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Abstract. A general framework to deal with problems of integral geometry

is provided by the recently developed theory of integral transforms for sheaves
and D-modules. Our aim here is to illustrate such techniques by reconsid-

ering the most classical example of integral transforms. Namely, the Radon

hyperplane transform for C∞-functions.

Introduction

The theory of integral transforms for sheaves and D-modules provides a natural
framework to deal with the problems of integral geometry. In particular, a general
adjunction formula allows one to separate the analytical aspects of the problem
from the topological ones. In [3, 1] such theory was applied to the study of the
Radon hyperplane transform (see [2] for an exposition).

The Radon transform associates to a homogeneous C∞ function on a real pro-
jective space P its integrals along the family of hyperplanes, thus yielding a homo-
geneous C∞ function on the dual projective space P∗. It is a well-know fact that
such transform is invertible in a suitable range of the degree of homogeneity. A
classical approach (see e.g. [5]) is to deduce this result from the inversion formula
for the Fourier transform. Another approach, closer to ours, is that of [8, Proposi-
tion 4.1.3], where the real Radon transform is considered as the “boundary value”
of the complex one (see also [7] for a similar point of view).

Here we will use the methods of [3, 1] to discuss the case of arbitrary homogene-
ity. In particular, we will calculate exactly the finite dimensional obstruction to
invertibility, and we will show how such obstruction is purely topological.

1. Notations

Let us recall some notations and results on the hyperplane Radon transform,
referring the reader e.g. to [5].

Affine hyperplanes in Rn 3 y are described by equations

〈y, η〉+ τ = 0,

and are thus parameterized by (η, τ) ∈ ((Rn)∗ \ {0}) × R. The classical Radon
transform associates to a rapidly decreasing C∞ function f on Rn its integrals
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along affine hyperplanes, and reads

(1) f(y) 7→ g(η, τ) =
∫
〈y,η〉+τ=0

f(y) dµη,τ ,

where dµη,τ is the measure on the hyperplane 〈y, η〉+ τ = 0 induced by the volume
element dy1 ∧ · · · ∧ dyn.

Let P be a real projective space of dimension n, and [x] = [x0, . . . , xn] a system
of homogeneous coordinates on P. For m ∈ Z and ε ∈ Z/2Z, let us denote by
C∞P (m|ε) the C∞ line bundle on P whose sections ϕ satisfy

ϕ(λx) = (sgnλ)ελmϕ(x) for λ ∈ R×.

Let VP = C∞,(n)
P ⊗ orP be the sheaf of densities on P, where orP denotes the orien-

tation sheaf. Recall the isomorphism VP ' C∞P (−n−1|−n−1). The Leray form

ω(x) =
n∑

j=0

(−1)jxjdx0 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn

is the global section of VP(n+1|n+1) corresponding to 1 ∈ C∞P . (Here, for a C∞-
module F , we set F (m|ε) = F ⊗C∞P C∞P (m|ε).)

Let P∗ be the dual projective space, and let [ξ] be the system of homogeneous
coordinates dual to [x]. The manifold P∗ parameterizes projective hyperplanes in
P by the correspondence ξ ( ξ̂ = {x : 〈x, ξ〉 = 0}. The projective Radon transform
is defined by

(2) ϕ(x) 7→ ψ(ξ) =
∫

P

ϕ(x)δ(〈x, ξ〉)ω(x),

where, in order for the integral to make sense, ϕ ∈ Γ(P; C∞P (−n|−n)). It is clear that
ψ ∈ Γ(P∗; C∞P∗ (−1|−1)).

Remark 1. Let us identify Rn with the affine chart x0 6= 0 of P, so that yj = xj/x0

for j = 1, . . . , n. If f(y) is rapidly decreasing, ϕ(x) = x−n
0 f(y) is a well defined

global section of C∞P (−n|−n), vanishing up to infinite order on the hyperplane at
infinity x0 = 0. In this sense, (2) is the natural projective extension of (1).

For m < 0, consider the family k(m|ε) of distributions in R defined by

(3) for m < 0: k(m|1)(t) =
(
d

dt

)−m−1

δ(t), k(m|0)(t) = p.v.
1
t−m

,

where p.v. stands for principal value. Note that k(m|ε) is (m|ε)-homogeneous. A
natural generalization of (2) is then given by the following

Definition 1. The generalized projective Radon transform is defined by

R(m∗|ε∗) : Γ(P; C∞P (m∗|ε∗)) −→ Γ(P∗; C∞P∗ (m|ε))(4)

ϕ(x) 7→ ψ(ξ) =
∫

P

ϕ(x)k(m|ε)(〈x, ξ〉)ω(x),

where
m∗ = −n− 1−m, ε∗ ≡ −n− 1− εmod 2.
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Let R∗
(m|ε) be the transform obtained by interchanging the roles of P and P∗, i.e.

R∗
(m|ε) : Γ(P∗; C∞P∗ (m|ε)) −→ Γ(P; C∞P (m∗|ε∗))(5)

ψ(ξ) 7→ ϕ(x) =
∫

P∗
ψ(ξ)k(m∗|ε∗)(〈x, ξ〉)ω(ξ).

A classical result (see [5, Theorem 1’, pg. 73]) asserts that for m < 0 and m∗ < 0
(i.e. −n−1 < m < 0) the transform R(m∗|ε∗) is invertible, and its inverse is R∗

(m|ε).
(We will always neglect non-zero multiplicative constants.)

Our aim is to extend the above result to the case of arbitrary m ∈ Z. In fact,
interchanging the roles of P and P∗ it is enough to consider the case m < 0.

2. Statement of the result

Let us complete the family (3) of distributions in R by setting

(6) for m ≥ 0: k(m|1)(t) = tm sgn(t), k(m|0)(t) = tm log |t|.
Since k(m∗|1)(t) is (m∗|1)-homogeneous, (5) defines the Radon transform R∗

(m|1∗)
for any m ∈ Z. On the other hand, for m ≥ 0 and ψ ∈ Γ(P∗; C∞P∗ (m|0∗)) one has

ψ(λξ)k(m∗|0)(〈x, λξ〉)ω(λξ) =(sgnλ)n+1ψ(ξ)k(m∗|0)(〈x, ξ〉)ω(ξ)

+ (sgnλ)n+1 log |λ|ψ(ξ)〈x, ξ〉m
∗
ω(ξ).

(7)

Denote by C[x](m∗) the space of homogeneous polynomials of degree m∗, and con-
sider the transform

Cm : Γ(P∗; C∞P∗ (m|0∗)) −→ C[x](m∗)(8)

ψ(ξ) 7→
∫

P∗
ψ(ξ)〈x, ξ〉m

∗
ω(ξ).

It follows from (7) that R∗
(m|0∗) is well-defined on ker(Cm) for any m ∈ Z. Note

also that R(m∗|0)(P ) = 0 for any P ∈ C[x](m∗) ⊂ Γ(P; C∞P (m∗|0)) (cf [5, pp. 87–88]).
We can then state our result.

Theorem 1. Assume that m < 0. Then the transforms

Γ(P; C∞P (m∗|1))
R(m∗|1) // Γ(P∗; C∞P∗ (m|1∗))
R∗(m|1∗)

oo(9)

Γ(P; C∞P (m∗|0))
C[x](m∗)

R(m∗|0) // ker(Cm)
R∗(m|0∗)

oo(10)

are (up to non-zero multiplicative constants) mutually inverse.

3. Review on integral transforms

Following [3], let us briefly recall how the theory of integral transforms for sheaves
and D-modules applies to the Radon transform (see [2] for an exposition).

Let X, Y be complex analytic manifolds, and denote by q1 and q2 the first and
second projection from X × Y to X and Y , respectively. The D-module analogue
of an integral transform like (4) is given by the functor

· D◦ K : M 7→M D◦ K = Dq2!(Dq
∗
1M

D

⊗K),
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where M is a DX -module, K is a DX×Y -module, and Dq2!, Dq∗1 , and
D

⊗ denote
the (derived) functors of proper direct image, inverse image, and tensor product for
D-modules. Similarly, for sheaves G on Y and K on X × Y (better, objects of the
bounded derived categories of sheaves of C-vector spaces), one considers

K ◦ · : G 7→ K ◦G = Rq1!(K ⊗ q−1
2 G).

Assume that G is R-constructible, K is regular holonomic, and K = Sol(K,OX×Y )
is its associated perverse sheaf. Under a natural transversality hypothesis—satisfied
in the case of the Radon transform—one has the following adjunction formula
between global solution complexes

(11) Sol(N , C∞(K ◦G[dim X])) ' Sol(M D◦ K, C∞(G)),

where G 7→ G[1] is the shift functor in the derived category, and C∞(G) = G
w
⊗OY

is the formal cohomology functor of [9]. (Recall that C∞(G) = C∞N if G = CN

is the constant sheaf along a totally real submanifold N ⊂ Y , of which Y is a
complexification.) Finally, recall that in the transversality hypothesis, one has the
following isomorphisms, asserting that the morphisms N −→MD◦K andMD◦K −→ N
are described by an integral kernel.

α : Sol(M∨ D

�N ,K) ∼−→ HomDY
(N ,M D◦ K),(12)

β : Sol(M
D

�N∨,K∨) ∼−→ HomDY
(M D◦ K,N ),(13)

where M∨ = RHomDX
(M,DX)⊗OX

Ω∗
X is the dual of M as a left DY -module.

Let P 3 [z] be a complex projective space of dimension n, P∗ 3 [ζ] the dual
space, S ⊂ P × P∗ the incidence relation 〈z, ζ〉 = 0, and Sc = (P × P∗) \ S. One
denotes by BSc the regular holonomic DP×P∗ -module of meromorphic functions on
P × P∗, with poles along S. For m ∈ Z, let OP(m) be the holomorphic line bundle
whose sections Φ satisfy

Φ(λz) = λmΦ(z) for λ ∈ C×.

If F is an OP-module, set F (m) = F ⊗OP
OP(m).

The first homotopy group of the real projective space P ⊂ P is Z/2Z, and hence
there are essentially two locally constant sheaves of rank one over P. For ε ∈ Z/2Z
we denote them by C(ε)

P , asking C(0)
P to be the constant sheaf. One then has

C∞P (m∗|ε∗) ' C∞(C(ε∗)
P )(m∗)

' Sol(DP(−m∗), C∞(C(ε∗)
P )).

With the notations of the beginning of this section, let us consider

X = P, Y = P∗, K = BSc , K = CSc , M = DP(−m∗), G = C(ε)
P∗ .

We denote by K ′ = RHom (K,CP×P∗) the dual of K.

Theorem 2. ([3, 4])

(i) The two functors · D◦ BS and B∨Sc

D◦ ·, as well as the two functors CSc [n] ◦ ·
and · ◦C′

Sc [n] are quasi-inverse to each other.
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(ii) For m < 0, the sections

sm(z, ζ) =
ω(z)

〈z, ζ〉−m
,(14)

tm∗(z, ζ) =

{
δ(−m∗−1)(〈z, ζ〉)ω(ζ) for m∗ < 0,
〈z, ζ〉m∗

Y (〈z, ζ〉)ω(ζ) for m∗ ≥ 0,
(15)

induce by (12) isomorphisms

α(sm) : DP∗(−m) −→ DP(−m∗) D◦ BSc ,

α(tm∗) : DP(−m∗) −→ B∨Sc
D◦ DP∗(−m).

(iii) By (11), α(sm) and α(tm∗) induce mutually inverse isomorphisms

(16) RΓ(P; C∞(CSc ◦C(ε)
P∗ [n])(m∗))

eα(sm) // Γ(P∗; C∞P∗ (ε∗|m)).eα(tm∗ )
oo

(To explain the notations in (15), recall that on C 3 τ one has BC× = DC/(DC ·
∂ττ), B∨C× = DC/(DC ·τ∂τ ). One denotes by Y (τ) the canonical generator of B∨C× ,
and sets δ(k)(τ) = ∂k

τ Y (τ).)

4. Sketch of proof

As it was done in [3, 1] for the case −n − 1 < m < 0, we will show here how
Theorem 1 can be obtained as a corollary of Theorem 2.

A purely topological computation (see [3, Proposition 5.16]) gives

CSc ◦C(1∗)
P∗ [n] ' C(1)

P ,(17)

CP\P −→ CSc ◦C(0∗)
P∗ [n] −→ CP −−→

+1
.(18)

The isomorphism (9) is obtained by plugging (17) in (16).
In order to get (10), we need to describe the complex

F = RΓ(P; C∞(CSc ◦C(0∗)
P∗ [n])(m∗)).

By (18), we get a distinguished triangle

0 −→ RΓ(P; C∞(CP\P)(m∗)) −→ F −→ C[x](m∗) −→ 0,

where we used Serre’s isomorphism

RΓ(P; C∞(CP)(m∗)) ' RΓ(P;OP(m∗)) ' C[x](m∗).

Moreover, the short exact sequence 0 −→ CP\P −→ CP −→ CP −→ 0 gives

0 −→ C[x](m∗) −→ Γ(P; C∞P (m∗|0)) −→ RΓ(P; C∞(CP\P)(m∗)) −→ 0.

Combining the two short exact sequences above, we get the following commutative
diagram, whose first row is exact

0 −→ C[x](m∗) −→ Γ(P; C∞P (m∗|0)) //

R(m∗|0) **TTTTTTTTTTTTTTT F //

eα(sm)o
��

C[x](m∗) −→ 0.

Γ(P∗; C∞P∗ (m|0∗))
eCm

77ooooooooooo
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To conclude, let us show that the morphism C̃m above coincides with the morphism
Cm of (8).

The isomorphism (13) is functorial in K. Applying it to the natural morphism
q : B∨Sc −→ OP×P∗ , dual to the embedding OP×P∗ −→ BSc , we get a commutative
diagram

Sol(DP(−m∗)
D

�DP∗ (−m∗),B∨Sc)
∼
β

//

q

��

HomDP∗
(DP(−m∗)

D◦ BSc ,DP∗ (−m))

��

Sol(DP(−m∗)
D

�DP∗ (−m∗),OP×P∗)
∼
β

// HomDP∗
(DP(−m∗)

D◦ OP×P∗ ,DP∗ (−m))

Note that the morphism β(tm∗) is the inverse of the morphism α(sm). Moreover,
q(tm∗) = 〈z, ζ〉m∗

ω(ζ) is the complex analogue of the integral kernel defining Cm.
The equality C̃m = Cm then follows by considering the commutative diagram

Γ(P∗; C∞P∗ (m|0∗)) ' Sol(DP∗ (−m), C∞(C
(0∗)
P∗ ))

eCm

��

eβ(tm∗ )

��

eβ(q(tm∗ ))

++WWWWWWWWWWWWWWWWWWWW

Sol(DP(−m∗)
D◦ BSc , C∞(C

(0∗)
P∗ ))

o

// Sol(DP(−m∗)
D◦ OP×P∗ , C∞(C

(0∗)
P∗ ))

o

Sol(DP(−m∗), C∞(CSc ◦C
(0∗)
P∗ [n]))

��

// Sol(DP(−m∗), C∞(CP×P∗ ◦C
(0∗)
P∗ [n]))

ssggggggggggggggggggggg

C[x](m∗) ' Sol(DP(−m∗), C∞(CP))
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