
ANALISI MATEMATICA 1
Area dell’Ingegneria dell’Informazione

Appello del 10.02.2020

TEMA 1

Esercizio 1 [7 punti] Si consideri la funzione

f(x) = exp

{∣∣∣∣ x

x+ 1

∣∣∣∣} .
i) Determinarne il dominio naturale D, i limiti agli estremi di D e gli eventuali asintoti;

ii) studiarne la derivabilità, calcolarne la derivata, studiarne la monotonia, determinarne gli eventuali
punti di estremo relativo ed assoluto;

iii) abbozzarne il grafico qualitativo.

Soluzione: i) Chiaramente D = R \ {−1}. I limiti agli estremi di D sono

lim
x→±∞

f(x) = lim
t→1

et = e, lim
x→−1

f(x) = lim
t→+∞

et = +∞.

Perciò, f ha un asintoto orizzontale di equazione y = e per x→ ±∞, e un asintoto verticale di equazione
x = −1 per x→ −1.

ii) f è composta da funzioni derivabili tranne dove il modulo si annulla, cioè f è sicuramente derivabile
in ogni x ∈ D \ {0} = R \ {0,−1}. Il punto x = 0 viene studiato a parte. Distinguiamo tra il caso in cui
x
x+1 > 0, cioè x > 0 oppure x < −1, e il caso in cui x

x+1 < 0, cioè −1 < x < 0.

• se x ∈]−∞,−1[∪]0,+∞[

f(x) = exp

{
x

x+ 1

}

f ′(x) = exp

{
x

x+ 1

}
d

dx

(
x

x+ 1

)
=

1

(x+ 1)2
exp

{
x

x+ 1

}
,

che è strettamente positiva, perciò f è crescente su ]−∞,−1[∪]0,+∞[.

• Se x ∈]− 1, 0[ si ha

f(x) = exp

{
− x

x+ 1

}
f ′(x) = exp

{
− x

x+ 1

}
d

dx

(
− x

x+ 1

)
= − 1

(x+ 1)2
exp

{
− x

x+ 1

}
,

che è strettamente negativa, perciò f è decrescente su ]− 1, 0[.



Si vede che limx→0+ f
′(x) = 1e0 = 1, mentre limx→0− f

′(x) = −1e0 = −1. Perciò f non è derivabile in
x = 0, che è un punto angoloso. Essendo D un’unione di intervalli aperti, f può avere estremi locali solo
dove la derivata si annulla e in punti di non derivabilità. Come osservato sopra, f ′(x) 6= 0, e l’unico estremo
si trova in x = 0, dove f ha il suo minimo assoluto con f(0) = 1.

iii) Grafico:

Esercizio 2 [5 punti] Studiare la convergenza della serie

∞∑
k=1

3k
k!

kk
.

Soluzione: La serie è a termini positivi. Applichiamo il criterio del rapporto asintotico. Si ha

ak+1

ak
=

3k+1(k + 1)!

(k + 1)k+1

kk

3kk!
=

3(k + 1)kk

(k + 1)(k + 1)k
=

3

(1 + 1
k )k
→ 3

e
per k →∞.

Essendo 3
e > 1, la serie diverge per il criterio del rapporto asintotico.

Esercizio 3 [5 punti] Risolvere in C nella forma preferita (algebrica, esponenziale, trigonometrica):

z3 =
1

−
√
2
2 −

√
2
2 i
.

Soluzione
Essendo −

√
2
2 −

√
2
2 i = e

5π
4
i, l’equazione da risolvere diventa

z3 =
1

e
5π
4
i

= e−
5π
4
i = e

3π
4
i.

Per il teorema di De Moivre le soluzioni sono

z0 = e
π
4
i =

√
2

2
+

√
2

2
i, z1 = e(

π
4
+ 2π

3
)i = e

11π
12
i = e−

π
12
i, z2 = e(

π
4
+ 4π

3
)i = e

19π
12
i = e−

5π
12
i



Applicando le formule di bisezione, si ha

cos
(
− π

12

)
=

√
1 + cos

(
−π

6

)
2

=

√
1 +
√

3/2

2
,

sin
(
− π

12

)
= −

√
1− cos

(
−π

6

)
2

= −

√
1−
√

3/2

2
,

da cui anche

cos

(
−5π

12

)
= −

√
1 +
√

3/2

2
,

sin

(
−5π

12

)
= −

√
1−
√

3/2

2
,

cosicché

z1 =

√
1 +
√

3/2

2
−

√
1−
√

3/2

2
i z2 = −

√
1 +
√

3/2

2
−

√
1−
√

3/2

2
i.

Esercizio 4 [4+3 punti] Siano α ∈ R e

fα(t) :=
e−2/t

3tα
.

i) Calcolare una primitiva di fα con α = 3.

ii) Determinare per quali α ∈ R esiste finito
∫ +∞
0 fα(t) dt.

Soluzione: i) Con la sostituzione y = −2/t si ha t = −2/y, dt = 2
y2
dy, e quindi∫

f3(t)dt =

∫
e−2/t

3t3
=

∫
ey

3

−y3

8

2

y2
dy = − 1

12

∫
yeydy.

Integrando per parti, si ottiene∫
f3(t)dt = − 1

12

∫
yeydy = − 1

12

(
yey −

∫
eydy

)
=

1

12
(1− y)ey =

1

12

(
1 +

2

t

)
e−2/t.

ii) fα è continua su (0,∞). Per qualsiasi α ∈ R si ha (per la gerarchia degli infiniti) limx→0+
e−2/t

3tα = 0.
Quindi, la funzione fα può essere prolungata per continuità in t = 0, per cui è sempre integrabile in [0, c],
per qualsiasi c > 0. Per t→ +∞, da 2

t → 0 si ottiene e−2/t ∼ 1 per cui

fα(t) ∼ 1

3tα
,

ed essendo fα a segno costante, in virtù del test del confronto asintotico, l’integrale esiste se e solo se α > 1.

Esercizio 5 [6 punti] Calcolare il seguente limite

lim
x→0+

sin(x− x3)− log(1 + sinhx) + αx2

x3

al variare di α ∈ R.



Soluzione. Il limite si presenta evidentemente come una forma indeterminata 0/0. Analizziamo il
numeratore. Ricordando che (per t→ 0)

sin t = t+o(t) = t− t
3

6
+o(t3), log(1+ t) = t+o(t) = t− t

2

2
+
t3

3
+o(t3), sinh t = t+o(t) = t+

t3

6
+o(t3),

si vede che (per x→ 0+)

Numeratore = (x− x3)− (x−x3)3
6 + o((x− x3)3)

−
(
x+ x3

6 + o(x3)− 1
2

(
x+ x3

6 + o(x3)
)2

+ 1
3

(
x+ x3

6 + o(x3)
)3

+ o

((
x+ x3

6 + o(x3)
)3))

+ αx2

=
(
α+ 1

2

)
x2 +

(
−1− 1

6 −
1
6 −

1
3

)
x3 + o(x3) =

(
α+ 1

2

)
x2 − 5

3x
3 + o(x3) ∼

(
α+ 1

2

)
x2 − 5

3x
3.

Si conclude allora che

lim
x→0+

Numeratore

x3
= lim

x→0+

(
α+ 1

2

x
− 5

3

)
=


∞, α > −1

2 ,

−∞, α < −1
2 ,

−5
3 , α = −1

2 .

Esercizio facoltativo Sia α ∈ [0,+∞[ e si definisca

Fα(x) :=

∫ x

0
tαe−t

2
dt, x > 0.

Stabilire per quali valori di α risulta che Fα è concava sull’intervallo [1,+∞[. Ci sono valori α > 0 per cui
Fα sia concava su [0,+∞[?
Soluzione: La funzione Fα è una funzione integrale di fα(t) := tαe−t

2
. Essendo questa ben definita e

continua su [0,+∞[ (si ricorda α > 0), anche Fα è ben definita, continua e derivabile (per il teorema
fondamentale del calcolo) e

F ′α(x) = fα(x) = xαe−x
2
.

Da questa,
F ′′α(x) = e−x

2 (
αxα−1 + xα(−2x)

)
= xα−1e−x

2 (
α− 2x2

)
.

Siccome Fα è due volte derivabile, per un noto risultato

Fα concava su [1,+∞[, ⇐⇒ F ′′α(x) 6 0, ∀x ∈ [1,+∞[.

Essendo

F ′′α(x) 6 0, ⇐⇒ α− 2x2 6 0,
x>0⇐⇒ x >

√
α

2
,

Fα è concava su [1,+∞[ se e solo se
√

α
2 6 1, cioè α 6 2. Lo stesso calcolo mostra che, per ogni α > 0

si ha F ′′α(x) > 0 per ogni x ∈ [0,
√

α
2 [, per cui Fα non può essere concava su [0,+∞[ per alcun valore di

α > 0. Per α = 0, si ha che
F ′′0 (x) = −2xe−x

2
< 0 ∀x > 0,

dunque F0 è concava su [0,+∞[.

NB: con log si indica il logaritmo in base e.

Tempo a disposizione: 2 ore e 45 minuti.

Il candidato deve consegnare questo foglio assieme al foglio intestato. La brutta copia non va consegnata: viene corretto solo

ciò che è scritto sul foglio intestato. È vietato tenere con sé, anche spenti, telefoni e calcolatrici di qualsiasi tipo e usare libri e

appunti. Ogni affermazione deve essere adeguatamente giustificata. La parte facoltativa ha rilevanza solo per il voto finale, non

per l’ammissione all’orale.



ANALISI MATEMATICA 1
Area dell’Ingegneria dell’Informazione

Appello del 10.02.2020

TEMA 2

Esercizio 1 [7 punti] Si consideri la funzione

f(x) = exp

{∣∣∣∣x+ 1

x

∣∣∣∣} .
i) Determinarne il dominio naturale D, i limiti agli estremi di D e gli eventuali asintoti;

ii) studiarne la derivabilità, calcolarne la derivata, studiarne la monotonia, determinarne gli eventuali
punti di estremo relativo ed assoluto;

iii) abbozzarne il grafico qualitativo.

Soluzione: i) Chiaramente D = R \ {0}. I limiti agli estremi di D sono

lim
x→±∞

f(x) = lim
t→1

et = e, lim
x→0

f(x) = lim
t→+∞

et = +∞.

Perciò, f ha un asintoto orizzontale di equazione y = e per x→ ±∞, e un asintoto verticale di equazione
x = 0 per x→ 0.

ii) f è composta da funzioni derivabili tranne dove il modulo si annulla, cioè f è sicuramente derivabile
in ogni x ∈ D \ {−1} = R \ {0,−1}. Il punto x = −1 viene studiato a parte. Distinguiamo tra il caso in
cui x+1

x > 0, cioè x > 0 oppure x < −1, e il caso in cui x+1
x < 0, cioè −1 < x < 0.

• se x ∈]−∞,−1[∪]0,+∞[

f(x) = exp

{
x+ 1

x

}

f ′(x) = exp

{
x+ 1

x

}
d

dx

(
x+ 1

x

)
= − 1

x2
exp

{
x+ 1

x

}
,

che è strettamente negativa, perciò f è decrescente su ]−∞,−1[∪]0,+∞[.

• Se x ∈]− 1, 0[ si ha

f(x) = exp

{
−x+ 1

x

}
f ′(x) = exp

{
−x+ 1

x

}
d

dx

(
−x+ 1

x

)
=

1

x2
exp

{
−x+ 1

x

}
,

che è strettamente positiva, perciò f è crescente su ]− 1, 0[.



Si vede che limx→−1+ f
′(x) = 1e0 = 1, mentre limx→−1− f

′(x) = −1e0 = −1. Perciò f non è derivabile
in x = −1, che è un punto angoloso. Essendo D un’unione di intervalli aperti, f può avere estremi locali
solo dove la derivata si annulla e in punti di non derivabilità. Come osservato sopra, f ′(x) 6= 0, e l’unico
estremo si trova in x = −1, dove f ha il suo minimo assoluto con f(−1) = 1.

iii) Grafico:

Esercizio 2 [5 punti] Studiare la convergenza della serie

∞∑
k=1

4k
k!

kk
.

Soluzione: La serie è a termini positivi. Applichiamo il criterio del rapporto asintotico. Si ha

ak+1

ak
=

4k+1(k + 1)!

(k + 1)k+1

kk

4kk!
=

4(k + 1)kk

(k + 1)(k + 1)k
=

4

(1 + 1
k )k
→ 4

e
per k →∞.

Essendo 4
e > 1, la serie diverge per il criterio del rapporto asintotico.

Esercizio 3 [5 punti] Risolvere in C nella forma preferita (algebrica, esponenziale, trigonometrica):

z3 =
1

√
2
2 −

√
2
2 i
.

Soluzione
Essendo

√
2
2 −

√
2
2 i = e−

1π
4
i, l’equazione da risolvere diventa

z3 =
1

e−
1π
4
i

= e
1π
4
i.

Per il teorema di De Moivre le soluzioni sono

z0 = e
π
12
i, z1 = e(

π
12

+ 2π
3
)i = e

3π
4
i = −

√
2

2
+

√
2

2
i, z2 = e(

π
12

+ 4π
3
)i = e

17π
12
i = e−

7π
12
i



Applicando le formule di bisezione, si ha

cos
( π

12

)
=

√
1 + cos

(
π
6

)
2

=

√
1 +
√

3/2

2
,

sin
( π

12

)
= +

√
1− cos

(
π
6

)
2

= +

√
1−
√

3/2

2
,

da cui anche

cos

(
−7π

12

)
= − sin

( π
12

)
= −

√
1−
√

3/2

2
,

sin

(
−7π

12

)
= − cos

( π
12

)
= −

√
1 +
√

3/2

2
,

cosicché

z0 =

√
1 +
√

3/2

2
+

√
1−
√

3/2

2
i z2 = −

√
1−
√

3/2

2
−

√
1 +
√

3/2

2
i.

Esercizio 4 [4+3 punti] Siano α ∈ R e

fα(t) :=
2e−3/t

tα
.

i) Calcolare una primitiva di fα con α = 3.

ii) Determinare per quali α ∈ R esiste finito
∫ +∞
0 fα(t) dt.

Soluzione: i) Con la sostituzione y = −3/t si ha t = −3/y, dt = 3
y2
dy, e quindi∫

f3(t)dt =

∫
2e−2/t

t3
=

∫
2ey
−y3

27

3

y2
dy = −2

9

∫
yeydy.

Integrando per parti, si ottiene∫
f3(t)dt = −2

9

∫
yeydy = −2

9

(
yey −

∫
eydy

)
=

2

9
(1− y)ey =

2

9

(
1 +

3

t

)
e−3/t.

ii) fα è continua su (0,∞). Per qualsiasi α ∈ R si ha (per la gerarchia degli infiniti) limx→0+
2e−2/t

tα = 0.
Quindi, la funzione fα può essere prolungata per continuità in t = 0, per cui è sempre integrabile in [0, c],
per qualsiasi c > 0. Per t→ +∞, da 3

t → 0 si ottiene e−2/t ∼ 1 per cui

fα(t) ∼ 2

tα
,

ed essendo fα a segno costante, in virtù del test del confronto asintotico, l’integrale converge se e solo se
α > 1.

Esercizio 5 [6 punti] Calcolare il seguente limite

lim
x→0+

sinh(x− x3)− log(1 + sinx) + αx2

x3

al variare di α ∈ R.



Soluzione. Il limite si presenta evidentemente come una forma indeterminata 0/0. Analizziamo il
numeratore. Ricordando che (per t→ 0)

sin t = t+o(t) = t− t
3

6
+o(t3), log(1+ t) = t+o(t) = t− t

2

2
+
t3

3
+o(t3), sinh t = t+o(t) = t+

t3

6
+o(t3),

si vede che (per x→ 0+)

Numeratore = (x− x3) + (x−x3)3
6 + o((x− x3)3)

−
(
x− x3

6 + o(x3)− 1
2

(
x− x3

6 + o(x3)
)2

+ 1
3

(
x− x3

6 + o(x3)
)3

+ o

((
x− x3

6 + o(x3)
)3))

+ αx2

=
(
α+ 1

2

)
x2 +

(
−1 + 1

6 + 1
6 −

1
3

)
x3 + o(x3) =

(
α+ 1

2

)
x2 − x3 + o(x3) ∼

(
α+ 1

2

)
x2 − x3.

Si conclude allora che

lim
x→0+

Numeratore

x3
= lim

x→0+

(
α+ 1

2

x
− 1

)
=


∞, α > −1

2 ,

−∞, α < −1
2 ,

−1, α = −1
2 .

Esercizio facoltativo Sia α ∈ [0,+∞[ e si definisca

Fα(x) :=

∫ x

0
tαe−t

2
dt, x > 0.

Stabilire per quali valori di α risulta che Fα è concava sull’intervallo [1,+∞[. Ci sono valori α > 0 per cui
Fα sia concava su [0,+∞[?
Soluzione: La funzione Fα è una funzione integrale di fα(t) := tαe−t

2
. Essendo questa ben definita e

continua su [0,+∞[ (si ricorda α > 0), anche Fα è ben definita, continua e derivabile (per il teorema
fondamentale del calcolo) e

F ′α(x) = fα(x) = xαe−x
2
.

Da questa,
F ′′α(x) = e−x

2 (
αxα−1 + xα(−2x)

)
= xα−1e−x

2 (
α− 2x2

)
.

Siccome Fα è due volte derivabile, per un noto risultato

Fα concava su [1,+∞[, ⇐⇒ F ′′α(x) 6 0, ∀x ∈ [1,+∞[.

Essendo

F ′′α(x) 6 0, ⇐⇒ α− 2x2 6 0,
x>0⇐⇒ x >

√
α

2
,

Fα è concava su [1,+∞[ se e solo se
√

α
2 6 1, cioè α 6 2. Lo stesso calcolo mostra che, per ogni α > 0

si ha F ′′α(x) > 0 per ogni x ∈ [0,
√

α
2 [, peer cui Fα non può essere concava su [0,+∞[ per alcun valore di

α > 0. Per α = 0, si ha che
F ′′0 (x) = −2xe−x

2
< 0 ∀x > 0,

dunque F0 è concava su [0,+∞[.

NB: con log si indica il logaritmo in base e.

Tempo a disposizione: 2 ore e 45 minuti.

Il candidato deve consegnare questo foglio assieme al foglio intestato. La brutta copia non va consegnata: viene corretto solo

ciò che è scritto sul foglio intestato. È vietato tenere con sé, anche spenti, telefoni e calcolatrici di qualsiasi tipo e usare libri e

appunti. Ogni affermazione deve essere adeguatamente giustificata. La parte facoltativa ha rilevanza solo per il voto finale, non

per l’ammissione all’orale.



ANALISI MATEMATICA 1
Area dell’Ingegneria dell’Informazione

Appello del 10.02.2020

TEMA 3

Esercizio 1 [7 punti] Si consideri la funzione

f(x) = exp

{∣∣∣∣ x

x− 1

∣∣∣∣} .
i) Determinarne il dominio naturale D, i limiti agli estremi di D e gli eventuali asintoti;

ii) studiarne la derivabilità, calcolarne la derivata, studiarne la monotonia, determinarne gli eventuali
punti di estremo relativo ed assoluto;

iii) abbozzarne il grafico qualitativo.

Svolgimento. i) Chiaramente D = {x ∈ R : x − 1 6= 0} =] −∞, 1[∪]1,+∞[. Limiti: dobbiamo calcolarli
per x −→ ±∞, x −→ 1 (ev. 1±). Osservato che, per x −→ ±∞, x

x−1 −→ 1 si ha subito che f(x) −→ e,
dunque y = e è asintoto orizzontale a ±∞. Per x −→ 1±, x

x−1 −→ ±∞, quindi il modulo tente comunque
a +∞, da cui f(x) −→∞. La retta x = 1 è asintoto verticale per f . Si può inoltre osservare che f > 0 su
D e, anzi, essendo | · | > 0, f(x) > 1 per ogni x ∈ D. Da questo si può anche già concludere che x = 0 è
l’unico punto di minimo assoluto per f e che non ci sono massimi assoluti (essendo f illimitata).

ii) Essendo composizione di funzioni continue ove definite, f è continua sul proprio dominio. Per la
derivabilità lo stesso vale eccetto per x t.c. x

x−1 = 0, cioè x = 0. Dunque, sicuramente f è derivabile su
D\{0} e vale

f ′(x) = e|
x
x−1 |sgn

(
x

x− 1

)
1 · (x− 1)− x · 1

(x− 1)2
= −e|

x
x−1 |sgn

(
x

x− 1

)
1

(x− 1)2
.

Facilmente
lim
x→0+

f ′(x) = −e0(−1) · 1 = +1, lim
x→0−

f ′(x) = −e0(+1) · 1 = −1,

da cui, per il test di derivabilità, esistono f ′+(0) = 1, f ′−(0) = −1, ma non esiste f ′(0). Il punto x = 0 è
angoloso. Studiamo il segno di f ′: chiaramente

f ′(x) > 0, ⇐⇒ x

x− 1
6 0,

x∈D⇐⇒ 0 6 x < 1.

Ne segue che f è decrescente su ] − ∞, 0] e su ]1,+∞[ mentre è crescente su [0, 1[. La discussione per
min/max è già stata fatta al punto i).

iii) Grafico:

Esercizio 2 [5 punti] Studiare la convergenza della serie

∞∑
k=1

5k
k!

kk
.



Svolgimento. La serie è, evidentemente, a termini di segno costante. Vista la forma del termine generale
può convenire applicare il criterio del rapporto. Detto ak il termine generale,

ak+1

ak
= 5k+1 (k + 1)!

(k + 1)k+1

kk

k!

1

5k
= 5

kk

(k + 1)k
= 5

1(
1 + 1

k

)k −→ 5

e
> 1,

dunque la serie diverge.

Esercizio 3 [5 punti] Esprimere in forma algebrica ed esponenziale le soluzioni in C di:

z3 =
1

−
√
2
2 +

√
2
2 i
.

Svolgimento. Anzitutto osserviamo che

−
√

2

2
+

√
2

2
i = 1u

(
3

4
π

)
,

da cui
1

−
√
2
2 +

√
2
2 i

=
1

1u
(
3
4π
) = 1u

(
−3

4
π

)
.

Si tratta quindi di determinare le radici terze di questo numero. Per il teorema di De Moivre queste sono

zk = 1u

(
−π

4
+ k

2π

3

)
, k = 0, 1, 2.

Esercizio 4 [4+3 punti] Siano α ∈ R e

fα(t) :=
3e−2/x

xα
.

i) Calcolare una primitiva di fα con α = 3.



ii) Determinare per quali α ∈ R esiste finito
∫ +∞
0 fα(t) dt.

Svolgimento. i) Abbiamo∫
3e−2/x

x3
dx

y=−2/x, x=−2/y, dx=2/y2

=
∫

3ey y
3

−8
2
y2
dy = −3

4

∫
yey dy = −3

4 (yey − ey)

= −3
4

(
− 2
xe
−2/x − e−2/x

)
= 3

4e
−2/x x+2

x .

ii) Chiaramente fα ∈ C(]0,+∞[). Se α 6 0 la continuità si estende anche a x = 0. In ogni caso, essendo

lim
x→0+

fα(x)
y=2/x

= lim
y→+∞

3

2α
yα

ey
= 0, ∀α ∈ R, (ey �+∞ yα),

in particolare, fα è prolungabile con continuità in x = 0 anche per α > 0, per cui è sempre integrabile in
x = 0. Morale, occorre verificare l’integrabilità a +∞. Per x −→ +∞, essendo 2

x −→ 0, si ha e−2/x ∼+∞ 1
per cui

fα(x) ∼+∞
3

xα
,

ed essendo palesemente fα a segno costante, in virtù del test del confronto asintotico

∃
∫ +∞

fα(x) dx ⇐⇒ ∃
∫ +∞ 1

xα
dx ⇐⇒ α > 1.

Esercizio 5 [6 punti] Calcolare il seguente limite

lim
x→0+

sin(x+ x3)− log(1 + sinhx) + αx2

x3

al variare di α ∈ R.

Svolgimento. Il limite si presenta evidentemente come una forma indeterminata 0/0. Poiché il comporta-
mento del denominatore è già semplice, studiamo quello del numeratore. Ricordato che

sin t = t+ o(t) = t− t3

6
+ o(t3), log(1 + t) = t+ o(t) = t− t2

2
+ o(t2), sinh t = t+ o(t) = t+

t3

6
+ o(t3),

si vede che

N = (x+ x3)− (x+x3)3

6 + o((x+ x3)3)−
(
x+ x3

6 + o(x3)− 1
2

(
x+ x3

6 + o(x3)
)2

+ o

((
x+ x3

6 + o(x3)
)2))

+αx2

=
(
α+ 1

2

)
x2 + o(x2) =

(
α+ 1

2

)
x21x,

per α+ 1
2 6= 0. In questo caso

lim
x→0+

N(x)

x3
= lim

x→0+

(
α+

1

2

)
1

x
= sgn

(
α+

1

2

)
∞.

Per α+ 1
2 = 0 occorre comunque aggiungere un termine allo sviluppo del logaritmo (altrimenti il termine

resto, che è o(x2), cancella i termini rimanenti e non permette di calcolare il limite. Si tratta di aggiungere
alla parentesi centrale il termine

+
t3

3
= +

1

3

(
x+

x3

6
+ o(x3)

)3



ed il relativo o−piccolo, che è o(x3). Svolgendo i calcoli si trova

N = x3 − 1

6
x3 − 1

6
x3 − 1

3
x3 + o(x3) =

x3

3
+ o(x3) =

x3

3
1x,

da cui, facilmente, il limite della frazione è = 1
3 .

Esercizio facoltativo Sia α ∈ [0,+∞[ e si definisca

Fα(x) :=

∫ x

0
tαe−t

2
dt, x > 0.

Stabilire per quali valori di α risulta che Fα è concava sull’intervallo [1,+∞[. Ci sono valori α > 0 per cui
Fα sia concava su [0,+∞[?

Svolgimento. La funzione Fα è una funzione integrale di fα(t) := tαe−t
2
. Essendo questa ben definita

e continua su [0,+∞[ (si ricorda α > 0), anche Fα è ben definita, continua e derivabile (per il teorema
fondamentale del calcolo) e

F ′α(x) = fα(x) = xαe−x
2
.

Da questa,
F ′′α(x) = e−x

2 (
αxα−1 + xα(−2x)

)
= xα−1e−x

2 (
α− 2x2

)
.

Siccome Fα è due volte derivabile, per un noto risultato

Fα concava su [1,+∞[, ⇐⇒ F ′′α(x) 6 0, ∀x ∈ [1,+∞[.

Essendo

F ′′α(x) 6 0, ⇐⇒ α− 2x2 6 0,
x>0⇐⇒ x >

√
α

2
,

Fα può essere concava su [1,+∞[ sse
√

α
2 6 1, cioè α 6 2. Lo stesso calcolo mostra che, essendo F ′′α > 0

su [0,
√

α
2 [, Fα non può essere concava su [0,+∞[ per alcun valore di α.

NB: con log si indica il logaritmo in base e.

Tempo a disposizione: 2 ore e 45 minuti.

Il candidato deve consegnare questo foglio assieme al foglio intestato. La brutta copia non va consegnata: viene corretto solo

ciò che è scritto sul foglio intestato. È vietato tenere con sé, anche spenti, telefoni e calcolatrici di qualsiasi tipo e usare libri e

appunti. Ogni affermazione deve essere adeguatamente giustificata. La parte facoltativa ha rilevanza solo per il voto finale, non

per l’ammissione all’orale.



ANALISI MATEMATICA 1
Area dell’Ingegneria dell’Informazione

Appello del 10.02.2020

TEMA 4

Esercizio 1 [7 punti] Si consideri la funzione

f(x) = exp

{∣∣∣∣x− 1

x

∣∣∣∣} .
i) Determinarne il dominio naturale D, i limiti agli estremi di D e gli eventuali asintoti;

ii) studiarne la derivabilità, calcolarne la derivata, studiarne la monotonia, determinarne gli eventuali
punti di estremo relativo ed assoluto;

iii) abbozzarne il grafico qualitativo.

Soluzione: i) Chiaramente D = R \ {0}. I limiti agli estremi di D sono

lim
x→±∞

f(x) = lim
t→1

et = e, lim
x→0

f(x) = lim
t→∞

et =∞.

Perciò, f ha un asintoto orizzontale y = e per x→ ±∞, e un asintoto verticale in x = 0.
ii) f è composta da funzioni derivabili tranne dove il modulo si annulla, cioè f è sicuramente derivabile

su D \ {1} = R \ {0, 1}. Il punto x = 1 viene studiate a parte. Distinguiamo tra il caso x−1
x = 1− 1

x > 0,
cioè x > 1 oppure x < 0, e il caso 0 < x < 1. Nel primo caso f(x) = exp

{
x−1
x

}
e la derivata

f ′(x) = exp

{
x− 1

x

}
d

dx
(1− 1

x
) =

1

x2
exp

{
x− 1

x

}
,

che è strettamente positiva, perciò f è crescente su (−∞, 0) ∪ (1,∞). Per 0 < x < 1 si ha

f ′(x) = exp

{
1− x
x

}
d

dx
(
1

x
− 1) =

−1

x2
exp

{
1− x
x

}
,

che è strettamente negativa, perciò f è decrescente su (0, 1). Si vede che limx→1+ f(x) = 1e0 = 1, mentre
limx→1− f(x) = −1e0 = −1. Perciò f non è derivabile in x = 1, che è un punto angoloso. Essendo D
la unione di intervalli aperti, f può avere estremi locali solo dove la derivata si annulla e in punti di non
differenziabilità. Come osservato sopra, f ′(x) 6= 0, e l’unico estremo si trova in x = 1, dove f ha il suo
minimo assoluto con f(1) = 1.

iii) Grafico:

Esercizio 2 [5 punti] Studiare la convergenza della serie

∞∑
k=1

6k
k!

kk
.

Soluzione: La serie è a termini positivi. Applichiamo il criterio del rapporto asintotico. Si ha

ak+1

ak
=

6k+1(k + 1)!

(k + 1)k+1

kk

6kk!
=

6(k + 1)kk

(k + 1)(k + 1)k
=

6

(1 + 1
k )k
→ 6

e
per k →∞.



Essendo 6
e > 1, la serie diverge per il criterio del rapporto asintotico.

Esercizio 3 [5 punti] Esprimere in forma algebrica ed esponenziale le soluzioni in C di:

z3 =
1

√
2
2 +

√
2
2 i
.

Soluzione: Essendo
√
2
2 +

√
2
2 i = e

π
4
i, e ricordato che 1/eθi = e−θi, l’equazione da risolvere diventa

z3 = e−
π
4
i.

Per il teorema di De Moivre le soluzioni sono

z0 = e−
π
12
i, z1 = e(−

π
12

+ 2π
3
)i = e

7π
12
i, z2 = e(−

π
12

+ 4π
3
)i = e

5π
4
i = −

√
2

2
−
√

2

2
i.

Esercizio 4 [4+3 punti] Siano α ∈ R e

fα(t) :=
e−3/t

2tα
.

i) Calcolare una primitiva di fα con α = 3.

ii) Determinare per quali α ∈ R esiste finito
∫ +∞
0 fα(t) dt.

Soluzione: i) Con la sostituzione y = −3/t si ha t = −3/y, dt = 3
y2
dy, e quindi∫

f3(t)dt =

∫
e−3/t

2t3
=

∫
ey

2

−y3

27

3

y2
dy = − 1

18

∫
yeydy.

Integrando per parti, si ottiene

− 1

18

(
yey −

∫
eydy

)
=

1

18
(1− y)ey =

1

18
(1 +

3

t
)e−3/t.



ii) fα è chiaramente continua su (0,∞). Per qualsiasi α ∈ R si ha (per la gerarchia degli infiniti)

limx→0+
e−3/t

2tα = 0. Quindi, la funzione fα può essere prolungata per continuità in x = 0, per cui è sempre

integrabile in x = 0. Per x→∞, essendo 2
x → 0, si ha e−2/x ∼ 1 per cui

fα(x) ∼ 1

2xα
,

ed essendo fα a segno costante, in virtù del test del confronto asintotico, l’integrale esiste se e solo se α > 1.

Esercizio 5 [6 punti] Calcolare il seguente limite

lim
x→0+

sinh(x+ x3)− log(1 + sinx) + αx2

x3

al variare di α ∈ R.
Soluzione:

Il limite si presenta evidentemente come una forma indeterminata 0/0. Poiché il comportamento del
denominatore è già semplice, studiamo quello del numeratore. Ricordato che (per t→ 0)

sin t = t+o(t) = t− t
3

6
+o(t3), log(1+ t) = t+o(t) = t− t

2

2
+
t3

3
+o(t3), sinh t = t+o(t) = t+

t3

6
+o(t3),

si vede che (per x→ 0+)

N(x) = (x+ x3) + (x+x3)3

6 + o((x+ x3)3)

−
(
x− x3

6 + o(x3)− 1
2

(
x− x3

6 + o(x3)
)2

+ 1
3

(
x− x3

6 + o(x3)
)3

+ o

((
x− x3

6 + o(x3)
)3))

+ αx2

=
(
α+ 1

2

)
x2 +

(
1 + 1

6 + 1
6 −

1
3

)
x3 + o(x3) =

(
α+ 1

2

)
x2 + x3 + o(x3) ∼

(
α+ 1

2

)
x2 + x3.

Si conclude allora che

lim
x→0+

N(x)

x3
= lim

x→0+

(
α+ 1

2

x
+ 1

)
=


∞, α > −1

2 ,

−∞, α < −1
2 ,

1, α = −1
2 .

Esercizio facoltativo Sia α ∈ [0,+∞[ e si definisca

Fα(x) :=

∫ x

0
tαe−t

2
dt, x > 0.

Stabilire per quali valori di α risulta che Fα è concava sull’intervallo [1,+∞[. Ci sono valori α > 0 per cui
Fα sia concava su [0,+∞[?
Soluzione: La funzione Fα è una funzione integrale di fα(t) := tαe−t

2
. Essendo questa ben definita e

continua su [0,+∞[ (si ricorda α > 0), anche Fα è ben definita, continua e derivabile (per il teorema
fondamentale del calcolo) e

F ′α(x) = fα(x) = xαe−x
2
.

Da questa,
F ′′α(x) = e−x

2 (
αxα−1 + xα(−2x)

)
= xα−1e−x

2 (
α− 2x2

)
.

Siccome Fα è due volte derivabile, per un noto risultato

Fα concava su [1,+∞[, ⇐⇒ F ′′α(x) 6 0, ∀x ∈ [1,+∞[.



Essendo

F ′′α(x) 6 0, ⇐⇒ α− 2x2 6 0,
x>0⇐⇒ x >

√
α

2
,

Fα è concava su [1,+∞[ se e solo se
√

α
2 6 1, cioè α 6 2. Lo stesso calcolo mostra che, essendo F ′′α > 0 su

[0,
√

α
2 [, Fα non può essere concava su [0,+∞[ per alcun valore di α > 0. Per α = 0, si ha che la funzione

F ′0(x) = f0(x) = e−x
2

è decrescente su [0,∞), e segue che F0 è concava su tale intervallo.

NB: con log si indica il logaritmo in base e.

Tempo a disposizione: 2 ore e 45 minuti.

Il candidato deve consegnare questo foglio assieme al foglio intestato. La brutta copia non va consegnata: viene corretto solo

ciò che è scritto sul foglio intestato. È vietato tenere con sé, anche spenti, telefoni e calcolatrici di qualsiasi tipo e usare libri e

appunti. Ogni affermazione deve essere adeguatamente giustificata. La parte facoltativa ha rilevanza solo per il voto finale, non

per l’ammissione all’orale.


