Non smooth Lagrangian sets and estimations of micro-support

By Andrea D'AGNOLO, Corrado MARASTONI and Giuseppe ZAMPIERI

(Received May 25, 1992) (Revised May 19, 1994)

1. Notation and review.

Let X be a real C^1 manifold and let $Y \subset X$ be a closed submanifold. One denotes by $\pi: T^*X \to X$ the cotangent bundle to X and by T^*_YX the conormal bundle to Y in X.

One denotes by $D^b(X)$ the derived category of the category of bounded complexes of sheaves of C-vector spaces on X. For F an object of $D^b(X)$, one denotes by SS(F) its micro-support, a closed, conic, involutive subset of T^*X .

Let $A \subset X$ be a closed C^1 -convex subset at $x_0 \in A$ (i.e., A is convex for a choice of local C^1 coordinates at x_0). One denotes by C_A the sheaf which is zero on $X \setminus A$ and the constant sheaf with fiber C on A. In order to describe $SS(C_A)$ fix a local system of coordinates (x) = (x', x'') at x_0 so that A is convex and $Y = \{x \in X : x'' = 0\}$ is its linear hull. Denote by $j: Y \to X$ the embedding and by ${}^t j': Y \times_X T * X \to T * Y$ the associated projection. One has

$$SS(\mathbf{C}_A) = {}^t j'(N_Y^*(A)),$$

where $N_{Y}^{*}(A)$ denotes the conormal cone to A in Y. In other words, $(x;\xi) \in SS(C_A)$ if and only if $x \in A$ and the half space $\{y \in X; \langle y-x, \xi \rangle \geq 0\}$ contains A. By analogy with the smooth case, we set $T_A^*X = SS(C_A)$.

For $p \in T^*X$, $D^b(X; p)$ denotes the localization of $D^b(X)$ with respect to the null system $\{F \in D^b(X); p \notin SS(F)\}$. One also considers the microlocalization bifunctor $\mu hom(\cdot, \cdot)$ which is defined in $[\mathbf{K-S}]$.

REMARK 1.1. In **[K-S]** the bifunctor μhom is considered only for C^2 manifolds but it is clear that its definition is possible for a C^1 manifold as well. Roughly speaking, this functor is the composition of the specialization functor (which is defined as long as the normal deformation is defined, i.e., for C^1 manifolds) and the Fourier-Sato transform which is defined for vector bundles over any locally compact space.

If X is of class C^2 one has the following estimate: