
ANALISI MATEMATICA 1
Area dell’Ingegneria dell’Informazione

Appello del 20.01.2020

TEMA 1
Esercizio 1 [7 punti] Si consideri la funzione

f(x) = sin
(
2 arctan(|x|3)

)
i) determinarne il dominio naturale D, il segno, eventuali simmetrie, i limiti agli estremi di D e gli

eventuali asintoti;

ii) studiarne la derivabilità, calcolarne la derivata, studiarne la monotonia, determinarne gli eventuali
punti di estremo relativo ed assoluto; non è richiesto lo studio della derivata seconda.

iii) abbozzarne il grafico qualitativo.

Svolgimento. i) Chiaramente D =] −∞,+∞[. Evidentemente f è pari, quindi basta limitarsi allo studio
su [0,+∞[. Poiché 2 arctan |x|3 ∈ [0, π[, f è sempre positiva ed inoltre f = 0 sse x = 0. Limiti: c’è un solo
limite interessante, limx→+∞ f(x) = sinπ = 0, da cui la retta y = 0 è asintoto orizzontale a +∞.

ii) Essendo f composizione di funzioni derivabili, eccetto per x = 0, risulta

f ′(x) = cos
(
2 arctan |x|3

) 6x2sgn x

1 + x6
, ∀x 6= 0.

Per x = 0 chiaramente f è continua e siccome

lim
x→0

f ′(x) = 0,

per il test di derivabilità si evince che ∃f ′(0) = 0. Per la monotonia, studiamo il segno di f ′: per x > 0,

f ′(x) > 0, ⇐⇒ cos
(
2 arctanx3

)
> 0, ⇐⇒ 2 arctanx3 6

π

2
, ⇐⇒ arctanx3 6

π

4
, ⇐⇒ x3 6 1,

cioè per x 6 1. Dunque f è crescente su [0, 1] e decrescente su [1,+∞[. Si deduce facilmente la monotonia
su D e che x = 0 è punto di minimo globale mentre x = ±1 sono massimi globali.
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Esercizio 2 [6 punti] Calcolare il limite

lim
x→0+

(
1 + sinx

)xa
al variare di a ∈ R, usando la forma “exp{log . . . }”.

Svolgimento. Per x −→ 0+, 1 + sinx −→ 1 mentre

xa −→


0, se a > 0,
1, se a = 0,
+∞, se a < 0.

Poiché 10 = 1 e 11 = 1 si deduce che il limite vale 1 per ogni a > 0. Per a < 0, 1+∞ è forma indeterminata.
Poiché

(1 + sinx)x
a

= ex
a log(1+sinx),

ricordato che log(1 + t) = t1t e che sinx = x1x abbiamo

(1 + sinx)x
a

= ex
a sinx·1x = ex

a+11x −→


e0 = 1, se − 1 < a < 0,
e1 = e, se a = −1,
e+∞ = +∞, se a < −1.

Esercizio 3 [4 punti] Trovare gli zeri in C di

(z3 + 5)(z2 + z + 1) = 0.

Svolgimento. Chiaramente

(z3 + 5)(z2 + z + 1) = 0, ⇐⇒ z3 = −5, ∨ z2 + z + 1 = 0.

Nel primo caso, si tratta di calcolare le radici terze di −5. Premesso che −5 = 5u(π) (u(θ) = cos θ+ i sin θ),
per la formula di De Moivre, z = ρu(θ) è t.c.

z3 = −5, ⇐⇒


ρ3 = 5,

θ = π
3 + k 2π

3 , k = 0, 1, 2,
⇐⇒ z =

3
√

5

(
1

2
+ i

√
3

2

)
, − 3
√

5,
3
√

5

(
1

2
− i
√

3

2

)
.

Nel secondo caso,

z1,2 =
−1±

√
−3

2
=
−1± i

√
3

2
= −1

2
± i
√

3

2
.

Esercizio 4 [4+3 punti] Siano α ∈ R fissato e

fα(t) :=
e2t + 2et

(et − 1)α
.

i) Calcolare una primitiva di fα con α = 1.

ii) Determinare per quali α ∈ R esiste finito
∫ 1
0 fα(t) dt.



Svolgimento. i) Abbiamo che∫
e2t+2et

et−1 dt
u=et, t=log u, dt=du/u

=
∫
u2+2u
(u−1)

du
u =

∫
u+2
u−1 du =

∫ (
1 + 3

u−1

)
du

= u+ 3 log |u− 1| = et + 3 log |et − 1|.

ii) Considerato che fα ∈ C(]0, 1]), l’integrale
∫ 1
0 fα(t) dt è generalizzato in 0. Essendo fα > 0 su ]0, 1],

possiamo applicare il test del confronto asintotico per stabilire la convergenza dell’integrale. Notiamo che

fα(t) =
3t

(et − 1)α
=

3t
(t1t)α

∼0+
3

tα
,

per cui esiste
∫ 1
0 fα sse esiste

∫ 1
0

1
tα dt, sse α < 1 come ben noto.

Esercizio 5 [6 punti] Studiare la convergenza semplice ed assoluta della serie

+∞∑
n=1

(3 sinx)nn

n2 +
√
n

al variare di x ∈ [−π
2 ,

π
2 ].

Svolgimento. Studiamo la convergenza assoluta, cioè la convergenza della serie∑
n

|an| =
∑
n

n3n| sinx|n

n2 +
√
n
.

A tal fine, applichiamo il test della radice: essendo

|an|1/n =
n1/n3| sinx|
n2/n1n

−→ 3| sinx|, ∀x ∈ [−π/2, π/2],

(ricordiamo che n1/n −→ 1) abbiamo che:

• se 3| sinx| < 1 (cioè | sinx| < 1
3 ovvero, essendo x ∈ [−π/2, π/2], sse x ∈]− arcsin 1/3, arcsin 1/3[), la

serie converge assolutamente (quindi anche semplicemente);

• se 3| sinx| > 1 (cioè per [−π/2, π/2]\[− arcsin 1/3, arcsin 1/3]), la serie diverge assolutamente e poiché
il test dice in questo caso che |an| −→ +∞, la condizione necessaria di convergenza non è verificata,
per cui la serie non converge nemmeno semplicemente.

Rimangono i casi sinx = ±1
3 , nei quali il test precedente fallisce. Per sinx = 1/3, la serie diventa∑

n

n

n2 +
√
n
∼
∑
n

1

n
, divergente.

Essendo a termini di segno costante, convergenza semplice e assoluta coincidono (quindi non c’è alcun tipo
di convergenza). Infine, per sinx = −1/3, ∑

n

(−1)n
n

n2 +
√
n
,

che è una serie a termini di segno alternato. La convergenza assoluta ritorna al caso precedente (quindi è
esclusa). Per la convergenza semplice possiamo applicare il test di Leibniz purché

n

n2 +
√
n
↘ 0.



La convergenza a 0 è evidente. Per la monotonia possiamo procedere direttamente oppure introdurre la
funzione ausiliaria f(x) := x

x2+
√
x

ed osservare che

f ′(x) =
x2 +

√
x− x(2x+ 1

2
√
x
)

(x2 +
√
x)2

=
−x2 +

√
x
2

(x2 +
√
x)2

.

Siccome f ′ 6 0 sse −x2 +
√
x/2 6 0 ovvero x3/2 > 1

2 , in particolare per n > 1 si ha f(n) ↘, da cui la
conclusione: la serie converge semplicemente (ma non assolutamente) per il test di Leibniz.

Esercizio facoltativo Sia {an} una successione tale che an > 0 e an+1

an
≥ n

n+1 per ogni n ∈ N. Si dimostri
che

∑∞
n=1 an diverge.

Svolgimento. Dall’ipotesi segue che (n+ 1)an+1 > nan, cioé (nan) è crescente: allora nan > a1 > 0, da cui
an > a1

n per ogni n > 1. Ma allora, la serie diverge per confronto con la serie armonica.

NB: con log si indica il logaritmo in base e.

Tempo a disposizione: 2 ore e 45 minuti.

Il candidato deve consegnare questo foglio assieme al foglio intestato. La brutta copia non va consegnata: viene corretto solo

ciò che è scritto sul foglio intestato. È vietato tenere con sé, anche spenti, telefoni e calcolatrici di qualsiasi tipo e usare libri e

appunti. Ogni affermazione deve essere adeguatamente giustificata. La parte facoltativa ha rilevanza solo per il voto finale, non

per l’ammissione all’orale.



ANALISI MATEMATICA 1
Area dell’Ingegneria dell’Informazione

Appello del 20.01.2020

TEMA 2

Esercizio 1 [7 punti] Si consideri la funzione

f(x) = 1− sin
(
2 arctan(|x|3)

)
i) determinarne il dominio naturale D, il segno, eventuali simmetrie, i limiti agli estremi di D e gli

eventuali asintoti;

ii) studiarne la derivabilità, calcolarne la derivata, studiarne la monotonia, determinarne gli eventuali
punti di estremo relativo ed assoluto; non è richiesto lo studio della derivata seconda.

iii) abbozzarne il grafico qualitativo.

Svolgimento.
i)
Dominio. Chiaramente D =]−∞,+∞[.
Segno. Poiché −1 ≤ sinϕ ≤ 1 per ogni ϕ ∈ R, si ha

0 ≤ f(x) ≤ 2.

Inoltre

f(x) = 0 ⇐⇒ 1− sin
(
2 arctan(|x|3)

)
= 0 ⇐⇒ 2 arctan(|x|3) =

π

2
⇐⇒ |x|3 = 1 ⇐⇒ x = ±1.

In particolare, i punti x = ±1 sono punti di minimo assoluto.
Simmetrie. Evidentemente f è pari, quindi basta limitare al studio al sottodominio [0,+∞[.
Limiti e asintoti.

lim
x→+∞

f(x) = 1− sinπ = 0, per simmetria =⇒ lim
x→−∞

f(x) = 0,

per cui la retta y = 0 è asintoto orizzontale a ±∞.
ii)
Derivabilità.
Essendo f composizione di funzioni derivabili in D\{0}, risulta

f ′(x) = − cos
(
2 arctan |x|3

) 6x2sgn x

1 + x6
, ∀x 6= 0.

Per x = 0 chiaramente f è continua e siccome

lim
x→0

f ′(x) = 0,

per il test di derivabilità si evince che f è derivabile per x = 0 e

f ′(0) = 0.



Monotonia. Studiamo il segno di f ′: per x > 0,

f ′(x) > 0, ⇐⇒ cos
(
2 arctanx3

)
6 0, ⇐⇒ 2 arctanx3 >

π

2
, ⇐⇒ arctanx3 >

π

4
, ⇐⇒ x3 > 1,

cioè per x > 1. Dunque f è decrescente su [0, 1] e crescente su [1,+∞[. Si deduce facilmente la monotonia
su D e che x = 0 è punto di massimo globale mentre, come già osservato, x = ±1 sono minimi globali.
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Esercizio 2 [6 punti] Calcolare il limite

lim
x→0+

(
1− sinhx

)xa
al variare di a ∈ R, usando la forma “exp{log . . . }”.

Svolgimento. Osserviamo che per x→ 0+ vale(
1− sinhx

)xa
= ex

a log(1−sinhx) = ex
a log(1−x+o(x))

= ex
a(−x+o(x)) = e−x

a+1+o(xa+1)

Ne deduciamo che

lim
x→0+

(
1− sinhx

)xa
=


lim
y→0

ey = 1 se a+ 1 > 0 ⇐⇒ −1 < a,

lim
y→−1

ey = 1/e se a+ 1 = 0 ⇐⇒ a = −1,

lim
y→−∞

ey = 0 se a+ 1 < 0 ⇐⇒ a < −1.

Esercizio 3 [4 punti] Trovare gli zeri in C di

(z2 − z + 1)(z3 + 4) = 0.

Svolgimento. Per il teorema fondamentale dell’ algebra, le radici, contate con la propria molteplicità sono
cinque. Chiaramente

(z3 + 3)(z2 − z + 1) = 0, ⇐⇒ z3 = −4, ∨ (z2 − z + 1) = 0.



Nel primo caso, si tratta di calcolare le tre radici terze, z1, z2, z3 ,di −4. Premesso che −3 = 3eiπ, per la
formula di De Moivre, z = ρeiθ è t.c.

z3 = −4, ⇐⇒


ρ3 = 4,

θ = π
3 + k 2π

3 ,
k = 0, 1, 2,

⇐⇒ z1 =
3
√

4

(
1

2
+ i

√
3

2

)
, z2 = − 3

√
4, z3 =

3
√

4

(
1

2
− i
√

3

2

)
.

Nel secondo caso, con la formula risolvente per le equazioni di secondo grado si ottiene

z4,5 =
1±
√
−3

2
=

1± i
√

3

2
=

1

2
± i
√

3

2
.

Esercizio 4 [4+3 punti] Siano α ∈ R fissato e

fα(t) :=
e2t − 3et

(et − 1)α
.

i) Calcolare una primitiva di fα con α = 1.

ii) Determinare per quali α ∈ R esiste finito
∫ 1
0 fα(t) dt.

Svolgimento. i) Operando la sostituzione u = et ( =⇒ t = log u =⇒ dt

du
=

1

u
) otteniamo

∫
e2t−3et
et−1 dt =

∫
u2−3u
(u−1)

du
u =

∫
u−3
u−1 du =

∫ (
1− 2

u−1

)
du = u− 2 log |u− 1|+ c = et − 2 log |et − 1|+ c.

ii) Considerato che fα ∈ C(]0, 1]), l’integrale
∫ 1
0 fα(t) dt è generalizzato in 0. Essendo fα ≤ 0 su ]0, 1],

possiamo applicare il test del confronto asintotico a −fα per stabilire la convergenza dell’integrale. Notiamo
che

−fα(t) ∼ 1

(et − 1)α
∼ 1

tα
per t→ 0+,

per cui esiste
∫ 1
0 fα se e solo se esiste

∫ 1
0

1
tα dt, se e solo se α < 1, come ben noto.

Esercizio 5 [6 punti] Studiare la convergenza semplice ed assoluta della serie

+∞∑
n=1

(4 cosx)nn

n2 + 1

al variare di x ∈ [0, π].

Svolgimento. Studiamo la condizione necessaria: per an := (4 cosx)nn
n2+1

, si ha lim an = 0 ⇐⇒ lim |an| = 0.
Osserviamo che vale

lim |an| = lim
(4| cosx|n)n

n2 + 1
= lim(4| cosx|)n 1

n

n2

n2 + 1
=

{
+∞ se 4| cosx| > 1,
0 se 4| cos | ≤ 1.

Quindi per 4| cosx| > 1, cioè x ∈ [0, arccos(1/4)) ∪ (arccos(−1/4), π], la serie non può convergere né
semplicemente né assolutamente.

Studiamo la convergenza assoluta, cioè la convergenza della serie∑
n

|an| =
∑
n

(4| cosx|)nn
n2 + 1

.



A tal fine, applichiamo il test del rapporto: poiché

lim
|an+1|
|an|

= lim
(4| cosx|)n+1(n+ 1)(n2 + 1)

n({n+ 1}2 + 1)(4| cosx|)n
= 4| cosx|), ∀x ∈ [0, π],

abbiamo che, se | cosx| < 1
4 , cioè x ∈] arccos(1/4), arccos(−1/4)[, la serie converge assolutamente (quindi

anche semplicemente).
Rimangono i casi x = ± arccos(1/4). Per x = arccos(1/4), la serie diventa∑

n

n

n2 + 1
∼
∑
n

1

n
, divergente.

Essendo a termini di segno costante, convergenza semplice e assoluta coincidono (quindi non c’è alcun tipo
di convergenza). Infine, per x = arcsin(−1/4),∑

n

(−1)n
n

n2 + 1

che è una serie a termini di segno alternato. La convergenza assoluta ritorna al caso precedente (quindi
è esclusa). Per la convergenza semplice possiamo applicare il criterio di Leibniz. La convergenza a 0 è
evidente. Per la monotonia basta osservare

(n+ 1)

(n+ 1)2 + 1
=

1

n+ 1 + 1
n+1

≤ 1

n+ 1
n

=
n

n2 + 1

Dunque la serie converge semplicemente (ma non assolutamente) .

Esercizio facoltativo Sia {an} una successione tale che an > 0 e an+1

an
≥ n

n+1 per ogni n ∈ N. Si dimostri
che

∑∞
n=1 an diverge.

Svolgimento 1. Dall’ipotesi segue che (n+ 1)an+1 > nan, cioé (nan) è crescente: allora nan > a1 > 0,
da cui an > a1

n per ogni n > 1. Ma allora, la serie diverge per confronto con la serie armonica.

Equivalentemente:

Svolgimento 2. Basta osservare che, per ogni n ∈ N,

an+1 ≥
n

n+ 1
an ≥

n

n+ 1

n− 1

n
an−1 ≥ . . . ≥

n!

n+ 1!
a1 = a1

1

n+ 1
.

Dunque la serie maggiora la serie armonica, e dunque è convergente.

NB: con log si indica il logaritmo in base e.

Tempo a disposizione: 2 ore e 45 minuti.

Il candidato deve consegnare questo foglio assieme al foglio intestato. La brutta copia non va consegnata: viene corretto solo

ciò che è scritto sul foglio intestato. È vietato tenere con sé, anche spenti, telefoni e calcolatrici di qualsiasi tipo e usare libri e

appunti. Ogni affermazione deve essere adeguatamente giustificata. La parte facoltativa ha rilevanza solo per il voto finale, non

per l’ammissione all’orale.



ANALISI MATEMATICA 1
Area dell’Ingegneria dell’Informazione

Appello del 20.01.2020

TEMA 3
Esercizio 1 [7 punti] Si consideri la funzione

f(x) = sin
(
2 arctan(|x|5)

)
i) determinarne il dominio naturale D, il segno, eventuali simmetrie, i limiti agli estremi di D e gli

eventuali asintoti;

ii) studiarne la derivabilità, calcolarne la derivata, studiarne la monotonia, determinarne gli eventuali
punti di estremo relativo ed assoluto; non è richiesto lo studio della derivata seconda.

iii) abbozzarne il grafico qualitativo.

Svolgimento. i) Chiaramente D =] −∞,+∞[. Evidentemente f è pari, quindi basta limitarsi allo studio
su [0,+∞[. Poiché 2 arctan |x|5 ∈ [0, π[, f è sempre positiva ed inoltre f = 0 sse x = 0. Limiti: c’è un solo
limite interessante, limx→+∞ f(x) = sinπ = 0, da cui la retta y = 0 è asintoto orizzontale a +∞.

ii) Essendo f composizione di funzioni derivabili, eccetto per x = 0, risulta

f ′(x) = cos
(
2 arctan |x|5

) 10x4sgn x

1 + x10
, ∀x 6= 0.

Per x = 0 chiaramente f è continua e siccome

lim
x→0

f ′(x) = 0,

per il test di derivabilità si evince che ∃f ′(0) = 0. Per la monotonia, studiamo il segno di f ′: per x > 0,

f ′(x) > 0, ⇐⇒ cos
(
2 arctanx5

)
> 0, ⇐⇒ 2 arctanx5 6

π

2
, ⇐⇒ arctanx5 6

π

4
, ⇐⇒ x5 6 1,

cioè per x 6 1. Dunque f è crescente su [0, 1] e decrescente su [1,+∞[. Si deduce facilmente la monotonia
su D e che x = 0 è punto di minimo globale mentre x = ±1 sono massimi globali.
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Esercizio 2 [6 punti] Calcolare il limite

lim
x→0+

(
1− sinx

)xa
al variare di a ∈ R, usando la forma “exp{log . . . }”.

Svolgimento. Osserviamo che per x→ 0+ vale(
1− sinx

)xa
= exp {xa log(1− sinx)} = exp {xa log(1− x+ o(x))}
= exp {xa(−x+ o(x))} = exp

{
−xa+1 + o(xa+1)

}
Ne deduciamo

lim
x→0+

(
1− sinx

)xa
=


e0 = 1, se − 1 < a,
e−1 = 1/e, se a = −1,
0, se a < −1.

Esercizio 3 [4 punti] Trovare gli zeri in C di

(z3 + 3)(z2 + z + 2) = 0.

Svolgimento. Chiaramente

(z3 + 3)(z2 + z + 2) = 0, ⇐⇒ z3 = −3, ∨ z2 + z + 2 = 0.

Nel primo caso, si tratta di calcolare le radici terze di −3. Premesso che −3 = 3eiπ, per la formula di De
Moivre, z = ρeiθ è t.c.

z3 = −3, ⇐⇒


ρ3 = 3,

θ = π
3 + k 2π

3 , k = 0, 1, 2,
⇐⇒ z =

3
√

3

(
1

2
+ i

√
3

2

)
, − 3
√

3,
3
√

3

(
1

2
− i
√

3

2

)
.

Nel secondo caso,

z1,2 =
−1±

√
−7

2
=
−1± i

√
7

2
= −1

2
± i
√

7

2
.

Esercizio 4 [4+3 punti] Siano α ∈ R fissato e

fα(t) :=
e2t − 2et

(et − 1)α
.

i) Calcolare una primitiva di fα con α = 1.

ii) Determinare per quali α ∈ R esiste finito
∫ 1
0 fα(t) dt.

Svolgimento. i) Operando la sostituzione u = et (“du = etdt”) otteniamo∫
e2t−2et
et−1 dt =

∫
u2−2u
(u−1)

du
u =

∫
u−2
u−1 du =

∫ (
1− 1

u−1

)
du = u− log |u− 1| = et − log |et − 1|+ c.

ii) Considerato che fα ∈ C(]0, 1]), l’integrale
∫ 1
0 fα(t) dt è generalizzato in 0. Essendo fα ≤ 0 su ]0, 1],

possiamo applicare il test del confronto asintotico per stabilire la convergenza dell’integrale. Notiamo che

fα(t) ∼ − 1

(et − 1)α
∼ − 1

tα
per x→ 0+,



per cui esiste
∫ 1
0 fα sse esiste

∫ 1
0

1
tα dt, sse α < 1 come ben noto.

Esercizio 5 [6 punti] Studiare la convergenza semplice ed assoluta della serie

+∞∑
n=1

(4 sinx)nn

n2 + 2
√
n

al variare di x ∈ [−π
2 ,

π
2 ].

Svolgimento. Studiamo la condizione necessaria: per an := (4 sinx)nn
n2+2

√
n

, si ha lim an = 0 ⇐⇒ lim |an| = 0.

Osserviamo che vale

lim |an| = lim(4| sinx|)n n

n2 + 2
√
n

= lim(4| sinx|)n 1

n
=

{
+∞ se 4| sinx| > 1,
0 se 4| sinx| ≤ 1.

Quindi per 4| sinx| > 1, cioè x ∈ [−π/2,− arcsin(1/4)) ∪ (arcsin(1/4), π/2], la serie non può convergere né
semplicemente né assolutamente.

Studiamo la convergenza assoluta, cioè la convergenza della serie∑
n

|an| =
∑
n

n4n| sinx|n

n2 + 2
√
n
.

A tal fine, applichiamo il test della radice: poichè

lim |an|1/n = lim
n1/n4| sinx|

n2/n + 21/nn1/(2n)
= 4| sinx|, ∀x ∈ [−π/2, π/2]

(ricordiamo che n1/n −→ 1), abbiamo che, se | sinx| < 1, cioè x ∈ (− arcsin(1/4), arcsin(1/4)), la serie
converge assolutamente (quindi anche semplicemente).

Rimangono i casi sinx = ±1
4 , cioè x = ± arcsin(1/4). Per x = arcsin(1/4), la serie diventa∑

n

n

n2 + 2
√
n
∼
∑
n

1

n
, divergente.

Essendo a termini di segno costante, convergenza semplice e assoluta coincidono (quindi non c’è alcun tipo
di convergenza). Infine, per x = − arcsin(1/4),∑

n

(−1)n
n

n2 +
√
n
,

che è una serie a termini di segno alternato. La convergenza assoluta ritorna al caso precedente (quindi è
esclusa). Per la convergenza semplice possiamo applicare il test di Leibniz purché

n

n2 + 2
√
n
↘ 0.

La convergenza a 0 è evidente. Per la monotonia basta osservare

n

n2 + 2
√
n

=
1

n+ 1√
n

dove la funzione al denominatore è crescente. La serie converge semplicemente (ma non assolutamente)
per il test di Leibniz.

Esercizio facoltativo Sia {an} una successione tale che an > 0 e an+1

an
≥ n

n+1 per ogni n ∈ N. Si dimostri
che

∑∞
n=1 an diverge.



NB: con log si indica il logaritmo in base e.

Svolgimento. Dall’ipotesi segue che (n+ 1)an+1 > nan, cioé (nan) è crescente: allora nan > a1 > 0, da cui
an > a1

n per ogni n > 1. Ma allora, la serie diverge per confronto con la serie armonica.

Tempo a disposizione: 2 ore e 45 minuti.

Il candidato deve consegnare questo foglio assieme al foglio intestato. La brutta copia non va consegnata: viene corretto solo

ciò che è scritto sul foglio intestato. È vietato tenere con sé, anche spenti, telefoni e calcolatrici di qualsiasi tipo e usare libri e

appunti. Ogni affermazione deve essere adeguatamente giustificata. La parte facoltativa ha rilevanza solo per il voto finale, non

per l’ammissione all’orale.



ANALISI MATEMATICA 1
Area dell’Ingegneria dell’Informazione

Appello del 20.01.2020

TEMA 4

Esercizio 1 [7 punti] Si consideri la funzione

f(x) = 1− sin
(
2 arctan(|x|5)

)
i) determinarne il dominio naturale D, il segno, eventuali simmetrie, i limiti agli estremi di D e gli

eventuali asintoti;

ii) studiarne la derivabilità, calcolarne la derivata, studiarne la monotonia, determinarne gli eventuali
punti di estremo relativo ed assoluto; non è richiesto lo studio della derivata seconda.

iii) abbozzarne il grafico qualitativo.

Svolgimento

i) La funzione è definita su tutto R poiché lo sono le funzioni modulo, arcotangente e seno. Dunque
D = R.

La funzione è pari, infatti

f(−x) = 1− sin(2 arctan(| − x|5)) = 1− sin(2 arctan(|x|5)) = f(x),

dunque il grafico di f risulta simmetrico rispetto all’asse x = 0 (asse delle ordinate).

Vediamo i limiti agli estremi del dominio, cioè a ±∞. Essendo f pari si ha che

lim
x→−∞

f(x) = lim
x→+∞

f(x) = lim
x→+∞

1− sin(2 arctan(|x|5)) = 1− sin(π) = 1,

dunque la funzione ammette asintoti orizzontali a ±∞ di equazione y = 1.

Per quanto riguarda il segno, notiamo che 0 ≤ 2 arctan(|x|5) < π e dunque 0 ≤ sin(2 arctan(|x|5)) ≤
1 per ogni x ∈ R, per cui 0 ≤ 1 − sin(2 arctan(|x|5)) ≤ 1 (questo lo si poteva anche dedurre
immediatamente dal fatto che il seno assume sempre valori in [−1, 1] e quindi 0 ≤ 1 − sin(...) ≤
1). Inoltre 1 − sin(2 arctan(|x|5)) = 0 se e solo se sin(2 arctan(|x|5)) = 1, cioè 2 arctan(|x|5) = π

2 .
L’equazione arctan(|x|5) = π

4 è soddisfatta per |x|5 = 1, cioè per x = ±1. La funzione è dunque
sempre strettamente positiva su R \ {−1, 1} e si annulla per x = −1 e per x = 1.

ii) La funzione C0(R) poiché composizione di funzioni continue su R. Inoltre è sicuramente C1(R\{0})
poich composizione di funzioni C1(R \ {0}) (in particolare compare |x| che è C1(R \ {0})). La
derivabilità in x = 0 non è comunque esclusa a priori e va verificata. Calcoliamo prima la derivata
su (−∞, 0) ∪ (0,+∞):

f ′(x) =

{
−10 cos(2 arctan(x5))x4

1+x10
, x ∈ (0,+∞),

10 cos(2 arctan(−x5))x4
1+x10

, x ∈ (−∞, 0),

Vediamo immediatamente che limx→0+ f
′(x) = 0 e dunque f ′+(0) = 0 (esiste la derivata destra in

x = 0 e vale 0), e limx→0− f
′(x) = 0 e dunque f ′−(0) = 0 (esiste la derivata sinistra in x = 0 e vale



0). Inoltre f è continua in x = 0, per cui f è derivabile in x = 0 e f ′(0) = 0 ed f ′(x) è continua in
x = 0. Concludiamo che f ∈ C1(R).

Studiamo il segno della derivata su (0,+∞) e quindi la monotonia di f su [0,+∞). Per parità dedur-
remo il comportamento di f anche su (−∞, 0]. Notiamo che per x ∈ (0,+∞), 0 < 2 arctan(x5) < π.
In particolare cos(2 arctan(x5)) > 0 se 0 < 2 arctan(x5) < π

2 , cioè se 0 < arctan(x5) < π
4 , ovvero

0 < x < 1. Siccome su (0,+∞)

f ′(x) = −10 cos(2 arctan(x5))x4

1 + x10
,

concludiamo che f ′(x) > 0 su (1,+∞), f ′(x) < 0 su (0, 1) e f ′(x) = 0 per x = 1. Quindi f è
strettamente crescente su [1,+∞) e strettamente descrescente su [0, 1]. Per parità di f (o studiando
f ′ su (−∞, 0)) deduciamo che f ′(x) < 0 su (−∞, 1), f ′(x) > 0 su (−1, 0) ed f ′(x) = 0 per x = −1.
Dunque f è strettamente decrescente su (−∞,−1] e strettamente crescente su [−1, 0]. Inoltre si ha
pure f ′(0) = 0. Dunque ci sono tre punti stazionari per f : x = −1, x = 0 e x = 1. In particolare
x = ±1 sono punti di minimo relativo stretto, mentre x = 0 è un punto di massimo relativo stretto.
Questi sono anche punti di massimo e minimo assoluti: infatti f(1) = f(−1) = 1 − sin

(
π
2

)
= 0,

mentre f(0) = 1− sin(0) = 1, e per come è definita f si ha che 0 ≤ f(x) ≤ 1 per ogni x ∈ R.

iii) Il grafico di f è il seguente

-2 -1 1 2

-0.5

0.5

1.0

1.5

Esercizio 2 [6 punti] Calcolare il limite

lim
x→0+

(
1 + sinhx

)xa
al variare di a ∈ R, usando la forma “exp{log . . . }”.
Svolgimento. Scriviamo

(1 + sinh(x))x
a

= ex
a log(1+sinh(x)).



Siccome sinh(x) = x+ o(x) per x→ 0, possiamo scrivere

log(1 + sinh(x)) = log(1 + x+ o(x)) = x+ o(x)

per x→ 0, dove abbiamo anche usato lo sviluppo log(1 + y) = y + o(y) per y → 0, e le regole sull’algebra
degli o piccoli. Calcoliamo allora

lim
x→0+

xa log(1 + sinh(x)) = lim
x→0+

xa+1 + o(xa+1) = lim
x→0+

xa+1

(
1 +

o(xa+1)

xa+1

)
=


0 , a > −1,

1 , a = −1,

+∞ , a < −1.

Dunque in tutti e tre i casi il limite esiste, e quindi possiamo scrivere

lim
x→0+

(
1 + sinhx

)xa
= lim

x→0+
ex

a log(1+sinh(x)) = elimx→0+ xa log(1+sinh(x)) =


1 , a > −1,

e , a = −1,

+∞ , a < −1.

Esercizio 3 [4 punti] Trovare gli zeri in C di

(z2 − z + 2)(z3 + 2) = 0.

Svolgimento. Il polinomio di grado 5 ammette esattamente 5 radici in C contate con la propria molteplicità.
Il polinomio è già fattorizzato, dunque è sufficiente cercare i tre zeri complessi di z3 + 2 = 0 e i due zeri
complessi di z2 − z + 2 = 0.

I tre zeri di z3 + 2 = 0 sono le tre radici cubiche di −2. Se scriviamo z = |z|eiθ, dobbiamo risolvere

|z|3e3iθ = −2 = 2eiπ,

ovvero |z|3 = 2, cioè |z| = 3
√

2, e

3θ = π + 2kπ , k ∈ Z ⇐⇒ θ =
π

3
+

2kπ

3
, k ∈ Z.

È sufficiente considerare k = 0, 1, 2, e dunque θ0 = π
3 (per k = 0), θ1 = π (per k = 1), θ2 = 5π

3 (per k = 2).
I tre zeri di z3 + 2 = 0 sono dunque

z0 =
3
√

2ei
π
3 =

3
√

2

(
1

2
+

√
3

2
i

)
z1 =

3
√

2eiπ = − 3
√

2

z2 =
3
√

2ei
5π
3 =

3
√

2

(
1

2
−
√

3

2
i

)
.

Risolviamo ora z2 − z + 2 = 0. Dalla formula risolutiva abbiamo

z3/4 =
1±
√
−7

2
=

1

2
± i
√

7

2
.

Esercizio 4 [4+3 punti] Siano α ∈ R fissato e

fα(t) :=
e2t + 3et

(et − 1)α
.



i) Calcolare una primitiva di fα con α = 1.

ii) Determinare per quali α ∈ R esiste finito
∫ 1
0 fα(t) dt.

Svolgimento.

i) Calcoliamo l’integrale indefinito ∫
e2t + 3et

et − 1
dt,

ovvero l’insieme di tutte le primitive. Con il cambio di variabile y = et abbiamo∫
e2t + 3et

et − 1
dt =

∫
et + 3

et − 1
· etdt =

∫
y + 3

y − 1
dy|y=et .

Osserviamo che
y + 3

y − 1
=
y − 1 + 4

y − 1
= 1 +

4

y − 1
.

Dunque∫
e2t + 3et

et − 1
dt =

∫
1 +

4

y − 1
dy|y=et = y + 4 log(|y − 1|) + C|y=et = et + 4 log(|et − 1|) + C.

ii) Notiamo che fα(t) > 0 su (0, 1] per ogni α ∈ R. L’unico punto di integrazione impropria è (evenual-
mente, a seconda di α) t = 0. Inoltre

fα(t) =
e2t + 3et

(et − 1)α
∼ 4

tα

per t→ 0+, infatti abbiamo usato il fatto che et = 1 + t+o(t) per t→ 0 (o, se si preferisce, et ∼ 1 + t
per t→ 0). Per il criterio del confronto asintotico possiamo dire che

∫ 1
0 fα(t)dt ha lo stesso carattere

dell’integrale improprio ∫ 1

0

4

tα
dt.

Quest’ultimo integrale converge se e solo se α < 1, e diverge a +∞ altrimenti.

Esercizio 5 [6 punti] Studiare la convergenza semplice ed assoluta della serie

+∞∑
n=1

(3 cosx)nn

n2 + 2

al variare di x ∈ [0, π].
Svolgimento. Notiamo innanzitutto che se |3 cos(x)| > 1, allora il termine n-esimo della serie non è
infinitesimo (per la gerarchia degli infiniti: il termine n-esimo è dato da un’esponenziale di base in modulo
strettamente maggiore di 1 moltiplicato per delle potenze), per cui la serie non converge sicuramente (la
condizione necessaria è violata). Esplicitiamo la condizione |3 cos(x)| > 1 su [0, π]:

|3 cos(x)| > 1 ⇐⇒ cos(x) >
1

3
oppure cos(x) < −1

3
⇐⇒ x ∈

[
0, arccos

(
1

3

))
∪
(

arccos

(
−1

3

)
, π

]
.

Per tali valori di x la serie non soddisfa la condizione necessaria per cui non converge. In particolare diverge
a +∞ se x ∈

[
0, arccos

(
1
3

))
, poiché è a termini positivi.



Consideriamo ora x ∈
[
arccos

(
1
3

)
, arccos

(
−1

3

)]
. In questo caso |3 cos(x)| ≤ 1 ed il termine n-esimo

della serie è infinitesimo. Studiamo prima la convergenza assoluta, cioè la convergenza della serie

+∞∑
n=1

|3 cosx|nn
n2 + 2

.

Utilizziamo il criterio della radice e calcoliamo

lim
n→+∞

n

√
|3 cosx|nn
n2 + 2

= |3 cos(x)|.

Se |3 cos(x)| < 1, la serie converge assolutamente e quindi semplicemente. Se |3 cos(x)| = 1 il criterio della
radice non dà informazioni. Studiamo la convergenza assoluta per |3 cos(x)| = 1, ovvero la convergenza
della serie

+∞∑
n=1

n

n2 + 2
.

Notiamo che la serie è a termini positivi e che

n

n2 + 2
∼ 1

n

per n→ +∞. Dunque la serie ha lo stesso carattere della serie armonica
∑∞

n=1
1
n e quindi diverge a +∞.

Dunque non abbiamo convergenza assoluta per |3 cos(x)| = 1, ma divergenza assoluta a +∞.
Resta da verificare la convergenza semplice della serie per |3 cos(x)| = 1, cioè la convergenza della serie

per 3 cos(x) = ±1, ovvero per x = arccos
(
1
3

)
o x = arccos

(
−1

3

)
. Nel caso x = arccos

(
1
3

)
, cioè 3 cos(x) = 1,

la serie di partenza diventa
+∞∑
n=1

n

n2 + 2
,

che diverge a +∞ (già visto). Per x = arccos
(
−1

3

)
, cioè per 3 cos(x) = −1, la serie di partenza diventa

+∞∑
n=1

(−1)n
n

n2 + 2
,

ovvero una serie a termini di segno alterno. Verifichiamo le ipotesi del criterio di Leibniz. La successione
an = n

n2+2
è sicuramente positiva e infinitesima. Proviamo che è decrescente, ovvero proviamo che per ogni

n ∈ N, n ≥ 1

n+ 1

(n+ 1)2 + 2
≤ n

n2 + 2
⇐⇒ (n+ 1)(n2 + 2) ≤ n((n+ 1)2 + 2)

⇐⇒ n3 + n2 + 2n+ 2 ≤ n3 + 2n2 + 3n ⇐⇒ n2 + n− 2 ≥ 0.

Quest’ultima disuguaglianza è verificata per ogni n ∈ N, n ≥ 1. Dunque per Leibniz abbiamo convergenza
della serie per x = arccos

(
−1

3

)
.

In conclusione abbiamo

• Convergenza assoluta per x ∈
(
arccos

(
1
3

)
, arccos

(
−1

3

))
.

• Convergenza semplice per x ∈
(
arccos

(
1
3

)
, arccos

(
−1

3

)]
.

• Divergenza assoluta per x ∈
[
0, arccos

(
1
3

)]
∪
[
arccos

(
−1

3

)
, π
]
.



Esercizio facoltativo Sia {an} una successione tale che an > 0 e an+1

an
≥ n

n+1 per ogni n ∈ N. Si dimostri
che

∑∞
n=1 an diverge.

Svolgimento. Utilizzando ricorsivamente l’informazione an+1

an
≥ n

n+1 , che può essere riscritta come an+1 ≥
n
n+1an, notiamo che

an+1 ≥
n

n+ 1
an ≥

n

n+ 1
· n− 1

n
an−1 ≥

n

n+ 1
· n− 1

n
· · · 2

3
· 1

2
a1 =

1

n+ 1
a1

per ogni n ∈ N, e dunque an ≥ a1
n . Per cui

∞∑
n=1

an ≥ a1
∞∑
n=1

1

n
.

La serie, che è a termini positivi, diverge a +∞ per il criterio del confronto, essendo minorata dalla serie
armonica (a meno di una costante moltiplicativa strettamente positivia), che diverge a +∞.

NB: con log si indica il logaritmo in base e.

Tempo a disposizione: 2 ore e 45 minuti.

Il candidato deve consegnare questo foglio assieme al foglio intestato. La brutta copia non va consegnata: viene corretto solo

ciò che è scritto sul foglio intestato. È vietato tenere con sé, anche spenti, telefoni e calcolatrici di qualsiasi tipo e usare libri e

appunti. Ogni affermazione deve essere adeguatamente giustificata. La parte facoltativa ha rilevanza solo per il voto finale, non

per l’ammissione all’orale.


