ANALISI MATEMATICA 1

Area dell’Ingegneria dell’Informazione

Appello del 20.01.2020

TEMA 1

Esercizio 1 [7 punti] Si consideri la funzione
f(x) =sin (2 arctan(\w|3))

i) determinarne il dominio naturale D, il segno, eventuali simmetrie, i limiti agli estremi di D e gli
eventuali asintoti;

ii) studiarne la derivabilita, calcolarne la derivata, studiarne la monotonia, determinarne gli eventuali
punti di estremo relativo ed assoluto; non e richiesto lo studio della derivata seconda.

iii) abbozzarne il grafico qualitativo.

Svolgimento. i) Chiaramente D =] — 0o, 4o00[. Evidentemente f & pari, quindi basta limitarsi allo studio
su [0, +oo|. Poiché 2arctan |z|> € [0, 7[, f & sempre positiva ed inoltre f = 0 sse = 0. Limiti: c¢’® un solo
limite interessante, lim,_, 1o f(x) = sinm = 0, da cui la retta y = 0 & asintoto orizzontale a +oc.

ii) Essendo f composizione di funzioni derivabili, eccetto per x = 0, risulta

6x2sgn
"(z) = 2 arct = v 0.
f'(x) = cos (2arctan |z|”) TG 26 x #
Per x = 0 chiaramente f ¢ continua e siccome
lim f'(z) =0,

z—0

per il test di derivabilita si evince che 3f'(0) = 0. Per la monotonia, studiamo il segno di f’: per x > 0,
T T
fl(x) >0, <= cos (2 arctanx?’) >0, <= 2arctana® < 5 < arctanz® < T — 23«1,

cioe per < 1. Dunque f ¢ crescente su [0, 1] e decrescente su [1, +o00[. Si deduce facilmente la monotonia
su D e che x = 0 ¢ punto di minimo globale mentre x = £1 sono massimi globali.

1.5




Esercizio 2 [6 punti] Calcolare il limite
lim (1 + sin ac)za

z—0t

al variare di a € R, usando la forma “exp{log...}”".

Svolgimento. Per x — 0+, 1 + sinz — 1 mentre

0, se a > 0,
¢ — {1, se a =0,
400, sea <0.

(1 Sin $) = 6$ ng(l Slnx)

ricordato che log(1 + t) = t1; e che sinz = x1, abbiamo

=1, se —1<a<0,
. a a o3 . a+1
(1 +sing)™ = smele — 2" le 3 0 ol — ¢ se a = —1,
et™® =400, sea< —1.

Esercizio 3 [4 punti] Trovare gli zeri in C di

(22 +5)(224+2z+1)=0.

Svolgimento. Chiaramente
(22 4+5)(224+24+1)=0, < 23=-5 V224+2+1=0.

Nel primo caso, si tratta di calcolare le radici terze di —5. Premesso che —5 = 5u(m) (u(f) = cos@+isinf),
per la formula di De Moivre, z = pu(f) & t.c.

3
p° =9,
1 3 1 3
23:_57 <~ — 22\3/5(24‘@\;),_\3/5,\3/5(2—2\;)
0=2+k%, k=0,1,2,

Nel secondo caso,

~1+v=-3 —-1+iV/3 1
212 = 5 = 5 = 5 +1

J4

Esercizio 4 [443 punti] Siano « € R fissato e

€2t 4 2¢t

fa(t) == CECh

i) Calcolare una primitiva di f, con o = 1.

ii) Determinare per quali o € R esiste finito fol fal(t) dt.



Svolgimento. i) Abbiamo che

2t 4 et u=et, t=log u, dt=du/u 2 90 du 42 . 3
feetfle dt - f%ufl)u#_f%du_f 1+ 377) du

=u+ 3log|u— 1| = e! + 3log|e’ —1].

ii) Considerato che f, € C(]0,1]), l'integrale fol fa(t) dt & generalizzato in 0. Essendo f, > 0 su |0, 1],
possiamo applicare il test del confronto asintotico per stabilire la convergenza dell’integrale. Notiamo che

3 3¢ 3
Jalt) (et — 1)~ (t1)e % o

per cui esiste fol fa sse esiste fol t% dt, sse a < 1 come ben noto.
Esercizio 5 [6 punti] Studiare la convergenza semplice ed assoluta della serie
Ji:.o (3sinx)™n
2
— o+t vn
s

al variare di z € [-F, T].

Svolgimento. Studiamo la convergenza assoluta, cioe la convergenza della serie
an| = E _—.
2
n n
m - +vn

A tal fine, applichiamo il test della radice: essendo

1/n3 ;
‘an‘l/n — w — 3’Si1’1$‘, Va € [_7T/2,7T/2]7
n2/n1n

(ricordiamo che n'/» — 1) abbiamo che:

e se 3|sinz| < 1 (ciot [sinz| < § ovvero, essendo = € [—7/2,7/2], sse x €] — arcsin 1/3, arcsin 1/3[), la
serie converge assolutamente (quindi anche semplicemente);

e se 3|sinz| > 1 (cioe per [—m/2,7/2]\[— arcsin 1/3, arcsin 1/3]), la serie diverge assolutamente e poiché
il test dice in questo caso che |a,| — +00, la condizione necessaria di convergenza non & verificata,
per cui la serie non converge nemmeno semplicemente.

Rimangono i casi sinx = :I:%, nei quali il test precedente fallisce. Per sinx = 1/3, la serie diventa
Z QL ~ Z 1, divergente.
—n’+\n  “—n

Essendo a termini di segno costante, convergenza semplice e assoluta coincidono (quindi non c¢’¢ alcun tipo
di convergenza). Infine, per sinz = —1/3,

Z(—n”nzf—\/ﬁ,

che ¢ una serie a termini di segno alternato. La convergenza assoluta ritorna al caso precedente (quindi &
esclusa). Per la convergenza semplice possiamo applicare il test di Leibniz purché

n

ey AN



La convergenza a 0 ¢ evidente. Per la monotonia possiamo procedere direttamente oppure introdurre la

. I .
funzione ausiliaria f(z) := = 7 ed osservare che

R VE—a@rtgly) 2
fi(z) = (2 + /7)? = (22 + z)2"

Siccome f' < 0 sse —x2 + 1/z/2 < 0 ovvero z3/2 > 3, in particolare per n > 1 si ha f(n) \, da cui la

conclusione: la serie converge semplicemente (ma non assolutamente) per il test di Leibniz.

Esercizio facoltativo Sia {a,} una successione tale che a,, > 0 e az“ > nLH per ogni n € N. Si dimostri
n
che >>>° , a, diverge.

Svolgimento. Dall’ipotesi segue che (n+ 1)an+1 = nay, cioé (nay) € crescente: allora na, > a; > 0, da cui
an = 5+ per ogni n > 1. Ma allora, la serie diverge per confronto con la serie armonica.

NB: con log si indica il logaritmo in base e.

Tempo a disposizione: 2 ore e 45 minuti.

Il candidato deve consegnare questo foglio assieme al foglio intestato. La brutta copia non va consegnata: viene corretto solo
cio che e scritto sul foglio intestato. E vietato tenere con sé, anche spenti, telefoni e calcolatrici di qualsiasi tipo e usare libri e
appunti. Ogni affermazione deve essere adeguatamente giustificata. La parte facoltativa ha rilevanza solo per il voto finale, non

per 'ammissione all’orale.



ANALISI MATEMATICA 1

Area dell’Ingegneria dell’Informazione

Appello del 20.01.2020

TEMA 2

Esercizio 1 [7 punti] Si consideri la funzione
f(z) =1 —sin (2arctan(|z[*))

i) determinarne il dominio naturale D, il segno, eventuali simmetrie, i limiti agli estremi di D e gli
eventuali asintoti;

ii) studiarne la derivabilita, calcolarne la derivata, studiarne la monotonia, determinarne gli eventuali
punti di estremo relativo ed assoluto; non e richiesto lo studio della derivata seconda.

iii) abbozzarne il grafico qualitativo.

Svolgimento.

i)
Dominio. Chiaramente D =] — 0o, +00].
Segno. Poiché —1 <siny < 1 per ogni ¢ € R, si ha

0< f(x) <2.
Inoltre

f(z) =0 <= 1—sin (2arctan(|z[*)) =0 <= 2arctan(|z|*) = T — 2P =1 <= z==+1.

2

In particolare, i punti x = £1 sono punti di minimo assoluto.
Simmetrie. Evidentemente f & pari, quindi basta limitare al studio al sottodominio [0, +o0].
Limiti e asintoti.

lim f(z)=1-—sinm =0, per simmetria = lim f(z) =0,
T——+00 T——00

per cui la retta y = 0 ¢ asintoto orizzontale a £oo.
i)
Derivabilita.
Essendo f composizione di funzioni derivabili in D\{0}, risulta

6x%sgn x

f'(z) = — cos (2 arctan |:c|3) T 2

, Vo # 0.

Per z = 0 chiaramente f € continua e siccome

lim f'(z) =0,

z—0

per il test di derivabilita si evince che f & derivabile per z =0 e

7'(0) =o0.



Monotonia. Studiamo il segno di f’: per z > 0,
T T
fl(x) >0, <= cos (2 arctanx3) <0, <= 2arctanz® > 5 < arctanz® > 1 — 2*>1,

cioe per > 1. Dunque f & decrescente su [0, 1] e crescente su [1, +o00[. Si deduce facilmente la monotonia
su D e che x = 0 e punto di massimo globale mentre, come gia osservato, x = £1 sono minimi globali.

1.5

Esercizio 2 [6 punti] Calcolare il limite
lim (1 — sinh :U) v
z—0t

al variare di a € R, usando la forma “exp{log...}”.

Svolgimento. Osserviamo che per x — 0 vale

a

(1 — ginh x)m _ 61‘“ log(1—sinhz) _ ea:“ log(1—z+o(z))
_ el‘a(—x+0($)) _ e_anrl_i_o(anrl)

Ne deduciamo che

limeY =1 sea+1>0 << —-1<a,
y—0
lim (1_Sinh$)xa: lim e =1/e sea+1=0 <= a=—1,
z—0t y——1
lim /=0 sea+1<0 < a<-—1.
Yy——00

Esercizio 3 [4 punti] Trovare gli zeri in C di
(22 —z+1)(2+4)=0.

Svolgimento. Per il teorema fondamentale dell’ algebra, le radici, contate con la propria molteplicita sono
cinque. Chiaramente

(2243)(22—241)=0, <= 22=-4, V(Z2—2z+1)=0.



Nel primo caso, si tratta di calcolare le tre radici terze, 21, 22, 23 ,di —4. Premesso che —3 = 3e'™, per la
formula di De Moivre, z = pe® & t.c.

— 212\741(14—2'\/5), 2 = —V/4, 232\71(1—2'\@).

Nel secondo caso, con la formula risolvente per le equazioni di secondo grado si ottiene

1++v/=-3 1+iV3 1i,\/§

ST T T Ty TaTer

Esercizio 4 [443 punti] Siano a € R fissato e

i) Calcolare una primitiva di f, con a = 1.

ii) Determinare per quali o € R esiste finito fol fa(t) dt.

t 1
Svolgimento. i) Operando la sostituzione u = ¢! ( = t =logu =— s —) otteniamo
u

feitf_gft dt = [ & o= i’“ﬁ‘ = du—f(l——) du=u—2loglu— 1| +c=¢et —2log|e! — 1] + c.
ii) Considerato che f, € C(]0,1]), l'integrale fol fa(t) dt & generalizzato in 0. Essendo f, < 0 su |0, 1],
possiamo applicare il test del confronto asintotico a — f, per stabilire la convergenza dell’integrale. Notiamo

che
1 1

—fa(t) ~ CE T

per t— 0T,

- 1 . 1
per cui esiste fo fa se e solo se esiste fo t% dt, se e solo se a < 1, come ben noto.

Esercizio 5 [6 punti] Studiare la convergenza semplice ed assoluta della serie

JFZ (4cosz)”
211

— n°+ 1

al variare di z € [0, 7].

(4cosz)™n

Svolgimento. Studiamo la condizione necessaria: per a, := si ha lima, =0 <= lim|a,| = 0.

T
Osserviamo che vale
) . (4| cosz|")n 1 n? +oo  se 4|cosz| > 1,
lim |a,| = hmn27+1 = hm(4|cosx]) Zr1-0) 0 se 4] cos | < 1.

Quindi per 4|cosz| > 1, cioe x € [0,arccos(1/4)) U (arccos(—1/4), 7], la serie non pud convergere né
semplicemente né assolutamente.
Studiamo la convergenza assoluta, cioe la convergenza della serie

(4] cos z|)™n



A tal fine, applichiamo il test del rapporto: poiché

annl o (leosa)™ (n+ (0 + 1)

1 = _4
1m ’an| 1m n({n+ 1}2 + 1)(4|COSCC|)” |COSCU‘), \V/IIJ' e [0,7‘(’]7

abbiamo che, se |cosz| < %, ciod = €] arccos(1/4), arccos(—1/4)], la serie converge assolutamente (quindi
anche semplicemente).
Rimangono i casi x = +arccos(1/4). Per z = arccos(1/4), la serie diventa

n 1 .
Z PR zn: = divergente.

n

Essendo a termini di segno costante, convergenza semplice e assoluta coincidono (quindi non ¢’¢ alcun tipo
di convergenza). Infine, per x = arcsin(—1/4),

2V

che ¢ una serie a termini di segno alternato. La convergenza assoluta ritorna al caso precedente (quindi
¢ esclusa). Per la convergenza semplice possiamo applicare il criterio di Leibniz. La convergenza a 0 &
evidente. Per la monotonia basta osservare

(n+1) 1 < 1 n

(n+12+1 n+l+. 4 “nrl n2+l

Dunque la serie converge semplicemente (ma non assolutamente) .

Esercizio facoltativo Sia {a,} una successione tale che a, > 0 e “2* > _1s per ogni n € N. Si dimostri
che Y 07 | a, diverge.

Svolgimento 1. Dall’ipotesi segue che (n + 1)an41 = nay, cioé (na,) € crescente: allora na, > a; > 0,
da cui a, > 7+ per ogni n > 1. Ma allora, la serie diverge per confronto con la serie armonica.

Equivalentemente:

Svolgimento 2. Basta osservare che, per ogni n € N,

n n n-—1 n! 1

> > —a = .
n+1an_n+1 n An—1 = _n—}—l!al a1n+1

Ont1 2
Dunque la serie maggiora la serie armonica, e dunque & convergente.

NB: con log si indica il logaritmo in base e.

Tempo a disposizione: 2 ore e 45 minuti.

Il candidato deve consegnare questo foglio assieme al foglio intestato. La brutta copia non va consegnata: viene corretto solo
cio che e scritto sul foglio intestato. E vietato tenere con sé, anche spenti, telefoni e calcolatrici di qualsiasi tipo e usare libri e
appunti. Ogni affermazione deve essere adeguatamente giustificata. La parte facoltativa ha rilevanza solo per il voto finale, non

per 'ammissione all’orale.



ANALISI MATEMATICA 1

Area dell’Ingegneria dell’Informazione

Appello del 20.01.2020

TEMA 3

Esercizio 1 [7 punti] Si consideri la funzione
f(x) =sin (2 arctan(\w|5))

i) determinarne il dominio naturale D, il segno, eventuali simmetrie, i limiti agli estremi di D e gli
eventuali asintoti;

ii) studiarne la derivabilita, calcolarne la derivata, studiarne la monotonia, determinarne gli eventuali
punti di estremo relativo ed assoluto; non e richiesto lo studio della derivata seconda.

iii) abbozzarne il grafico qualitativo.

Svolgimento. i) Chiaramente D =] — 0o, 4o00[. Evidentemente f & pari, quindi basta limitarsi allo studio
su [0, +oo|. Poiché 2arctan |z|®> € [0, 7[, f & sempre positiva ed inoltre f = 0 sse = 0. Limiti: c¢’® un solo
limite interessante, lim,_, 1o f(x) = sinm = 0, da cui la retta y = 0 & asintoto orizzontale a +oc.

ii) Essendo f composizione di funzioni derivabili, eccetto per x = 0, risulta

10z
f'(z) = cos (2arctan \x|5) %, Va # 0.
Per x = 0 chiaramente f ¢ continua e siccome
lim f'(z) =0,

z—0

per il test di derivabilita si evince che 3f'(0) = 0. Per la monotonia, studiamo il segno di f’: per x > 0,
T T
fl(x) >0, <= cos (2 arctanx5) >0, <= 2arctana’® < 5 < arctanz® < T — 2’ <1,

cioe per < 1. Dunque f ¢ crescente su [0, 1] e decrescente su [1, +o00[. Si deduce facilmente la monotonia
su D e che x = 0 ¢ punto di minimo globale mentre x = £1 sono massimi globali.

1.5




Esercizio 2 [6 punti] Calcolare il limite
lim (1 — sin ac)za
z—0t

al variare di a € R, usando la forma “exp{log...}”.

Svolgimento. Osserviamo che per x — 07 vale

a

(1-sinz)® = exp{a®log(l—sinz)} = exp{z*log(l — z + o(z))}
= exp{z%(—x +o(x))} = exp {—2*T! + o(z**1)}

Ne deduciamo

. e =1, se —1<a,
lim+ (1 - sinx)x =S el=1/e, sea=—1,
e=0 0, se a < —1.

Esercizio 3 [4 punti] Trovare gli zeri in C di
(22 +3)(2* +2+2) =0.
Svolgimento. Chiaramente
(B +3)(2+2+2) =0, «— 222=-3 vL2+2z+2=0.

Nel primo caso, si tratta di calcolare le radici terze di —3. Premesso che —3 = 3¢'™, per la formula di De
Moivre, z = pe’? ¢ t.c.

3
p° =3,
1 3 1 3
P=-3 = — z=€’/§<2+i\2f>,—3/§,€’/§<2—z’\2f>.
0=2+k%, k=0,1,2,

Nel secondo caso,

—1+v/=7 —14iV7T 1 V7

- LAY
12 2 2 27"

Esercizio 4 [4+3 punti] Siano a € R fissato e

et — 9¢t

fa(t) := (@~ 1o

i) Calcolare una primitiva di f, con o = 1.

ii) Determinare per quali « € R esiste finito fol fal(t) dt.

Swvolgimento. i) Operando la sostituzione u = €' (“du = e'dt”) otteniamo

2t _ 2_ —
fe;_%et dt:fi%u_%i%“ =[2qu=| (1— ﬁ) du=u—log|lu—1] =e' —logle! — 1| +c.
ii) Considerato che f, € C(]0,1]), l'integrale fol fa(t) dt & generalizzato in 0. Essendo f, < 0 su |0, 1],
possiamo applicare il test del confronto asintotico per stabilire la convergenza dell’integrale. Notiamo che

1 1

—_— ~ — er — 0+,
(et _ 1)a to p x

foz(t) ~ -



per cui esiste fol fa sse esiste fol t% dt, sse a < 1 come ben noto.
Esercizio 5 [6 punti] Studiare la convergenza semplice ed assoluta della serie
Ji:” (4sinzx)™n
2
= n?+ 2y/n
al variare di z € [-F, §].

(4sinz)™n

Svolgimento. Studiamo la condizione necessaria: per a, := Zran

si ha lima, =0 <= limla,| = 0.
Osserviamo che vale

+oo  se 4|sinz| > 1,

. S . n
lim |a,| = lim(4] sin z|) 0 se 4|sinz| < 1.

n . . 1
m = hm(4| Slnx‘)nﬁ = {

Quindi per 4|sinz| > 1, cio¢ z € [—7/2, —arcsin(1/4)) U (arcsin(1/4), 7 /2], la serie non pud convergere né
semplicemente né assolutamente.
Studiamo la convergenza assoluta, cioe la convergenza della serie

nd"™| sin z|"
2ol =2 o
A tal fine, applichiamo il test della radice: poiche
n'/"4|sin z|
n2/n + 21/np1/(2n

lim |a,|"/™ = lim ) =4|sinz|, Vo € [-7/2,7/2]

(ricordiamo che n'/™ — 1), abbiamo che, se |sinz| < 1, cio¢ # € (— arcsin(1/4),arcsin(1/4)), la serie
converge assolutamente (quindi anche semplicemente).
Rimangono i casi sinz = 1, ciot z = +arcsin(1/4). Per z = arcsin(1/4), la serie diventa

n 1
—_—~ —, divergente.
Z 2 Z 4 g
—n?+2y/n  “n

Essendo a termini di segno costante, convergenza semplice e assoluta coincidono (quindi non c¢’¢ alcun tipo
di convergenza). Infine, per z = — arcsin(1/4),

SN

che ¢ una serie a termini di segno alternato. La convergenza assoluta ritorna al caso precedente (quindi ¢
esclusa). Per la convergenza semplice possiamo applicare il test di Leibniz purché

n
—— 0.
n?+2y/n

La convergenza a 0 ¢ evidente. Per la monotonia basta osservare

n 1

n2+2\/ﬁ_n+ﬁ

dove la funzione al denominatore & crescente. La serie converge semplicemente (ma non assolutamente)
per il test di Leibniz.

Esercizio facoltativo Sia {a,} una successione tale che a, >0 e “* > 1o per ogni n € N. Si dimostri
che Y7 | a, diverge.



NB: con log si indica il logaritmo in base e.

Svolgimento. Dall'ipotesi segue che (n+ 1)an+1 = nay, cioé (nay) € crescente: allora na, > a; > 0, da cui
an, = 7+ per ogni n > 1. Ma allora, la serie diverge per confronto con la serie armonica.

Tempo a disposizione: 2 ore e 45 minuti.

Il candidato deve consegnare questo foglio assieme al foglio intestato. La brutta copia non va consegnata: viene corretto solo
cio che e scritto sul foglio intestato. E vietato tenere con sé, anche spenti, telefoni e calcolatrici di qualsiasi tipo e usare libri e
appunti. Ogni affermazione deve essere adeguatamente giustificata. La parte facoltativa ha rilevanza solo per il voto finale, non

per 'ammissione all’orale.



ANALISI MATEMATICA 1

Area dell’Ingegneria dell’Informazione

Appello del 20.01.2020

TEMA 4

Esercizio 1 [7 punti] Si consideri la funzione

ii)

iii)

f(z) =1—sin (2 arctan(]:v|5))

determinarne il dominio naturale D, il segno, eventuali simmetrie, i limiti agli estremi di D e gli
eventuali asintoti;

studiarne la derivabilita, calcolarne la derivata, studiarne la monotonia, determinarne gli eventuali
punti di estremo relativo ed assoluto; non e richiesto lo studio della derivata seconda.

abbozzarne il grafico qualitativo.

Svolgimento

i)

i)

La funzione & definita su tutto R poiché lo sono le funzioni modulo, arcotangente e seno. Dunque
D =R.

La funzione & pari, infatti
f(=z) =1 —sin(2arctan(] — z|°)) = 1 — sin(2arctan(|z|*)) = f(z),

dunque il grafico di f risulta simmetrico rispetto all’asse 2 = 0 (asse delle ordinate).

Vediamo i limiti agli estremi del dominio, cioe a +o00. Essendo f pari si ha che

lim f(z)= lim f(z)= lim 1 —sin(2arctan(|z|’)) =1 —sin(7) =1,

T——00 T—>+00 T—r400

dunque la funzione ammette asintoti orizzontali a +co di equazione y = 1.

Per quanto riguarda il segno, notiamo che 0 < 2arctan(|z|?) < 7 e dunque 0 < sin(2 arctan(|z|?)) <
1 per ogni € R, per cui 0 < 1 — sin(2arctan(|z|>)) < 1 (questo lo si poteva anche dedurre
immediatamente dal fatto che il seno assume sempre valori in [—1,1] e quindi 0 < 1 —sin(...) <
1). Inoltre 1 — sin(2arctan(|z|”)) = 0 se e solo se sin(2arctan(|z|’)) = 1, cio¢ 2arctan(|z|”) = 5.
L’equazione arctan(|z|’) = 7 ¢ soddisfatta per |z|> = 1, cio¢ per x = +1. La funzione & dunque
sempre strettamente positiva su R\ {—1,1} e si annulla per z = —1 e per z = 1.

La funzione C°(R) poiché composizione di funzioni continue su R. Inoltre & sicuramente C*(R\ {0})
poich composizione di funzioni C*(R \ {0}) (in particolare compare |z| che & CY(R\ {0})). La
derivabilita in £ = 0 non € comunque esclusa a priori e va verificata. Calcoliamo prima la derivata
su (—o00,0) U (0, 4+00):

10 2 arctan(z%))z?
fo) - { B ¢ (0, 00),

10 cos(2 arctan(—z?))z*
14210 ) HARS (_0070)7

Vediamo immediatamente che lim, o+ f'(z) = 0 e dunque f} (0) = 0 (esiste la derivata destra in
x =0 e vale 0), e lim,_,5- f'(x) = 0 e dunque f’ (0) = 0 (esiste la derivata sinistra in x = 0 e vale



0). Inoltre f & continua in = 0, per cui f & derivabile in © = 0 e f/(0) = 0 ed f/(x) & continua in
x = 0. Concludiamo che f € C'(R).

Studiamo il segno della derivata su (0, +00) e quindi la monotonia di f su [0, +00). Per parita dedur-
remo il comportamento di f anche su (—oc,0]. Notiamo che per = € (0, +00), 0 < 2arctan(z°) < 7.
In particolare cos(2arctan(z®)) > 0 se 0 < 2arctan(z’) < Z, cioe se 0 < arctan(z®) < Z, ovvero
0 <z < 1. Siccome su (0, 4+00)

10 cos(2 arctan(z®))x?
1+ 210

f'(z) = :
concludiamo che f/'(z) > 0 su (1,4+00), f'(z) < 0 su (0,1) e f/(xr) = 0 per x = 1. Quindi f ¢
strettamente crescente su [1,400) e strettamente descrescente su [0, 1]. Per parita di f (o studiando
f' su (—00,0)) deduciamo che f/'(z) < 0 su (—o0,1), f/(z) > 0su (—1,0) ed f'(z) =0 per x = —1.
Dunque f ¢ strettamente decrescente su (—oo, —1] e strettamente crescente su [—1,0]. Inoltre si ha
pure f/(0) = 0. Dunque ci sono tre punti stazionari per f: = —1, x = 0 e z = 1. In particolare
x = =£1 sono punti di minimo relativo stretto, mentre x = 0 € un punto di massimo relativo stretto.
Questi sono anche punti di massimo e minimo assoluti: infatti f(1) = f(-1) = 1 —sin (%) = 0,
mentre f(0) =1 —sin(0) = 1, e per come ¢ definita f si ha che 0 < f(z) <1 per ogni =z € R.

iii) Il grafico di f ¢ il seguente

1.5

Esercizio 2 [6 punti] Calcolare il limite

a

lim (1 + sinh m)x

z—0t

9

al variare di a € R, usando la forma “exp{log...}

Svolgimento. Scriviamo
(1 + Sinh(ﬂ?))xa — ea:a log(1+sinh(z)).



Siccome sinh(z) = = + o(z) per z — 0, possiamo scrivere
log(1 + sinh(z)) = log(1 + = + o(x)) = z + o(x)

per x — 0, dove abbiamo anche usato lo sviluppo log(1 4+ y) = y + o(y) per y — 0, e le regole sull’algebra
degli o piccoli. Calcoliamo allora

oz ) 0, a>—1,
lim 2%log(1 + sinh(z)) = lim 2" +o(z®™) = lim 2™ {1+ 2 ) ={1 =-1
z—0t g( + ( )> z—0F ( ) z—07F potl ’ “ ’
400, a< —1.
Dunque in tutti e tre i casi il limite esiste, e quindi possiamo scrivere
1, a> —1,
lim (1 + sinh :U)xa — lim ea:“ log(1+sinh(x)) _ 6lirnl_“ﬁ 2% log(1+sinh(x)) =<e, a = _1’

z—0t z—0t
400, a< —1.

Esercizio 3 [4 punti] Trovare gli zeri in C di
(22— 242)(z*+2)=0.

Svolgimento. 1l polinomio di grado 5 ammette esattamente 5 radici in C contate con la propria molteplicita.
Il polinomio & gia fattorizzato, dunque @ sufficiente cercare i tre zeri complessi di 22 + 2 = 0 e i due zeri
complessi di 22 — 2z +2 = 0.

I tre zeri di 2% 4+ 2 = 0 sono le tre radici cubiche di —2. Se scriviamo z = |z|e?, dobbiamo risolvere

‘Z|363’i9 — _2:267:TI'7
ovvero |z]3 = 2, cioe |z] = V2, e
2k
30 =+ 2% k€T 9:%+Tﬂ,kez

E sufficiente considerare k = 0, 1,2, e dunque 6y = g (per k=0),01 =7 (perk=1), 6o = 5{ (per k = 2).
I tre zeri di 22 + 2 = 0 sono dunque

o 1 3
20 = V2e'3 = /2 f—i—ii
2 2
21 = V2™ = —V/2
. 5 ) 1
22:\3/56153:\J/§<—\/§i>.

2

Risolviamo ora z* — z + 2 = 0. Dalla formula risolutiva abbiamo

1+v=7 1, V7
253/4:T:§i27.

Esercizio 4 [443 punti] Siano a € R fissato e

o e + 3et
fa(t) == (@ — 1)



i) Calcolare una primitiva di f, con o = 1.
ii) Determinare per quali o € R esiste finito fol fal(t) dt.
Svolgimento.

i) Calcoliamo l'integrale indefinito

2t t

3

/ ey,
et —1

ovvero l'insieme di tutte le primitive. Con il cambio di variabile y = e! abbiamo

2t t t
/eJr?’edt:/e T3 = [ Y34,
et —1 y—1 “lv=e

Osserviamo che

Dunque

e?t + 3et 4 . .
/@t_ldt_/1+y_1dy|yet :y+4log(]y—1])+qy:et =e' +4log(le' —1|) + C.

ii) Notiamo che f,(t) > 0 su (0, 1] per ogni @ € R. L’unico punto di integrazione impropria ¢ (evenual-
mente, a seconda di «) t = 0. Inoltre

et 43¢t 4
t = ———y —
fﬂt( ) (et _ 1)a to

per t — 0T, infatti abbiamo usato il fatto che e! = 1+t +o0(t) per t — 0 (o, se si preferisce, e! ~ 1+t
per t — 0). Per il criterio del confronto asintotico possiamo dire che fol fa(t)dt ha lo stesso carattere
dell’integrale improprio
1
4
—dt.
o ¢t

Quest’ultimo integrale converge se e solo se a < 1, e diverge a +oo altrimenti.

Esercizio 5 [6 punti] Studiare la convergenza semplice ed assoluta della serie

f (3cosz)™n

n=1 n2 + 2
al variare di z € [0, 7].
Svolgimento. Notiamo innanzitutto che se |3cos(x)| > 1, allora il termine n-esimo della serie non &
infinitesimo (per la gerarchia degli infiniti: il termine n-esimo & dato da un’esponenziale di base in modulo
strettamente maggiore di 1 moltiplicato per delle potenze), per cui la serie non converge sicuramente (la
condizione necessaria ¢ violata). Esplicitiamo la condizione |3 cos(x)| > 1 su [0, 7]:

1 1 1 1
|3 cos(z)] > 1 <= cos(z) > 3 oppure cos(z) < —3 &= TE€ [O,arccos <3>) U (arccos <—3) ,7T:| .

Per tali valori di = la serie non soddisfa la condizione necessaria per cui non converge. In particolare diverge

a +o00 se x € [O, arccos (%)), poiché ¢ a termini positivi.



Consideriamo ora z € [arccos (5),arccos (—3)]. In questo caso [3cos(z)| < 1 ed il termine n-esimo

della serie € infinitesimo. Studiamo prima la convergenza assoluta, cioe la convergenza della serie

io |3 cosz|"n
n2+2
n=1

Utilizziamo il criterio della radice e calcoliamo

. nf|3cosz|™n
S\ g~ Beos@)l

Se |3 cos(x)| < 1, la serie converge assolutamente e quindi semplicemente. Se |3 cos(x)| = 1 il criterio della
radice non da informazioni. Studiamo la convergenza assoluta per |3 cos(x)| = 1, ovvero la convergenza

della serie
—+o0

n
Zn2+2'

n=1

Notiamo che la serie & a termini positivi e che

n 1

_° oz
n2+2 n
per n — +oo. Dunque la serie ha lo stesso carattere della serie armonica -, % e quindi diverge a +00.
Dunque non abbiamo convergenza assoluta per |3 cos(z)| = 1, ma divergenza assoluta a +oo.
Resta da verificare la convergenza semplice della serie per |3 cos(z)| = 1, cioe la convergenza della serie
per 3cos(z) = %1, ovvero per x = arccos (%) 0 T = arccos (—%) Nel caso x = arccos (%), cioe 3cos(z) =1,

la serie di partenza diventa
+oo

n
nz:ln2+2’

che diverge a +oo (gia visto). Per x = arccos (—%), cioe per 3cos(x) = —1, la serie di partenza diventa

—+00

P

n=1

ovvero una serie a termini di segno alterno. Verifichiamo le ipotesi del criterio di Leibniz. La successione

Gp = nQLH ¢ sicuramente positiva e infinitesima. Proviamo che ¢ decrescente, ovvero proviamo che per ogni
neN,n>1
n+1 n

mrl212 -niyz (n+ (" +2) <n((n+1)*+2)

— P+ ni+m+2<nd+2%2+3n <= n*+n—-2>0.

Quest’ultima disuguaglianza e verificata per ogni n € N, n > 1. Dunque per Leibniz abbiamo convergenza
della serie per x = arccos (—%)
In conclusione abbiamo

))-
)]

3
e Divergenza assoluta per x € [O, arccos (%)] U [arccos (—%) ,7T].

Wl

e Convergenza assoluta per x € (arccos (%) , arccos (—

Wl

e Convergenza semplice per x € (arccos ( ) , arccos (—



o« o . . . a
Esercizio facoltativo Sia {a,} una successione tale che a,, > 0 e =2t > -
an n+1
che "> | a,, diverge.
. 1. . . . . a N . .
Svolgimento. Utilizzando ricorsivamente I'informazione “2+L > - che puo essere riscritta come a1 >

an — n+1°
n .
71 An, DOtiamo che

er ogni n € N. Si dimostri

n n n—1 n n—1 2 1 1

. > . -
n+1an_n—|—1 n anl_n—l—l n 3 2 n—+1

Ap+41 >

per ogni n € N, e dunque a,, > 2-. Per cui

00 9 1
Zan > ay Z*~
n=1 n:ln

La serie, che & a termini positivi, diverge a +oo per il criterio del confronto, essendo minorata dalla serie
armonica (a meno di una costante moltiplicativa strettamente positivia), che diverge a +oc.

NB: con log si indica il logaritmo in base e.

Tempo a disposizione: 2 ore e 45 minuti.

Il candidato deve consegnare questo foglio assieme al foglio intestato. La brutta copia non va consegnata: viene corretto solo
cio che e scritto sul foglio intestato. E vietato tenere con sé, anche spenti, telefoni e calcolatrici di qualsiasi tipo e usare libri e
appunti. Ogni affermazione deve essere adeguatamente giustificata. La parte facoltativa ha rilevanza solo per il voto finale, non

per 'ammissione all’orale.



