 1, 2, 3)
by q1(g1, g2, z) = (g1, g2z), q2(g1, g2, z) = (g1g2, z) and q3(g1, g2, z) = (g2, z), and observe that
µ ◦ q1 = µ ◦ q2, p ◦ q2 = p ◦ q3 and µ ◦ q3 = p ◦ q1.

A G-equivariant OZ-module is an OZ-moduleM endowed with a OG×Z-linear isomorphism
β : µ∗M→ p∗M such that the following diagram commutes:

q2
∗µ∗M q2

∗β // q2
∗p∗M

q1
∗µ∗M q1

∗β // q1
∗p∗M = q3

∗µ∗M q3
∗β // q3

∗p∗M.

For a G-equivariant OZ-module M we have a canonical Lie algebra homomorphism ρM : g →
EndC(M).

Let OG � DZ denote the subalgebra OG×Z ⊗p−1OZ
p−1DZ of DG×Z . A DZ-module M is

called G-equivariant (resp. quasi-G-equivariant) if it is endowed with a G-equivariant OZ-module
structure such that the isomorphism β : µ∗M → p∗M is DG×Z-linear (resp. OG � DZ-linear).
Note that for a morphism f : Z → Z ′ of algebraic manifolds and a DZ′-module M the DZ-
module H0(f−1M) is naturally isomorphic to f∗M as an OZ-module.

For example for a G-equivariant OZ-module F the DZ-module DZ ⊗OZ
F is endowed with

a natural quasi-G-equivariant DZ-module structure.
We denote by ModG(DZ) the category of quasi-G-equivariant DZ-modules, and by Db

G(DZ)
the derived category of DZ-modules with bounded quasi-G-equivariant cohomology (see Kashi-
wara-Schmid [8]).

Let M be a quasi-G-equivariant DZ-module. The canonical Lie algebra homomorphism
g→ DZ induces a Lie algebra homomorphism κM : g→ EndC(M). Set γM = ρM − κM.

Proposition 1.8 (Kashiwara [7]). We have γM(a) ∈ EndDZ
(M) for any a ∈ g. Moreover,

the linear map γM : g → EndDZ
(M) is a Lie algebra homomorphism such that γM = 0 if and

only if M is G-equivariant.

We also denote by
γM : U(g)→ EndDZ

(M) (1.7)

the corresponding algebra homomorphism.
Fix x ∈ Z and set H = {g ∈ G : gx = x}. For a G-equivariant OZ-module M, the fiber

M(x) = C⊗OZ,x
Mx

of M at x is endowed with a natural H-module structure. If M is a quasi-G-equivariant DZ-
module, then M(x) is also endowed with a g-module structure induced from the OZ-linear
action γM. For M =M(x) we have the following.
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(a) the action of the Lie algebra of H on M given by differentiating the H-module structure
coincides with the restriction of the action of g,

(b) hum = (Ad(h)u)hm for any h ∈ H, u ∈ g, m ∈M .

Here Ad denotes the adjoint action. A vector space M equipped with structures of an H-modules
and a g-module is called a (g,H)-module if it satisfies the conditions (a) and (b) above.

The following result plays a crucial role in the rest of this paper.

Proposition 1.9. Assume that Z = G/H, where H is a closed subgroup of G, and set x =
eH ∈ Z.

(i) The category of G-equivariant OZ-modules is equivalent to the category of H-modules via
the correspondence M 7→M(x).

(ii) The category of quasi-G-equivariant DZ-modules is equivalent to the category of (g,H)-
modules via the correspondence M 7→M(x).

The statement (i) is well-known (see [11]), and (ii) is due to Kashiwara [7].

2 Radon transforms for generalized flag manifolds

2.1 Quasi-equivariant D-modules on generalized flag manifolds

Let G be a connected reductive algebraic group over C, and g the Lie algebra of G. The group
G acts on g by the adjoint action Ad. Let h be a Cartan subalgebra of g, ∆ the root system
in h∗, {αi : i ∈ I0} a set of simple roots, ∆+ the set of positive roots, ∆− the set of negative
roots, h∗Z = Hom(H,C×) ⊂ h∗ the weight lattice, and W the Weyl group. For α ∈ ∆ we denote
by gα the corresponding root space and by α∨ ∈ h the corresponding coroot. For i ∈ I0 we
denote by si ∈ W the reflection corresponding to i. For w ∈ W we set `(w) = ](w∆− ∩∆+).
Set ρ = 1

2

∑
α∈∆+ α, and define a (shifted) affine action of W on h∗ by

w ◦ λ = w(λ + ρ)− ρ. (2.1)

For I ⊂ I0, we set

∆I = ∆ ∩
∑
i∈I

Zαi, ∆+
I = ∆I ∩∆+, WI = 〈si : i ∈ I 〉 ⊂W

lI = h⊕
(⊕

α∈∆I

gα

)
, nI =

⊕
α∈∆+\∆I

gα, pI = lI ⊕ nI ,

(h∗Z)I = {λ ∈ h
∗
Z : λ(α∨i ) ≥ 0 for any i ∈ I},

(h∗Z)0I = {λ ∈ h
∗
Z : λ(α∨i ) = 0 for any i ∈ I} ⊂ (h∗Z)I ,

ρI = (
∑

α∈∆+\∆I

α)/2.

We denote by wI the longest element of WI . It is an element of WI characterized by wI(∆−I ) =
∆+

I . Let LI , NI and PI be the subgroups of G corresponding to lI , nI and pI .
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For λ ∈ (h∗Z)I let VI(λ) be the irreducible LI -module with highest weight λ. We regard
VI(λ) as a PI -module with the trivial action of NI , and define the generalized Verma module
with highest weight λ by

MI(λ) = U(g)⊗U(pI) VI(λ). (2.2)

Let L(λ) be the unique irreducible quotient of MI(λ) (note that L(λ) does not depend on the
choice of I such that λ ∈ (h∗Z)I). Then any irreducible PI -module is isomorphic to VI(λ) for
some λ ∈ (h∗Z)I , and we have dim VI(λ) = 1 if and only if λ ∈ (h∗Z)0I . Moreover, any irreducible
(g, PI)-module is isomorphic to L(λ) for some λ ∈ (h∗Z)I .

Let
XI = G/PI

be the generalized flag manifold associated to I.
By the category equivalence given in Proposition 1.9 isomorphism classes of G-equivariant

OXI
-modules (resp. quasi-G-equivariant DXI

-modules) are in one-to-one correspondence with
isomorphism classes of PI -modules (resp. (g, PI)-modules). For λ ∈ (h∗Z)I we denote by OXI

(λ)
the G-equivariant OXI

-module corresponding to the irreducible PI -module VI(λ). We see easily
the following.

Lemma 2.1. Let λ ∈ (h∗Z)I . The quasi-G-equivariant DXI
-module corresponding to the (g, PI)-

module MI(λ) is isomorphic to

DOXI
(λ) = DXI

⊗OXI
OXI

(λ).

We need the following relative version of the Borel-Weil-Bott theorem later (see Bott [3]).

Proposition 2.2. Let I ⊂ J ⊂ I0 and let π : XI → XJ be the canonical projection. For
λ ∈ (h∗Z)I we have the following.

(i) If there exists some α ∈ ∆J satisfying (λ+ρ−2ρI)(α∨) = 0, then we have Rπ∗(OXI
(λ)) =

0.

(ii) Assume that (λ + ρ− 2ρI)(α∨) 6= 0 for any α ∈ ∆J . Take w ∈WJ satisfying (w(λ + ρ−
2ρI))(α∨) > 0 for any α ∈ ∆+

J . Then we have

Rπ∗(OXI
(λ)) = OXJ

(w(λ + ρ− 2ρI)− (ρ− 2ρJ))[−(`(wJw)− `(wI))].

Let I, J ⊂ I0 with I 6= J . The diagonal action of G on XI×XJ has a finite number of orbits,
and the only closed one G(ePI , ePJ) is identified with XI∩J = G/(PI ∩ PJ). In the rest of this
paper we shall consider the correspondence (1.1) for X = XI , Y = XJ and S = XI∩J :

XI ←−f XI∩J −→g XJ (2.3)

and the Radon transform R(DOXI
(λ)) for λ ∈ (h∗Z)I . Since f and g are morphisms of G-

manifolds, the functor (1.2) induces a functor

R : Db
G(DXI

)→ Db
G(DXJ

). (2.4)

Note that we have
Ωg ' OXI∩J

(γI,J) for γI,J =
∑

α∈∆+
J \∆I

α. (2.5)
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2.2 Radon transforms of quasi-equivariant D-modules

Let λ ∈ (h∗Z)I . We describe our method to analyze R(DOXI
(λ)) = g∗f

−1(DOXI
(λ)). By

(f−1(DOXI
(λ)))(e(PI ∩ PJ)) ' DOXI

(λ)(ePI) 'MI(λ)

the quasi-G-equivariant DXI∩J
-module f−1(DOXI

(λ)) corresponds to the (g, PI ∩ PJ)-module
MI(λ) = U(g)⊗U(pI) VI(λ) under the category equivalence given in Proposition 1.9.

Set

Γ = {x ∈WI : x is the shortest element of WI∩Jx}, (2.6)
Γk = {x ∈ Γ : `(x) = k}. (2.7)

It is well-known that an element x ∈ WI belongs to Γ if and only if x−1∆+
I∩J ⊂ ∆+

I . This
condition is also equivalent to

(x(λ + ρ))(α∨) > 0 for any α ∈ ∆+
I∩J . (2.8)

In particular, we have x ◦ λ ∈ (h∗Z)I∩J for x ∈ Γ.
By Lepowsky [9] and Rocha-Caridi [13] we have the following resolution of the finite dimen-

sional lI -module VI(λ):

0→ Nn → Nn−1 → · · · → N1 → N0 → VI(λ)→ 0 (2.9)

with n = dim lI/lI ∩ pJ and

Nk =
⊕
x∈Γk

U(lI)⊗U(lI∩pJ ) VI∩J(x ◦ λ).

By the Poincaré-Birkhoff-Witt theorem we have the isomorphism

U(lI)⊗U(lI∩pJ ) VI∩J(x ◦ λ) ' U(pI)⊗U(pI∩J ) VI∩J(x ◦ λ)

of U(lI)-modules, where nI∩J acts trivially on VI∩J(x ◦ λ). Moreover, the action of nI on
U(pI) ⊗U(pI∩J ) VI∩J(x ◦ λ) is trivial. Indeed, by [pI ,nI ] ⊂ nI we have nIU(pI) = U(pI)nI , and
hence

nI(U(pI)⊗U(pI∩J ) VI∩J(x ◦ λ)) ⊂ U(pI)nI ⊗VI∩J(x ◦ λ)

⊂ U(pI)⊗nIVI∩J(x ◦ λ) = 0

by nI ⊂ nI∩J . Thus we obtain the following resolution of the finite dimensional pI -module VI(λ)
(with trivial action of nI):

0→ N ′n → N ′n−1 → · · · → N ′1 → N ′0 → VI(λ)→ 0 (2.10)

with
N ′k =

⊕
x∈Γk

U(pI)⊗U(pI∩J ) VI∩J(x ◦ λ).
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By tensoring U(g) to (2.10) over U(pI) we obtain the following resolution of the (g, PI∩J)-module
MI(λ):

0→ Ñn → Ñn−1 → · · · → Ñ1 → Ñ0 →MI(λ)→ 0 (2.11)

with
Ñk =

⊕
x∈Γk

MI∩J(x ◦ λ).

Since the quasi-equivariant DXI∩J
-module corresponding to the (g, PI∩J)-module MI∩J(x ◦ λ)

is DOXI∩J
(x ◦ λ), we have obtained the following resolution of the quasi-G-equivariant DXI∩J

-
module f−1(DOXI

(λ)):

0→ Nn → Nn−1 → · · · → N1 → N0 → f−1(DOXI
(λ))→ 0 (2.12)

with
Nk =

⊕
x∈Γk

DOXI∩J
(x ◦ λ). (2.13)

Our next task is to investigate on g∗(DOXI∩J
(x ◦ λ)) for x ∈ Γ. We first remark that

g∗(DOXI∩J
(x ◦ λ)) = DXJ

⊗OXJ
Rg∗(OXI∩J

(x ◦ λ + γI,J)). (2.14)

Indeed, by (2.5) we have

g∗(DOXI∩J
(x ◦ λ)) = Rg∗(DXJ←XI∩J

⊗L
DXI∩J

DXI∩J
⊗L
OXI∩J

OXI∩J
(x ◦ λ))

= Rg∗(DXJ←XI∩J
⊗L
OXI∩J

OXI∩J
(x ◦ λ))

= Rg∗(g−1DXJ
⊗g−1OXJ

Ωg ⊗OXI∩J
OXI∩J

(x ◦ λ))

= DXJ
⊗OXJ

Rg∗(Ωg ⊗OXI∩J
OXI∩J

(x ◦ λ))

= DXJ
⊗OXJ

Rg∗(OXI∩J
(x ◦ λ + γI,J)).

Lemma 2.3. Let λ ∈ (h∗Z)I and x ∈ Γ.

(i) If (x(λ + ρ))(α∨) = 0 for some α ∈ ∆J , then we have Rg∗(OXI∩J
(x ◦ λ + γI,J)) = 0.

(ii) Assume that (x(λ + ρ))(α∨) 6= 0 for any α ∈ ∆J . Take y ∈ WJ satisfying (yx(λ +
ρ))(α∨) > 0 for any α ∈ ∆+

J . Then we have

Rg∗(OXI∩J
(x ◦ λ + γI,J)) = OXJ

((yx) ◦ λ)[−(`(wJy)− `(wI∩J))].

Proof. Since ∆+ \∆J is stable under the action of WJ , we have yρJ = ρJ for any y ∈ WJ . In
particular,

ρJ = sα(ρJ) = ρJ − ρJ(α∨)α

for any α ∈ ∆J , and hence ρJ(α∨) = 0 for any α ∈ ∆J .
By the definition we have

x ◦ λ + γI,J + ρ− 2ρI∩J = x(λ + ρ) + γI,J − 2ρI∩J = x(λ + ρ)− 2ρJ ,
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and
y(x(λ + ρ)− 2ρJ)− (ρ− 2ρJ) = yx(λ + ρ)− 2ρJ − (ρ− 2ρJ) = (yx) ◦ λ

for any y ∈WJ . Hence the assertion follows from Proposition 2.2.

Set

Γ(λ) = {x ∈ Γ : (x(λ + ρ))(α∨) 6= 0 for any α ∈ ∆J}, (2.15)
Γk(λ) = {x ∈ Γ(λ) : `(x) = k}. (2.16)

and for x ∈ Γ(λ) denote by yx the element of WJ satisfying (yxx(λ+ρ))(α∨) > 0 for any α ∈ ∆+
J .

Set
m(x) = `(wJyx)− `(wI∩J) for x ∈ Γ(λ). (2.17)

Lemma 2.4. For λ ∈ (h∗Z)I and x ∈ Γ(λ) we have

`(x) = ]{α ∈ ∆+
I \∆J : (x(λ + ρ))(α∨) < 0}, (2.18)

m(x) = ]{α ∈ ∆+
J \∆I : (x(λ + ρ))(α∨) > 0}. (2.19)

Proof. We have

`(x) = ](x−1∆−I ∩∆+
I )

= ]{α ∈ ∆+
I : (x(λ + ρ))(α∨) < 0}

= ]{α ∈ ∆+
I \∆J : (x(λ + ρ))(α∨) < 0},

and

m(x) = `(wJ)− `(yx)− `(wI∩J)
= ](∆+

J \∆I)− ](y−1
x ∆−J ∩∆+

J )
= ](∆+

J \∆I)− ]{α ∈ ∆+
J : (x(λ + ρ))(α∨) < 0}

= ](∆+
J \∆I)− ]{α ∈ ∆+

J \∆I : (x(λ + ρ))(α∨) < 0}
= ]{α ∈ ∆+

J \∆I : (x(λ + ρ))(α∨) > 0}

by (2.8).

Proposition 2.5. For any λ ∈ (h∗Z)I there exists a family {M(k)•}k≥0 of objects of Db
G(DXJ

)
satisfying the following conditions.

(i) M(0)• ' R(DOXI
(λ)).

(ii) M(k)• = 0 for k > dim lI/lI ∩ pJ .

(iii) We have a distinguished triangle

C(k)• →M(k)• →M(k + 1)• +1−→

where
C(k)• =

⊕
x∈Γk(λ)

DOXJ
((yxx) ◦ λ)[`(x)−m(x)].
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Proof. For 0 ≤ k ≤ dim lI/lI ∩ pJ define an object N (k)• of Db
G(DXI∩J

) by

N (k)• = [· · · → 0→ Nn → Nn−1 → · · · → Nk → 0 · · · ],

where Nj has degree −j (see (2.12) and (2.13) for the notation). For k > dim lI/lI ∩ pJ we
set N (k)• = 0. By N (0)• ' f−1(DOXI

(λ)) we have g∗N (0)• ' R(DOXI
(λ)). Set M(k)• =

g∗N (k)•. Then the statements (i) and (ii) are obvious. Let us show (iii). Applying g∗ to the
distinguished triangle

Nk[k]→ N (k)• → N (k + 1)• +1−→

we obtain a distinguished triangle

g∗Nk[k]→M(k)• →M(k + 1)• +1−→ .

By (2.13), (2.14) and Lemma 2.3 we have

g∗Nk =
⊕

x∈Γk(λ)

DOXJ
((yxx) ◦ λ)[−m(x)].

The statement (iii) is proved.

Theorem 2.6. Let λ ∈ (h∗Z)I .

(i) We have ∑
p

(−1)p[Hp(R(DOXI
(λ)))] =

∑
x∈Γ(λ)

(−1)`(x)−m(x)[DOXJ
((yxx) ◦ λ)]

in the Grothendieck group of the category of quasi-G-equivariant DXJ
-modules.

(ii) If Γ(λ) = ∅, then R(DOXI
(λ)) = 0.

(iii) If Γ(λ) consists of a single element x, then

R(DOXI
(λ)) = DOXJ

((yxx) ◦ λ)[`(x)−m(x)].

(iv) If `(x) ≥ m(x) for any x ∈ Γ(λ), then we have Hp(R(DOXI
(λ))) = 0 unless p = 0.

(v) If (λ + ρ)(α∨) < 0 for any α ∈ ∆+
J \∆I , then there exists a canonical morphism

Φ : DOXJ
((wJwI∩J) ◦ λ)→ H0(R(DOXI

(λ))).

Moreover, Φ is an epimorphism if `(x) > m(x) for any x ∈ Γ(λ) \ {e}.

Proof. The statements (i), (ii), (iii) are obvious from Proposition 2.5. The statement (iv) follows
from Proposition 2.5 and Lemma 1.4. Assume that λ satisfies the assumption in (v). Then we
have e ∈ Γ(λ) and ye = wJwI∩J . Hence (v) follows from Proposition 2.5.

Lemma 2.7. (i) The map WJ × Γ→WJWI ((y, x) 7→ yx) is bijective.
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(ii) For λ ∈ (h∗Z)I we have

{yxx : x ∈ Γ(λ)} = {w ∈WJWI : (w(λ + ρ))(α∨) > 0 for any α ∈ ∆+
J }

and we have

`(x)−m(x) = `(yx) + `(x)− ](∆+
J \∆I) = `(yxx)− ](∆+

J \∆I).

Proof. (i) is a consequence of the definition of Γ, and the first statement in (ii) follows from (i)
and the definition of yx. By

`(x)−m(x) = `(x)− (`(wJ)− `(yx)− `(wI∩J)) = `(x) + `(yx)− ](∆+
J \∆I)

we have only to show `(yxx) = `(x) + `(yx) for x ∈ Γ(λ). We have

x∆+ ∩∆− = x∆+
I ∩∆−I ⊂ ∆−I \∆I∩J ⊂ ∆− \∆J

by x ∈WI and x−1∆+
I∩J ⊂ ∆+

I . Since w ∈WJ , we obtain yx(x∆+ ∩∆−) ⊂ ∆−. Hence

`(yxx) = ](yxx∆− ∩∆+)
= ](yx(x∆− ∩∆+) ∩∆+) + ](yx(x∆− ∩∆−) ∩∆+)
= ](yx(x∆− ∩∆+) ∩∆+) + ](yx∆− ∩∆+)− ](yx(x∆+ ∩∆−) ∩∆+)
= `(x) + `(yx).

For λ ∈ (h∗Z)I we set

Ξ(λ) = {w ∈WJWI : (w(λ + ρ))(α∨) > 0 for any α ∈ ∆+
J }. (2.20)

Using Lemma 2.7 above we can reformulate Theorem 2.6 as follows.

Theorem 2.8. Let λ ∈ (h∗Z)I .

(i) We have∑
p

(−1)p[Hp(R(DOXI
(λ)))] = (−1)](∆+

J \∆I)
∑

w∈Ξ(λ)

(−1)`(w)[DOXJ
(w ◦ λ)]

in the Grothendieck group of the category of quasi-G-equivariant DXJ
-modules.

(ii) If Ξ(λ) = ∅, then R(DOXI
(λ)) = 0.

(iii) If Ξ(λ) consists of a single element w, then

R(DOXI
(λ)) = DOXJ

(w ◦ λ)[`(w)− ](∆+
J \∆I)].

(iv) If `(w) ≥ ](∆+
J \∆I) for any w ∈ Ξ(λ), then Hp(R(DOXI

(λ))) = 0 unless p = 0.
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(v) If (λ + ρ)(α∨) < 0 for any α ∈ ∆+
J \∆I , then there exists a canonical morphism

Φ : DOXJ
((wJwI∩J) ◦ λ)→ H0(R(DOXI

(λ))).

Moreover, Φ is an epimorphism if `(w) > ](∆+
J \∆I) for any w ∈ Ξ(λ) \ {wJwI∩J}.

Remark 2.9. The following result which is a little weaker than Theorem 2.8(ii) can be obtained
by observing that an integral transform for D-modules with equivariant kernel preserves the
infinitesimal character of a quasi-equivariant D-module (see e.g. [8]):

If (W ◦ λ) ∩ (h∗Z)J = ∅, then R(DOXI
(λ)) = 0. (2.21)

An advantage of the argument using the infinitesimal character is that it also works for a broader
class of integral transforms in equivariant contexts.

Let us briefly recall this argument (suggested to us by M. Kashiwara). Let Z be a G-manifold,
denote by z(g) the center of U(g) and set n+ = n∅ =

⊕
α∈∆+ gα, n− =

⊕
α∈∆− gα. One says that

a quasi-G-equivariant DZ-moduleM has infinitesimal character χ (for some χ ∈ Hom(z(g),C))
if γM(a) is the multiplication by χ(a) for any a ∈ z(g). Define a linear map σ : z(g)→ U(h) '
S(h) as the composition of the embedding z(g) → U(g) and the projection U(g) → U(h) with
respect to the direct sum decomposition U(g) = U(h)⊕(n−U(g)+U(g)n+). Then σ is an injective
homomorphism of C-algebras. For λ ∈ h∗ define an algebra homomorphism χλ : z(g) → C by
χλ(a) = 〈σ(a), λ〉. By a result of Harish-Chandra, any algebra homomorphism from z(g) to C
coincides with χλ for some λ ∈ h∗, and for λ, µ ∈ h∗ one has χλ = χµ if and only if µ ∈W ◦λ. By
the category equivalence of Proposition 1.9, the infinitesimal characters of quasi-G-equivariant
DXI

-modules are of the form χλ for λ ∈ (h∗Z)I . Therefore, recalling Harish-Chandra’s result, if
(W ◦ λ) ∩ (h∗Z)J = ∅, then R(DOXI

(λ)) = 0.

2.3 Extremal cases

We characterize the extremal cases (see Definition 1.5) in the correspondence (2.3). We shall
only deal with the invertible O-modules. Given λ ∈ (h∗Z)0I and µ ∈ (h∗Z)0J , we write for short
(λ, µ) instead of (OXI

(λ),OXJ
(µ)).

Proposition 2.10. The pair (λ, µ) is an extremal case if and only if µ = λ+γI,J . This condition
is also equivalent to the following system

λ(α∨i ) = µ(α∨i ) = 0 (i ∈ I ∩ J),
λ(α∨i ) = 0, µ(α∨i ) = γI,J(α∨i ) (i ∈ I \ J),
λ(α∨i ) = −γI,J(α∨i ), µ(α∨i ) = 0 (i ∈ J \ I),
µ(α∨i )− λ(α∨i ) = γI,J(α∨i ) (i ∈ I0 \ (I ∪ J)).

(2.22)

Proof. The first statement is obvious by (2.5). Since ∆+ \ ∆I and ∆J are stable under the
action of WI and WJ respectively, we have w(γI,J) = γI,J for any w ∈ WI∩J = WI ∩WJ . In
particular, we have

γI,J = si(γI,J) = γI,J − γI,J(α∨i )αi

for any i ∈ I ∩ J . Hence we obtain

γI,J(α∨i ) = 0 for any i ∈ I ∩ J.

Therefore, the relation µ = λ + γI,J is equivalent to the system (2.22).
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By (2.22) we have the following

Corollary 2.11. If g is semisimple and I ∪ J = I0, there exists a unique extremal case for
(2.3).

Proposition 2.12. Let (λ, µ) be an extremal case.

(i) We have

(λ + ρ)(α∨)
{

< 0 for any α ∈ ∆+
J \∆I ,

> 0 for any α ∈ ∆+
I ,

and (wJwI∩J) ◦ λ = µ. In particular, e ∈ Γ(λ) and `(e) = m(e) = 0.

(ii) Let
I = I0 \ {p1, . . . , pl, t1, . . . , tn}, J = I0 \ {q1, . . . , qm, t1, . . . , tn}

(where l ≥ 1, m ≥ 1, n ≥ 0 and all pi’s, qh’s and tj ’s are different from each other), and let
λ =

∑l
i=1 ri$pi +

∑n
j=1 r′j$tj . Then ν =

∑l
i=1 ki$pi +

∑n
j=1 k′j$tj satisfies the property

(ν + ρ)(α∨) < 0 for any α ∈ ∆+
J \∆I (2.23)

(cf. Theorem 2.6(v)) if and only if ki ≤ ri for any i = 1, . . . , l.

Proof. (i) Since µ and γI,J are fixed by the action of WJ and WI∩J respectively, We have

(wJwI∩J) ◦ λ = wJwI∩J(µ− γI,J + ρ)− ρ = µ− wJ(γI,J − wI∩Jρ + wJρ).

By
wI∩Jρ− wJρ = (ρ− wJρ)− (ρ− wI∩Jρ) =

∑
α∈∆+

J

α−
∑

α∈∆+
I∩J

α = γI,J

we obtain (wJwI∩J) ◦ λ = µ. Hence by wJwI∩J(∆+
J \∆I) ⊂ ∆−J and µ ∈ (h∗Z)0J , we have

(λ + ρ)(α∨) = (wI∩JwJ(µ + ρ))(α∨) = (µ + ρ)(wJwI∩Jα∨) < 0

for any α ∈ ∆+
J \∆I . Moreover, we have (λ + ρ)(α∨) > 0 for any ∆+

I by (2.22).
(ii) We may assume that n = 0. Let U = {(k1, . . . , kl) ∈ Zl : ν =

∑l
i=1 ki$pisatisfies (2.23)} ⊂

(Z<0)l. Since (r1, . . . , rl) ∈ U by (i), then U 6= ∅, and hence U =
∏l

i Z≤k0
i

for some ri ≤ k0
i < 0

(i = 1, . . . , l). Take any 1 ≤ i ≤ l, and let β = wI∩J(αpi
): then β ∈ ∆+

J \ ∆I , and from
λ + ρ = wI∩JwJ(µ + ρ) we get (λ + $pi

+ ρ)(β∨) = ρ(wJα∨pi
) + $pi

(β∨) = $pi
(β∨) − 1 ≥ 0:

hence ri = k0
i
.

By Proposition 1.6, if the pair (λ, µ) is an extremal case we get a nontrivial DXJ
-linear

morphism
Φ : DOXJ

(µ)→ H0(R(DOXI
(λ))). (2.24)

Theorem 2.13. Let (λ, µ) be an extremal case.

(i) We have Hp(R(DOXI
(λ))) = 0 for any p 6= 0 if and only if `(x) ≥ m(x) for any x ∈ Γ(λ).
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(ii) Assume that Hp(R(DOXI
(λ))) = 0 for any p 6= 0. Then Φ is an epimorphism if and

only if `(x) > m(x) for any x ∈ Γ(λ) \ {e}.

(iii) Assume that Hp(R(DOXI
(λ))) = 0 for any p 6= 0. Then Φ is an isomorphism if and

only if Γ(λ) = {e}.

We need the following result in order to prove Theorem 2.13.

Lemma 2.14. Let (λ, µ) be an extremal case, and let x1, x2 ∈ Γ(λ). Set yk = yxk
for k = 1, 2. If

L((y1x1)◦λ) appears as a subquotient of MJ((y2x2)◦λ), then we have `(x2)−`(y2) ≤ `(x1)−`(y1).

Proof. For ξ ∈ h∗Z we set

∆+
0 (ξ) = {α ∈ ∆+ : (ξ + ρ)(α∨) = 0}, W0(ξ) = {w ∈W : w ◦ ξ = ξ}.

Take ν ∈W ◦ λ such that (ν + ρ)(α∨) ≥ 0 for any α ∈ ∆+, and let w ∈W such that λ = w ◦ ν.
We can assume that `(w) ≤ `(x) for any x ∈ W satisfying λ = x ◦ ν. Then w is the (unique)
element of wW0(ν) with minimal length.

Let us first show:

ykxkw is the element of ykxkwW0(ν) with minimal length. (2.25)

It is sufficient to show ykxkw∆+
0 (ν) ⊂ ∆+. Since w is the element of wW0(ν) with minimal

length, we have w∆+
0 (ν) ⊂ ∆+, and therefore w∆+

0 (ν) = ∆+
0 (λ). By Proposition 2.12 we have

∆+
0 (λ) ⊂ ∆+\∆I . Hence by WI(∆+\∆I) = ∆+\∆I we have xk∆+

0 (λ) ⊂ ∆+. Thus xk∆+
0 (λ) =

∆+
0 (xk ◦ λ). By xk ∈ Γ(λ) we have ∆+

0 (xk ◦ λ) ⊂ ∆+ \∆J , and hence yk∆+
0 (xk ◦ λ) ⊂ ∆+. The

statement (2.25) is proved.
We next show

`(ykxkw) = `(w) + `(xk)− `(yk). (2.26)

For any α ∈ ∆+
I we have

(ν + ρ)(w−1α∨) = (λ + ρ)(α∨) > 0,

and hence w−1∆+
I ⊂ ∆+ by the choice of ν. Thus we have

w−1(x−1
k ∆+ ∩∆−) = w−1(x−1

k ∆+
I ∩∆−I ) ⊂ w−1∆−I ⊂ ∆−.

Hence `(xkw) = `(w)+ `(xk). Here, we have used the well-known fact that for u, v ∈W we have
`(uv) = `(u) + `(v) if and only if u(v∆+ ∩∆−) ⊂ ∆−. Similarly, we have

(ν + ρ)(w−1x−1
k y−1

k α∨) = (ykxk(λ + ρ))(α∨) > 0

for any α ∈ ∆+
J by the definition of yk and hence w−1x−1

k y−1
k ∆+

J ⊂ ∆+. Thus we have

w−1x−1
k y−1

k (yk∆+ ∩∆−) = w−1x−1
k y−1

k (yk∆+
J ∩∆−J ) ⊂ w−1x−1

k y−1
k ∆−J ⊂ ∆−.

Hence `(xkw) = `(ykxkw) + `(yk). The statement (2.26) is proved.
Note that L((y1x1)◦λ) = L((y1x1w)◦ν) and that MJ((y2x2)◦λ) is a quotient of the ordinary

Verma module M((y2x2w) ◦ ν) = M∅((y2x2w) ◦ ν). Hence by our assumption and by (2.25) we
obtain y1x1w ≥ y2x2w with respect to the standard partial order on W by a result of Bernstein-
Gelfand-Gelfand [2] concerning the composition factors of Verma modules. In particular, we
have `(y1x1w) ≥ `(y2x2w). Hence we obtain the desired result by (2.26).
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Proof of Theorem 2.13. We shall use the notation in Proposition 2.5.
We first show the following.

If Hr(M(k)•) = 0 for any k ≥ `, then Hr(C(k)•) = 0 for any k ≥ `. (2.27)

Assume that there exists some k ≥ ` such that Hr(C(k)•) 6= 0. Let k0 be the largest such k.
Then we have exact sequences

Hr−1(M(k0 + 1)•)→ Hr(C(k0)•)→ 0, (2.28)
Hr−1(C(k)•)→ Hr−1(M(k)•)→ Hr−1(M(k + 1)•)→ 0 (k > k0). (2.29)

By Hr(C(k0)•) 6= 0 there exists some x1 ∈ Γ(λ) such that `(x1) − m(x1) = −r, `(x1) = k0

and DOXJ
((yx1x1) ◦ λ) is a direct summand of Hr(C(k0)•). On the other hand, any irreducible

subquotient of Hr(C(k0)•) is isomorphic to an irreducible subquotient of Hr−1(C(k)•) for some
k ≥ k0 + 1 by (2.28) and (2.29). Moreover, Hr−1(C(k)•) is isomorphic to the direct sum of
DOXJ

((yx2x2) ◦ λ) for x2 ∈ Γ(λ) such that `(x2) − m(x2) = −(r − 1), `(x2) = k. By the
category equivalence given in Proposition 1.9 we see that there exists some x2 ∈ Γ(λ) such that
`(x2)−m(x2) = −(r−1), `(x2) ≥ k0 +1, and that L((yx1x1)◦λ) is isomorphic to an irreducible
subquotient of MJ((yx2x2) ◦ λ). Then by Lemma 2.14 we have

`(x2)− `(yx2) ≤ `(x1)− `(yx1). (2.30)

On the other hand we have

`(x2) + `(yx2) = `(x1) + `(yx1) + 1. (2.31)

by Lemma 2.7. Hence we have 2`(x2) ≤ 2`(x1)+1. Since `(x1) and `(x2) are integers, we obtain
`(x2) ≤ `(x1). This is a contradiction. The statement (2.27) is proved.

Let us show (i). By Theorem 2.6(iv) we have Hp(R(DOXI
(λ))) = 0 for any p 6= 0 if

`(x) ≥ m(x) for any x ∈ Γ(λ). Assume Hp(R(DOXI
(λ))) = 0 for any p > 0 and `(x) < m(x)

for some x ∈ Γ(λ). Then we have Hp(M(0)•) = 0 for any p > 0 and Hp(C(k)•) 6= 0 for some
p > 0 and some k ≥ 0. Let r be the largest positive integer such that Hr(C(k)•) 6= 0 for some
k ≥ 0. Then we have an exact sequence

Hr(M(k)•)→ Hr(M(k + 1)•)→ 0 (k ≥ 0).

Since Hr(M(0)•) = 0, we see by induction on k that Hr(M(k)•) = 0 for any k ≥ 0. Hence
by (2.27) we have Hr(C(k)•) = 0 for any k ≥ 0. This is a contradiction. The statement (i) is
proved.

Let us show (ii). By (i) and the assumption we have `(x) ≥ m(x) for any x ∈ Γ(λ);
in other words Hp(C(k)•) = 0 for any p > 0 and any k ≥ 0. By Theorem 2.6(v) Φ is an
epimorphism if `(x) > m(x) for any x ∈ Γ(λ) \ {e}. Assume that Φ is an epimorphism. Since
Φ : H0(C(0)•)→ H0(M(0)•) is an epimorphism, we have H0(M(k)•) = 0 for any k > 0 by the
exact sequences

H0(C(0)•)→ H0(M(0)•)→ H0(M(1)•)→ 0,

H0(M(k)•)→ H0(M(k + 1)•)→ 0
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Hence by (2.27) we have H0(C(k)•) = 0 for any k > 0. It implies that `(x) > m(x) for any
x ∈ Γ(λ) \ {e}. The statement (ii) is proved.

Let us finally show (iii). By (i) and the assumption we have Hp(C(k)•) = 0 for any p > 0
and any k ≥ 0. By Theorem 2.6(v) Φ is an isomorphism if Γ(λ) = {e}. Hence it is sufficient to
show that H−p(C(k)•) = 0 for any k > 0 and any p ≥ 0 if Φ is an isomorphism. Let us show
it by induction on p. If p = 0, then we have H0(C(k)•) = 0 for any k > 0 by the proof of (ii).
Assume that the statement is proved up to p. Consider the exact sequence

H−(p+1)(M(0)•)→ H−(p+1)(M(1)•)→ H−p(C(0)•)→ H−p(M(0)•).

We have H−p(C(0)•) = 0 for p > 0, and Φ : H−p(C(0)•) → H−p(M(0)•) is an isomor-
phism for p = 0. Moreover, we have H−(p+1)(M(0)•) = 0 by Lemma 1.4. Hence we have
H−(p+1)(M(1)•) = 0. Thus we obtain H−(p+1)(M(k)•) = 0 for any k > 0 by the exact sequence

H−(p+1)(M(k)•)→ H−(p+1)(M(k + 1)•)→ H−p(C(k)•)

and the hypothesis of induction. Hence we have H−(p+1)(C(k)•) = 0 for any k > 0 by (2.27).
The statement (iii) is proved.

Remark 2.15. Let (λ, µ) be an extremal case. For x ∈ Γ and α ∈ ∆+
J \∆I we have

(x(λ + ρ))(α∨) = (λ + xρ))(α∨) = (µ− γI,J + xρ)(α∨) = (xρ− γI,J)(α∨),

and hence we have Hp(R(DOXI
(λ))) = 0 for any p > 0 if and only if{

for x ∈ Γ satisfying (xρ− γI,J)(α∨) 6= 0 for any α ∈ ∆+
J \∆I we have

]S(x) ≤ `(x), where S(x) = {α ∈ ∆+
J \∆I : (xρ− γI,J)(α∨) > 0} .

(2.32)

We do not know an example of (G, I, J) such that (2.32) is not satisfied. Anyway, we can
prove that condition (2.32) is satisfied in the following cases (where we say that A,B ⊂ I0 are
“contiguous” if there exists (i, j) ∈ A×B such that αi(α∨j ) 6= 0):

(1) G has rank ≤ 6;

(2) G is of classical type, and I and J are maximal proper subsets of I0;

(3) I \ J is not contiguous to J , or J \ I is not contiguous to I;

(4) I and J are contiguous disjoint irreducible subsystems of I0.

(For (3) one easily sees that S(x) = ∅ for any x ∈ Γ, while (1), (2) and (4) are obtained with a
case-by-case analysis; details are omitted.)

In the next section we shall give conditions in order that Φ is an epimorphism and that Φ is
an isomorphism in the case where I and J are maximal proper subsets of I0. In particular, Φ is
not necessarily an epimorphism nor a monomorphism. It seems to be an interesting problem to
determine the kernel and the cokernel of Φ.
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Remark 2.16. In §3 of Tanisaki [15] we investigated the morphism Φ when nJ is commutative
using a more geometric method. In particular, we proved that KerΦ corresponds to the unique
maximal proper submodule of MJ(µ) under the category equivalence given in Proposition 1.9
of the present paper (see the proof of Theorem 3.4 of [15]). We also gave sufficient conditions in
order that the higher cohomology groups of R(DOXI

(λ)) vanish and that Φ is an epimorphism
in terms of geometry of the moment map. These geometric conditions were checked in the case
g = sln; however, they do not hold in general. This point is overcome using the representation
theoretic method employed in the present paper.

3 The maximal parabolic case

In this section we apply our results to the case where PI and PJ are maximal parabolic sub-
groups, and obtain results for the Radon transform R(DOXI

(λ)) with respect to the geometric
correspondence

XI ←−f XI∩J −→g XJ

for λ ∈ (h∗Z)0I . In this case we have

I = I0 \ {p} and J = I0 \ {q} for some p 6= q, (3.1)

and (h∗Z)0I = {r$p : r ∈ Z}, where $k denotes the fundamental weight corresponding to k ∈ I0.
We keep the standard notations of Bourbaki [4]. In particular, if G is of rank n, then

I0 = {1, 2, . . . , n}.

3.1 The case (An)

In this subsection we consider the case where G = SL(V ) for an n + 1-dimensional complex
vector space V . By the symmetry of the Dynkin diagram we may (and shall) assume that p > q.
We have the identifications:

XI = {p-dimensional subspace of V },
XJ = {q-dimensional subspace of V },

XI∩J = {(U1, U2) ∈ XI ×XJ : U1 ⊃ U2},

and f , g are natural projections. The invertible OXI
-module OXI

($p) corresponds to the
tautological line bundle whose fiber at U ∈ XI is

∧p U (a subbundle of the product bundle
XI ×

∧p V ), and we have OXI
(r$p) = OXI

($p)⊗r. Hence in the standard notation of algebraic
geometry we have OXI

(r$p) = OXI
(−r).

For k ∈ I0 = {1, . . . , n} set

k∗ = n + 1− k, k+ = max{k, k∗}, k− = min{k, k∗}.

We first give consequences of Theorem 2.6. A weight λ =
∑n+1

i=1 λiεi (λi ∈ Z,
∑n+1

i=1 λi = 0)
belongs to (h∗Z)J if and only if λ1 ≥ · · · ≥ λq and λq+1 ≥ · · · ≥ λn+1. The Weyl group W
is identified with the symmetric group Sn+1, and it acts on the weights by permutations of
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the components, i. e. σλ =
∑n+1

i=1 λiεσ(i) for any σ ∈ W . Then we have WI = Sp × Sp∗ and
WJ = Sq × Sq∗ . We have

$p =
1

n + 1
[(n + 1− p)(ε1 + · · · εp)− p(εp+1 + · · ·+ εn+1)]

= ε1 + · · ·+ εp + const(ε1 + · · ·+ εn+1)

ρ =
1
2

[nε1 + (n− 2)ε2 + · · ·+ (−n)εn+1]

= −ε2 − · · · − nεn+1 + const(ε1 + · · ·+ εn+1),

and therefore we get

r$p + ρ = rε1 + (−1 + r)ε2 + · · ·+ (−(p− 1) + r)εp − pεp+1 − · · ·
· · · − nεn+1 + const(ε1 + · · ·+ εn+1).

By the assumption q < p the set Γ(r$p) consists of (σ, τ) ∈ Sp × Sp∗ satisfying
τ = e,
σ−1(1) < · · · < σ−1(q),
σ−1(q + 1) < · · · < σ−1(p),
{σ−1(q + 1), . . . , σ−1(p)} ∩ {p + r + 1, . . . , n + r + 1} = ∅,

and we have

`((σ, e)) = ]{(a, b) : 1 ≤ a ≤ q, q + 1 ≤ b ≤ p, σ−1(a) > σ−1(b)},
m((σ, e)) = ]{(b, c) : q + 1 ≤ b ≤ p, p + 1 ≤ c ≤ n + 1, σ−1(b) < r + c}.

Hence by Theorem 2.6 we obtain the following results.

Proposition 3.1. (i) We have R(DOXI
(−a$p)) = 0 if p− > q and q < a < q∗.

(ii) We have R(DOXI
(−a$p)) = DOXJ

(−b$q)[−c] for (a, b, c) =
(q∗, p∗, 0) (p− > q),
(q, p, (p− q)(p∗ − q)) (p− > q),
(r, r∗, 0), q ≤ r ≤ q∗ (p− = q, i.e. p = q∗).

(iii) We have Hk(R(DOXI
(−a$p))) = 0 for any k 6= 0 in the following cases:

a ≥ 1 (p− < q),
a ≥ q (p− = q, i.e. p = q∗),
a > q (p− > q).

Let us consider the extremal case. By

γI,J = p∗

p∑
i=q+1

εi − (p− q)
n+1∑

i=p+1

εi.

and (2.22) the extremal case is given by (−q∗$p,−p∗$q). By Theorem 2.13 we obtain the
following.
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Proposition 3.2. We have Hk((R(DOXI
(−q∗$p))) = 0 for any k 6= 0, and there exists a

canonical nontrivial epimorphism

Φ : DOXJ
(−p∗$q)→ H0(R(DOXI

(−q∗$p))).

Moreover, Φ is an isomorphism if and only if p− ≥ q.

Remark 3.3. In the situation of Proposition 3.2 it is proved in [15] that for p∗ ≤ q the kernel
of Φ is the maximal proper G-stable submodule of DOXJ

(−p∗$q).

In the rest of this subsection we assume that q < p− and give application to topological
problems. By Propositions 3.1 and 1.7 we have the following.

Proposition 3.4. For any F ∈ Db(CXJ,an
) and q + 1 ≤ a ≤ q∗ − 1 we have

RΓ(XI,an; r(F )⊗OXI
(a$p)an) = 0,

RHom(r(F ),OXI
(a$p)an) = 0,

and for (a, b, c, d) = (q∗, p∗, (p−q)p∗, pp∗−qq∗−q(p−q)) or (a, b, c, d) = (q, p, q(p−q),−q(p−q))
we have

RΓ(XI,an; r(F )⊗OXI
(a$p)an) ' RΓ(XJ,an;F ⊗OXJ

(b$q)an)[−c],
RHom(r(F ),OXI

(a$p)an) ' RHom(F,OXJ
(b$q)an)[−d].

Let us treat some particular cases. In the following we set N = qq∗.

(1) Let y◦ ∈ XJ , and set F = C{y◦}. Since g−1(y◦)→ XI,y◦ is a closed embedding, one has

r(F ) ' CXI,y◦ ,an , (3.2)

where XI,y◦ = fg−1({y◦}) = {x ∈ XI : y◦ ⊂ x} (identified with the Grassmannian of (p − q)-
subspaces of V/y◦). By Proposition 3.4 and (3.2) we obtain the following.

Proposition 3.5. For any q + 1 ≤ a ≤ q∗ − 1 we have

RΓ(XI,y◦ ,an;OXI
(a$p)an) ' 0, RΓXI,y◦ ,an(XI ;OXI

(a$p)an) ' 0,

and for (a, c, d) = (q∗, (p− q)p∗, pp∗ − qq∗ + p∗q) or (a, c, d) = (q, q(p− q), p∗q) we have

Hc(XI,y◦ ,an;OXI
(a$p)an) ' C{z}, Hd

XI,y◦ ,an
(XI ;OXI

(a$p)an) ' B∞0|CN

where C{z} (resp. B∞
0|CN ) is the ring of convergent power series in z = (z1, . . . , zN ) ∈ CN

(resp. the ring of hyperfunctions in CN along {0} of infinite order), and all other cohomology
groups vanish.

Namely, there are natural identifications RΓ(XJ,an;Cy◦⊗OXJ
(b$q)an) ' RΓ({0};OCN

an
) = C{z}

and RHom(Cy◦ ;OXJ
(b$q)an) ' RΓ{0}(CN

an;OCN
an

) = B∞
0|CN [−N ].
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(2) Let z◦ be a q∗-subspace of V , Ez◦ = {y ∈ XJ : y ∩ z◦ = 0} ' CN and set F = CEz◦,an . One
has

r(F ) ' C bEz◦ ,an
[−2q(p− q)], (3.3)

where Êz◦ = fg−1(Ez◦) = {x ∈ XI : dim(x∩ z◦) = p− q} (i.e. the p-dimensional subspaces of V
in generic position w.r.t. z◦). Namely, the map f̃ = (f |g−1(Ez◦ ))an : (g−1(Ez◦))an → Êz◦ ,an is a

complex vector bundle of rank q(p− q) (the fiber over x ∈ Êz◦ is SEz◦ ,x = {y ∈ Ez◦ : y ⊂ x} '
Cq(p−q)); hence there is a morphism of functors Rf̃∗f̃

−1[2q(p − q)] → idDb(C dEz◦ ,an
) defining a

natural morphism r(F ) = Rfan!C(g−1(Ez◦ ))an → C bEz◦ ,an
[−2q(p − q)], which is an isomorphism

since, by (1.4), one has r(F )x ' C[−2q(p− q)] (for x ∈ Êz◦ ,an) and = 0 (otherwise).
By Proposition 3.4 and (3.3) we obtain the following.

Proposition 3.6. For any q + 1 ≤ a ≤ q∗ − 1 we have

RΓc(Êz◦ ,an;OXI
(a$p)an) ' 0, RΓ(Êz◦ ,an;OXI

(a$p)an) ' 0,

and for (a, c, d) = (q∗, p(p∗ − q) + q2, p∗(p− q)) or (a, c, d) = (q, p∗q, q(p− q)) we have

Hc
c (Êz◦ ,an;OXI

(a$p)an) ' HN
c (Ez◦ ,an;OEz◦ ,an),

Hd(Êz◦ ,an;OXI
(a$p)an) ' Γ(Ez◦ ,an;OEz◦ ,an)

where HN
c (Ez◦ ,an;OEz◦ ,an) ' Γ(Ez◦ ,an; ΩEz◦ ,an)′ (resp. Γ(Ez◦ ,an;OEz◦ ,an)) are Martineau’s ana-

lytic functionals (resp. the entire functions) in Ez◦ ,an ' CN , and all other cohomology groups
vanish.

Namely, one identifies RΓ(XJ,an;CEz◦ ,an ⊗ OXJ
(b$q)an) ' HN

c (Ez◦ ,an;OEz◦ ,an)[−N ] and
RHom(CEz◦ ,an ;OXJ

(b$q)an) ' Γ(Ez◦ ,an;OEz◦ ,an).

3.2 The case (Bn)

In this subsection we consider the case where G is (the universal covering group of) SO(V )
for an 2n + 1-dimensional complex vector space V equipped with a non-degenerate symmetric
bilinear form ( , ) : V × V → C. Then we have the identifications:

XI = {p-dimensional subspace U of V such that (U,U) = 0},
XJ = {q-dimensional subspace U of V such that (U,U) = 0},

XI∩J =
{
{(U1, U2) ∈ XI ×XJ : U1 ⊂ U2} (p < q)
{(U1, U2) ∈ XI ×XJ : U1 ⊃ U2} (p > q),

and f , g are natural projections. The invertible OXI
-module OXI

($p) corresponds to the
tautological line bundle whose fiber at U ∈ XI is

∧p U .
By Theorem 2.6 we have the following.

Proposition 3.7. (i) We have R(DOXI
(−a$p)) = 0 in the following cases:

2n− p− q < a < q if p < q ≤ n,
q < a < 2n− p− q if q < p < n,
2q < a < 2(n− q) if p = n.
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(ii) We have R(DOXI
(−a$p)) = DOXJ

(−b$q)[−c] for (a, b, c) =
(q, p, 0), (2n− p− q, 2n− p− q, c1) (p < q < n, 2n− 2p− q ≤ 0),
(n, 2p, 0) (q = n, n− 2p ≤ 0),
(2n− p− q, 2n− p− q, 0) (q < p < n, 2n− 2p− q ≥ 0),
(q, p, c2) (q < p < n, 2n− 2p− q ≥ 0),

where
c1 =

(q − p)(3p + 3q − 4n− 1)
2

, c2 =
(p− q)(4n + 1− 3p− 3q)

2
.

By Theorem 2.13 we have the following.

Proposition 3.8. Let

(r, s) =


(q, p) if 1 ≤ p < q ≤ n− 1,
(2n− p− q, 2n− p− q) if 1 ≤ q < p ≤ n− 1,
(2(n− q), n− q) if p = n, 1 ≤ q ≤ n− 1,
(n, 2p) if 1 ≤ p ≤ n− 1, q = n.

Then we have Hk(R(DOXI
(−r$p))) = 0 for any k 6= 0, and there exists a canonical nontrivial

morphism
Φ : DOXJ

(−s$q)→ H0(R(DOXI
(−r$p))).

Moreover, Φ is an epimorphism if and only if we have either

(a) p < q ≤ n,

(b) q < p < n and 2n− 2p− q ≥ 0,

and an isomorphism if and only if we have either

(a) p < q ≤ n and 2n− 2p− q ≤ 0,

(b) q < p < n and 2n− 2p− q ≥ 0.

3.3 The case (Cn)

In this subsection we consider the case where G = Sp(V ) for an 2n-dimensional complex vector
space V equipped with a non-degenerate anti-symmetric bilinear form ( , ) : V × V → C. Then
we have the identifications:

XI = {p-dimensional subspace U of V such that (U,U) = 0},
XJ = {q-dimensional subspace U of V such that (U,U) = 0},

XI∩J =
{
{(U1, U2) ∈ XI ×XJ : U1 ⊂ U2} (p < q)
{(U1, U2) ∈ XI ×XJ : U1 ⊃ U2} (p > q),

and f , g are natural projections. The invertible OXI
-module OXI

($p) corresponds to the
tautological line bundle whose fiber at U ∈ XI is

∧p U .
By Theorem 2.6 we have the following.
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Proposition 3.9. (i) We have R(DOXI
(−a$p)) = 0 in the following cases:{

2n− p− q + 1 < a < q if p < q,
q < a < 2n− p− q + 1 if q < p.

(ii) We have R(DOXI
(−a$p)) = DOXJ

(−b$q)[−c] for (a, b, c) =
(q, p, 0) (p < q ≤ n, 2n− 2p− q + 1 ≤ 0),
(2n− p− q + 1, 2n− p− q + 1, c1) (p < q ≤ n, 2n− 2p− q + 1 ≤ 0),
(2n− p− q + 1, 2n− p− q + 1, 0) (q < p ≤ n, 2n− 2p− q + 1 ≥ 0),
(q, p, c2) (q < p ≤ n, 2n− 2p− q + 1 ≥ 0),

where
c1 =

(q − p)(3p + 3q − 4n− 1)
2

, c2 =
(p− q)(4n + 1− 3p− 3q)

2
.

By Theorem 2.13 we have the following.

Proposition 3.10. Let

(r, s) =
{

(q, p) if 1 ≤ p < q ≤ n,
(2n− p− q + 1, 2n− p− q + 1) if 1 ≤ q < p ≤ n.

Then we have Hk(R(DOXI
(−r$p))) = 0 for any k 6= 0, and there exists a canonical nontrivial

morphism
Φ : DOXJ

(−s$q)→ H0(R(DOXI
(−r$p))).

Moreover, Φ is an epimorphism if and only if we have either

(a) p < q < n and n− p− q ≥ 0,

(b) p < q ≤ n and 2n− 2p− q + 1 ≤ 0,

(c) q < p ≤ n,

and an isomorphism if and only if we have either

(a) p < q ≤ n and 2n− 2p− q + 1 ≤ 0,

(b) q < p ≤ n and 2n− 2p− q + 1 ≥ 0.

Remark 3.11. In the situation of Proposition 3.10 it is proved in [15] that KerΦ is the maximal
proper G-stable submodule of DOXJ

(−s$q) if q = n and 2p ≤ n− 1.
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3.4 The case (Dn)

In this subsection we consider the case where G is (the universal covering group of) SO(V ) for
an 2n-dimensional complex vector space V equipped with a non-degenerate symmetric bilinear
form ( , ) : V × V → C.

For 1 ≤ k ≤ n set

X(k) = {k-dimensional subspace U of V such that (U,U) = 0}.

Then X(k) is connected for 1 ≤ k ≤ n− 1, and X(n) has two connected components, say X1(n)
and X2(n). Then we have the identification:

X(k) = XI0\{k} (1 ≤ k ≤ n− 2),
X(n− 1) = XI0\{n−1,n},

X1(n) = XI0\{n},

X2(n) = XI0\{n−1}.

If {p, q} 6= {n− 1, n}, then

XI∩J =
{
{(U1, U2) ∈ XI ×XJ : U1 ⊂ U2} (p < q)
{(U1, U2) ∈ XI ×XJ : U1 ⊃ U2} (p > q),

and if p = n − 1 and q = n, then f (resp. g) assigns U ∈ XI∩J = X(n − 1) to the unique
U ′ ∈ XI = X2(n) (resp. U ′ ∈ XJ = X1(n)) such that U ⊂ U ′. The invertible OXI

-module
OXI

($p) corresponds to the tautological line bundle whose fiber at U ∈ XI is
∧k U where k = p

for 1 ≤ k ≤ n− 2 and k = n for p ∈ {n− 1, n}.
By Theorem 2.6 we have the following.

Proposition 3.12. (i) We have R(DOXI
(−a$p)) = 0 in the following cases:

2n− p− q − 1 < a < q if p < q ≤ n− 2,
q < a < 2n− p− q − 1 if q < p ≤ n− 2
2q < a < 2(n− q − 1) if p ∈ {n− 1, n}, 1 ≤ q ≤ n− 2,
n− p− 1 < a < n if 1 ≤ p ≤ n− 2, q ∈ {n− 1, n},
a = n− 1 if {p, q} = {n− 1, n} and n is even.

(ii) We have R(DOXI
(−a$p)) = DOXJ

(−b$q)[−c] for (a, b, c) =

(q, p, 0) (p < q ≤ n− 2, 2n− 2p− q − 1 ≤ 0),
(2n− p− q − 1, 2n− p− q − 1, c1) (p < q ≤ n− 2, 2n− 2p− q − 1 ≤ 0),
(n, 2p, 0) (p ≤ n− 2, q ∈ {n− 1, n}, n− 2p− 1 ≤ 0),
(n− p− 1, 2(n− p− 1), c2) (p ≤ n− 2, q ∈ {n− 1, n}, n− 2p− 1 ≤ 0),
(2n− p− q − 1, 2n− p− q − 1, 0) (q < p ≤ n− 2, 2n− 2p− q − 1 ≥ 0),
(q, p, c3) (q < p ≤ n− 2, 2n− 2p− q − 1 ≥ 0),
(n, n− 2, 0) ({p, q} = {n− 1, n}, n : odd),
(n− 1, n− 1, 0) ({p, q} = {n− 1, n}, n : odd),
(n− 2, n, 0) ({p, q} = {n− 1, n}, n : odd),
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where

c1 =
(q − p)(3p + 3q − 4n + 1)

2
, c2 =

(n− p)(3p− n + 1)
2

,

c3 =
(p− q)(4n− 3p− 3q − 1)

2
.

By Theorem 2.13 we have the following.

Proposition 3.13. Let (r, s) =
(q, p) if 1 ≤ p < q ≤ n− 2,
(2n− p− q − 1, 2n− p− q − 1) if 1 ≤ q < p ≤ n− 2,
(2(n− q − 1), n− q − 1) if p ∈ {n− 1, n}, 1 ≤ q ≤ n− 2,
(n, 2p) if 1 ≤ p ≤ n− 2, q ∈ {n− 1, n},
(n, n− 2) if {p, q} = {n− 1, n}.

Then we have Hk(R(DOXI
(−r$p))) = 0 for any k 6= 0, and there exists a canonical nontrivial

epimorphism
Φ : DOXJ

(−s$q)→ H0(R(DOXI
(−r$p))).

Moreover, Φ is an isomorphism if and only if we have either

(a) p < q < n− 1 and 2n− 2p− q − 1 ≤ 0,

(b) q < p < n− 1 and 2n− 2p− q − 1 ≥ 0,

(c) p < n− 1, q ∈ {n− 1, n} and n− 2p− 1 ≤ 0,

(d) {p, q} = {n− 1, n} and n is odd.

Remark 3.14. In the situation of Proposition 3.13 it is proved in [15] that KerΦ is the maximal
proper G-stable submodule of DOXJ

(−s$q) if q ∈ {n − 1, n}, 2p ≤ n − 2 and if q = 1, p ∈
{n− 1, n}.

3.5 The exceptional cases (G2), (F4), (E6)

We write here the tables for the maximal parabolic cases in the exceptional algebras G2, F4, E6.
We obtained them by a case-by-case analysis.

As above, here we define I = I0 \ {p} and J = I0 \ {q}. In the first line we write the
a ∈ Z such that R(DOXIp

(a$p)) = 0 and the a ∈ Z such that Hj(R(DOXIp
(a$p))) = 0 for

j 6= 0. In the second line, we write the [a, b, c] ∈ Z3 such that R(DOXIp
(a$p)) = DOXIq

(µ)[−c]
with µ = b$q or, sometimes, [a, (b1, . . . , br), c] ∈ Z × Zr × Z and µ =

∑r
i=1 bi$i (here r is the

rank of the Lie algebra). In the third line we write the (b1, . . . , br) ∈ Zr such that there exists
Φ : DOXIq

(µ)→ H0(R(DOXIp
(a$p))), with µ =

∑r
i=1 bi$i, as well as some informations about

Φ. Finally, in the fourth line we write [a, b] ∈ Z2 such that (λ, µ) = (a$p, b$q) is the extremal
case, and some informations about Φ.
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G2 q = p + 1 (mod 2)

p = 1

— ; a ≤ −1
[−1, (2,−2), 0], [−4, (2,−3), 0]
(−a − 2, a + 1), a ≤ −2; epi a ≤ −4
[−2,−1]; no cohom. > 0; no epi

p = 2

— ; a ≤ −1
[−1,−2, 0], [−2,−3, 0]
(3a + 3,−a − 2), a ≤ −2; epi
[−2,−3]; no cohom. > 0; iso

F4 q = p + 1 (mod 4) q = p + 2 (mod 4) q = p + 3 (mod 4)

p = 1

— ; a ≤ −1
—
(−a − 2, a + 1, 0, 0), a ≤ −2; epi
[−2,−1]; no cohom. > 0; epi; no iso

— ; a ≤ −1
—
(0,−a − 3, 2a + 4, 0), a ≤ −3; epi
[−3,−2]; no cohom. > 0; epi; no iso

a = −4; a ≤ −4
—
(−a − 5, 0, 0, 2a + 5), a ≤ −5; epi
[−5,−5]; no cohom. > 0; epi; no iso

p = 2

— ; a ≤ −2
[−2,−3, 0], [−3,−4, 0]
(−a − 3, 0, 2a + 2, 0), a ≤ −3; epi
[−3,−4]; no cohom. > 0; iso

a = −3,−2; a ≤ −2
[−1,−3, 5], [−4,−8, 0]
(0,−a − 4, 0, 4a + 8), a ≤ −4; epi
[−4,−8]; no cohom. > 0; iso

a = −3,−2; a ≤ −2
[−1,−2, 5], [−4,−6, 0]
(3a + 6,−a − 4, 0, 0), a ≤ −4; epi
[−4,−6]; no cohom. > 0; iso

p = 3

a = −5,−4,−3,−2; a ≤ −2
[−1,−2, 5], [−6,−9, 0]
(0, , 0,−a − 6, 3a + 9), a ≤ −6; epi
[−6,−9]; no cohom. > 0; iso

a = −4,−3; a ≤ −3
[−1, (−3, 0, 1, 0), 5], [−2,−3, 5], [−5,−5, 0]
(2a + 5, 0,−a − 5, 0), a ≤ −5; epi
[−5,−5]; no cohom. > 0; iso

— ; a ≤ −3
—
(0, a + 1, 0,−a − 3), a ≤ −3; epi a ≤ −5
[−3,−2]; no cohom. > 0; no epi

p = 4

— ; a ≤ −6
—
(a + 3, 0, 0,−a − 6), a ≤ −6; epi
[−6,−3]; no cohom. > 0; epi; no iso

— ; a ≤ −1
—
(0, a + 2,−a − 3, 0), a ≤ −3; epi a ≤ −4
[−3,−1]; no cohom. > 0; no epi

— ; a ≤ −1
—
(0, 0, a + 1,−a − 2), a ≤ −2; epi
[−2,−1]; no cohom. > 0; epi; no iso

E6 q = p + 1 (mod 6) q = p + 2 (mod 6) q = p + 3 (mod 6)

p = 1

— ; a ≤ −4
—
(0, a + 3, 0, 0, 0,−a − 6), a ≤ −6; epi
[−6,−3]; no cohom. > 0; epi; no iso

— ; a ≤ −1
—
(−a − 2, 0, a + 1, 0, 0, 0), a ≤ −2; epi
[−2,−1]; no cohom. > 0; epi; no iso

— ; a ≤ −1
—
(0, 0,−a − 3, a + 2, 0, 0), a ≤ −3; epi
[−3,−1]; no cohom. > 0; epi; no iso

p = 2

— ; a ≤ −4
—
(0, 0, a + 2, 0, 0,−a − 5), a ≤ −5; epi
[−5,−3]; no cohom. > 0; epi; no iso

— ; a ≤ −1
—
(0,−a − 2, 0, a + 1, 0, 0), a ≤ −2; epi
[−2,−1]; no cohom. > 0; epi; no iso

— ; a ≤ −4
—
(−a − 5, 0, 0, 0, a + 2, 0), a ≤ −5; epi
[−5,−3]; no cohom. > 0; epi; no iso

p = 3

— ; a ≤ −2
—
(−a − 3, 0, 0, a + 1, 0, 0), a ≤ −3; epi
[−3,−2]; no cohom. > 0; epi; no iso

— ; a ≤ −4
[−4,−5, 0], [−5,−4, 0]
(0, 0, 0,−a − 5, 2a + 6, 0), a ≤ −5; epi
[−5,−4]; no cohom. > 0; iso

a = −6,−5,−4,−3 ; a ≤ −3
[−2,−5, 9], [−7,−7, 0]
(0, 0,−a − 7, 0, 0, 2a + 7), a ≤ −7; epi
[−7,−7]; no cohom. > 0; iso

p = 4

a = −4,−3 ; a ≤ −3
[−2,−3, 4]; [−5,−6, 0]
(0, 0,−a − 5, 0, 2a + 4, 0), a ≤ −5; epi
[−5,−6]; no cohom. > 0; iso

a = −5,−4,−3,−2 ; a ≤ −2
[−1,−3, 13], [−6,−9, 0]
(0, 0, 0,−a − 6, 0, 3a + 9), a ≤ −6; epi
[−6,−9]; no cohom. > 0; iso

a = −5,−4,−3,−2 ; a ≤ −2
[−1,−3, 13], [−6,−9, 0]
(3a + 9, 0, 0,−a − 6, 0, 0), a ≤ −6; epi
[−6,−9]; no cohom. > 0; iso

p = 5

a = −7,−6,−5,−4,−3,−2 ; a ≤ −2
[−1,−2, 9], [−8,−10, 0]
(0,−a − 8, 0, 0, 0, 2a + 6), a ≤ −8; epi
[−8,−10]; no cohom. > 0; iso

a = −6,−5,−4,−3 ; a ≤ −3
[−2,−5, 9], [−7,−7, 0]
(2a + 7, 0, 0, 0,−a − 7, 0), a ≤ −7; epi
[−7,−7]; no cohom. > 0; iso

a = −5,−4 ; a ≤ −4
[−3,−5, 4], [−6,−6, 0]
(0, 2a + 6,−a − 6, 0, 0, 0), a ≤ −6; epi
[−6,−6]; no cohom. > 0; iso

p = 6

— ; a ≤ −4
[−a, a + 12, 0], −8 ≤ a ≤ −4
(a + 4, 0, 0, 0, 0,−a − 8), a ≤ −8; epi
[−8,−4]; no cohom. > 0; iso

— ; a ≤ −4
—
(−a − 6, a + 3, 0, 0, 0, 0), a ≤ −6; epi
[−6,−3]; no cohom. > 0; epi; no iso

— ; a ≤ −4
—
(0,−a − 5, a + 3, 0, 0, 0), a ≤ −5; epi
[−5,−2]; no cohom. > 0; epi; no iso

E6 q = p + 4 (mod 6) q = p + 5 (mod 6)

p = 1

— ; a ≤ −4
—
(0,−a − 5, 0, 0, a + 3, 0), a ≤ −5; epi
[−5,−2]; no cohom. > 0; epi; no iso

— ; a ≤ −4
[−a, a + 12, 0], −8 ≤ a ≤ −4
(−a − 8, 0, 0, 0, 0, a + 4), a ≤ −8; epi
[−8,−4]; no cohom. > 0; iso

p = 2

a = −7,−6,−5,−4 ; a ≤ −4
[−3,−6, 5], [−8,−6, 0]
(0, 0, 0, 0,−a − 8, 2a + 10), a ≤ −8; epi
[−8,−6]; no cohom. > 0; iso

a = −7,−6,−5,−4 ; a ≤ −4
[−3,−6, 5], [−8,−6, 0]
(2a + 10, 0,−a − 8, 0, 0, 0), a ≤ −8; epi
[−8,−6]; no cohom. > 0; iso

p = 3

a = −7,−6,−5,−4,−3,−2 ; a ≤ −2
[−1,−2, 9], [−8,−10, 0]
(2a + 6,−a − 8, 0, 0, 0, 0), a ≤ −8; epi
[−8,−10]; no cohom. > 0; iso

a = −5,−4 ; a ≤ −4
[−3,−5, 4], [−6,−6, 0]
(0, 2a + 12, 0, 0,−a − 6, 0), a ≤ −6; epi
[−6,−6]; no cohom. > 0; iso

p = 4

a = −5,−4,−3,−2 ; a ≤ −2
[−1,−2, 8], [−6,−9, 0]
(3a + 9, 0, 0,−a − 6, 0, 0), a ≤ −6; epi
[−6,−9]; no cohom. > 0; iso

a = −4,−3 ; a ≤ −3
[−2,−3, 4], [−5,−6, 0]
(0, 0, 2a + 4, 0,−a − 5, 0), a ≤ −5; epi
[−5,−6]; no cohom. > 0; iso

p = 5

— ; a ≤ −4
[−4,−5, 0], [−5,−4, 0]
(0, 0, 2a + 6,−a − 5, 0, 0), a ≤ −5; epi
[−5,−4]; no cohom. > 0; iso

— ; a ≤ −2
—
(0, 0, 0, a + 1, 0,−a − 3), a ≤ −3; epi
[−3,−2]; no cohom. > 0; epi; no iso

p = 6

— ; a ≤ −1
—
(0, 0, 0, a + 2,−a − 3, 0), a ≤ −3; epi
[−3,−1]; no cohom. > 0; epi; no iso

— ; a ≤ −1
—
(0, 0, 0, 0, a + 1,−a − 2), a ≤ −2; epi
[−2,−1]; no cohom. > 0; epi; no iso
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