Area dell'Ingegneria dell'Informazione - Canali B e D

Appello del 08.09.2025

TEMA 1

Esercizio 1 (punti 8) Si consideri la funzione

$$f(x) = x - \arctan(x - 1).$$

- a) Determinarne il dominio; i limiti ed eventuali asintoti;
- b) discutere la derivabilità di f e calcolarne la derivata f' (compresi i limiti della derivata ove necessario); discutere la monotonia di f e determinare l'estremo inferiore e l'estremo superiore di f ed eventuali punti di minimo e massimo relativo ed assoluto;
- c) discutere la derivabilià di f' e calcolarne la derivata f''; determinare la convessità di f ed eventuali punti di flesso;
- d) fare un abbozzo qualitativo del grafico di f.
- (e) Facoltativo: Mostrare che esiste un unico punto x_0 tale che $f(x_0) = 0$.

Svolgimento. (a). Entrambe le funzioni coinvolte hanno come dominio \mathbb{R} e pertanto $Dom(f) = \mathbb{R}$. Ricordando che la funzione arcotangente è limitata, i noti teoremi sui limiti (somma di funzione limitata con funzione avente limite uguale a $+\infty$ oppure $-\infty$) forniscono

$$\lim_{x \to -\infty} f(x) = -\infty \quad \text{e} \quad \lim_{x \to +\infty} f(x) = +\infty.$$

Possiamo quindi dedurre che f non ha estremi globali essendo illimitata sia superiormente che inferiormente. Inoltre f non ammette né asintoti orizzontali né verticali.

Osserviamo che

$$\lim_{x\to -\infty}\frac{f(x)}{x}=\lim_{x\to -\infty}\frac{x-\arctan(x-1)}{x}=\lim_{x\to -\infty}\Bigl(1-\frac{\arctan(x-1)}{x}\Bigr)=1$$

dato che la funzione arcotangente è limitata ed il denominatore tende a $-\infty$. Notiamo inoltre

$$\lim_{x \to -\infty} (f(x) - x) = -\lim_{x \to -\infty} \arctan(x - 1) = -\lim_{u \to -\infty} \arctan u = \frac{\pi}{2},$$

per il teorema di sostituzione dei limiti ed i noti valori dei limiti della funzione arcotangente. Pertanto la retta di equazione $y = x + \pi/2$ è asintoto obliquo a $-\infty$. Analogamente si mostra che la retta di equazione $y = x - \pi/2$ è asintoto obliquo a $+\infty$.

(b). La funzione è composizione e somma di funzioni derivabili su Dom(f). Pertanto essa è continua e derivabile su Dom(f). Otteniamo che

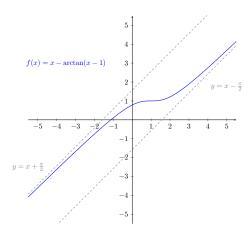
$$f'(x) = 1 - \frac{1}{1 + (x-1)^2} = \frac{(x-1)^2}{1 + (x-1)^2},$$

da cui segue che l'unico punto critico di f è $x_0 = 1$. Inoltre f'(x) > 0 per ogni $x \in \mathbb{R} \setminus \{1\}$. La funzione è pertanto strettamente crescente e non ammette punti di minimo o massimo, relativo o assoluto. Inoltre: $\inf(f) = -\infty$ e $\sup(f) = \infty$.

$$f''(x) = \left(1 - (1 + (x - 1)^2)^{-1}\right)' = \frac{2(x - 1)}{(1 + (x - 1)^2)^2}.$$

Osservando che il denominatore di f'' è positivo per ogni punto di Dom(f), si conclude che: f è convessa per x > 1, f è concava per x < 1 e $x_0 = 1$ è un punto di flesso a tangente orizzontale.

(d). Abbozzo qualitativo del grafico di f:



(e). Da quanto visto nei punti precedenti, f è continua e strettamente crescente in Dom(f). Inoltre $f(-2) = -2 - \arctan(-3) = -2 + \arctan(3) < 0$ e $f(0) = -\arctan(-1) = \arctan(1) = \pi/4 > 0$. Il teorema degli zeri implica che esiste $x_0 \in (-2,0)$ tale che $f(x_0) = 0$. Inoltre, grazie alla stretta monotonia, se $x > x_0$ si ha che $f(x) > f(x_0) = 0$ ed inoltre se $x < x_0$ si ha che $f(x) < f(x_0) = 0$. In conclusione, f ammette un unico punto di azzeramento.

Esercizio 2 (punti 8) Discutere, al variare di $x \in \mathbb{R}$, la convergenza assoluta e semplice della serie

$$\sum_{n=1}^{\infty} \frac{3n}{4n^2 + 1} (x - 4)^n.$$

Svolgimento. Il termine generale della serie è $a_n = \frac{3n}{4n^2+1} (x-4)^n$ che è a segno variabile. Studiamo per prima cosa la convergenza assoluta, ricordando che la convergenza assoluta implica anche quella semplice. Applicando il criterio del rapporto otteniamo

$$\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to +\infty} \frac{3(n+1)}{3n} \frac{4n^2 + 1}{4(n+1)^2 + 1} \frac{|x-4|^{n+1}}{|x-4|^n} = |x-4|.$$

Discutiamo i vari casi.

Per |x-4| < 1, cioè per $x \in (3,5)$, la serie $\sum |a_n|$ converge, e quindi la serie $\sum a_n$ converge assolutamente, e quindi anche semplicemente.

Per |x-4| > 1, cioè $a \in (-\infty,3) \cup (5,+\infty)$, la serie $\sum |a_n|$ diverge, e si ha che $\lim_{n\to+\infty} |a_n| = +\infty$. Pertanto a_n non è infinitesima per $n\to+\infty$, cioè la condizione necessaria di convergenza per le serie numeriche non è soddisfatta. Di conseguenza la serie $\sum a_n$ o è divergente o indeterminata (in ogni caso non converge).

Il criterio del rapporto non si applica nel caso |x-4|=1, cioè x=3 oppure x=5. Discutiamo quindi questi casi separatamente.

Per x=5, la serie data è a termini positivi e $a_n=\frac{3n}{4n^2+1}$. Siccome $\frac{3n}{4n^2+1}$ è un infinitesimo di ordine 1 per $n\to +\infty$, per il criterio del confronto la serie in questione ha lo stesso carattere di convergenza della serie armonica. Pertanto la serie data diverge per x=5.

Consideriamo ora x=3. Se si studia la convergenza assoluta si riottiene la stessa serie di x=5. Pertanto diverge assolutamente. Studiamo ora la convergenza semplice: la serie data è a segni alterni e

$$a_n = (-1)^n \frac{3n}{4n^2 + 1}.$$

Ponendo $b_n = \frac{3n}{4n^2+1}$, osserviamo che la serie data è della forma $\sum (-1)^n b_n$, con $\{b_n\}$ successione tale che $b_n \geq 0$ per ogni n (non negativa) e b_n infinitesima (dato che il numeratore ha ordine di infinito inferiore a quello del denominatore). Resta da verificare che b_n sia decrescente. Sia $n \geq 1$; abbiamo che

$$b_{n+1} \le b_n \iff \frac{3(n+1)}{4(n+1)^2+1} \le \frac{3n}{4n^2+1} \iff 4n^2+4n \ge 1 \text{ per ogni } n \ge 1.$$

In alternativa, la monotonia di b_n può essere studiata introducendo $f(u) = \frac{3u}{4u^2+1}$, u > 0, osservando che $b_n = f(n)$ e valutando la monotonia di f(u) mediante lo studio del segno di $f'(u) = 3\frac{1-4u^2}{(4u^2+1)^2}$. Per il criterio di Leibniz la serie data quindi converge per x = 3.

In conclusione la serie converge assolutamente per 3 < x < 5 e converge semplicemente per $3 \le x < 5$.

Esercizio 3 (punti 8) Al variare di $a \in (0, \infty)$, calcolare il seguente limite

$$\lim_{x \to 0^+} \frac{\sin x - x^a}{\arcsin x - x}.$$

Svolgimento. Grazie alle formule di Maclaurin sappiamo che

$$\arcsin x - x = \frac{x^3}{6} + o(x^3) \text{ per } x \to 0^+,$$

e quindi il denominatore è un infinitesimo di ordine 3 per $x \to 0^+$. Dobbiamo determinare l'ordine di infinitesimo del numeratore. Usando nuovamente le formule di Maclaurin si ha

$$\sin x - x^a = x - x^a - \frac{x^3}{6} + o(x^3)$$
 per $x \to 0^+$.

Se a=1, allora il numeratore ha ordine di infinitesimo pari a 3 per $x\to 0^+$; il limite richiesto sarà quindi un numero reale non nullo perché numeratore e denominatore hanno lo stesso ordine di infinitesimo per $x\to 0^+$. Inoltre

$$\lim_{x \to 0^+} \frac{\sin(x) - x^a}{\frac{x^3}{6} + o(x^3)} = \lim_{x \to 0^+} \frac{-\frac{x^3}{6} + o(x^3)}{\frac{x^3}{6} + o(x^3)} = \lim_{x \to 0^+} \frac{\frac{x^3}{6}}{\frac{x^3}{6}} \frac{-1 + o(1)}{1 + o(1)} = -1.$$

Se a > 1, allora $x^a = o(x)$ per $x \to 0^+$, quindi il numeratore ha ordine di infinitesimo pari a 1 per $x \to 0^+$; la funzione di cui è richiesto il limite sarà quindi un infinito per $x \to 0^+$ (l'ordine di infinitesimo del numeratore è inferiore a quello del denominatore). Inoltre

$$\lim_{x \to 0^+} \frac{\sin(x) - x^a}{\frac{x^3}{\epsilon} + o(x^3)} = \lim_{x \to 0^+} \frac{x + o(x)}{\frac{x^3}{\epsilon} + o(x^3)} = \lim_{x \to 0^+} \frac{6}{x^2} = +\infty,$$

per il principio di sostituzione degli infinitesimi di ordine superiore.

Se infine $a \in (0,1)$, allora $x = o(x^a)$ per $x \to 0^+$, quindi il numeratore ha ordine di infinitesimo pari ad $a \in (0,1)$ per $x \to 0^+$; la funzione di cui è richiesto il limite sarà quindi un infinito per $x \to 0^+$ (l'ordine di infinitesimo del numeratore è inferiore a quello del denominatore). Inoltre

$$\lim_{x \to 0^+} \frac{\sin(x) - x^a}{\frac{x^3}{6} + o(x^3)} = \lim_{x \to 0^+} \frac{-x^a + o(x^a)}{\frac{x^3}{6} + o(x^3)} = -\lim_{x \to 0^+} \frac{6}{x^{3-a}} = -\infty$$

dato che a < 3, e per il principio di sostituzione degli infinitesimi di ordine superiore.

Esercizio 4 (punti 8) Si consideri l'EDO data da

$$y'(t) = 3t(y(t))^2$$

- a) trovarne la soluzione generale
- b) trovarne l'unica soluzione $\hat{y}(t)$ che verifica la condizione iniziale $\hat{y}(1) = 1$ e determinarne il suo insieme di definizione.

Svolgimento L'equazione differenziale ordinaria assegnata è del primo ordine non lineare, a variabili separabili.

(a). Se y(t) = k per ogni $t \in \mathbb{R}$ con $k \in \mathbb{R}$, allora y'(t) = 0 per ogni $t \in \mathbb{R}$ e quindi deve essere

$$0 = 3tk^2 \iff tk^2 = 0$$
 per ogni $t \in \mathbb{R}$.

Scegliendo t=1 si trova k=0, quindi l'unica soluzione costante dell'equazione differenziale ordinaria assegnata è la funzione nulla.

Sfruttiamo la separazione delle variabili. Abbiamo, per $y(t) \neq 0$, che

$$y'(t) = 3t (y(t))^2 \implies \frac{y'(t)}{(y(t))^2} = 3t \implies \left(-\frac{1}{y(t)}\right)' = \left(\frac{3t^2}{2}\right)' \implies -\frac{1}{y(t)} = \frac{3t^2}{2} + c, \quad c \in \mathbb{R},$$

da cui ricaviamo

$$y(t) = -\frac{1}{\frac{3t^2}{2} + c} = \frac{-2}{3t^2 + 2c}, \quad c \in \mathbb{R}.$$

Si noti che le funzioni soluzione, y(t), non hanno punti di azzeramento; in altre parole il loro grafico non interseca la retta delle ascisse.

(4.c) (b). Imponendo la condizione iniziale data, troviamo che

$$1 = \frac{-2}{3+2c} \iff 2c = -5 \iff c = -\frac{5}{2}.$$

Quindi la soluzione cercata (notare che è unica!) è

$$y(t) = \frac{-2}{3t^2 - 5}.$$

L'insieme di definizione D di questa funzione è dato da $D=(-\sqrt{5/3},\sqrt{5/3})$.

Esercizio 4b (punti 8) (a scelta per iscritti al corso in $AA \leq 23/24$) Determinare le radici complesse dell'equazione $z^3 = 8i$, scriverle in forma algebrica e disegnarle sul piano di Gauss.

Svolgimento. Il numero 8i ha modulo pari a 8 e argomento pari a $\pi/2$. Posto $z = [\rho, \theta] \neq 0$, in forma trigonometrica il problema diviene

$$\rho^3 = 5,$$
 $3\theta = \frac{\pi}{2} + 2k\pi$ per $k = 0, 1, 2$.

Risolvendo si ottiene che $\rho = \sqrt[3]{8} = 2$ e $\theta = \frac{\pi}{6} + \frac{2k\pi}{3}$, k = 0, 1, 2. Quindi tutte e sole le soluzioni distinte del problema dato sono:

$$z_0 = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) = 2\left(\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) = (\sqrt{3} + i);$$

$$z_1 = 2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right) = 2\left(-\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) = (-\sqrt{3} + i);$$

$$z_2 = 2\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right) = 2(0 - i) = -2i.$$

Tempo: due ore e mezza (comprensive di domande di teoria). Viene corretto solo ciò che è scritto sul foglio intestato. È vietato tenere libri, appunti, telefoni e calcolatrici di qualsiasi tipo.

 $Alcuni\ sviluppi\ di\ Mac\ Laurin.$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

$$\arcsin x = x + \frac{x^3}{6} + \frac{3}{40}x^5 + \dots + \frac{(2n)!}{4^n(n!)^2(2n+1)}x^{2n+1} + o(x^{2n+2})$$

Area dell'Ingegneria dell'Informazione - Canali B e D

Appello del 08.09.2025

TEMA 2

Esercizio 1 (punti 8) Si consideri la funzione

$$f(x) = x - \arctan(x+1).$$

- a) Determinarne il dominio; i limiti ed eventuali asintoti;
- b) discutere la derivabilità di f e calcolarne la derivata f' (compresi i limiti della derivata ove necessario); discutere la monotonia di f e determinare l'estremo inferiore e l'estremo superiore di f ed eventuali punti di minimo e massimo relativo ed assoluto;
- c) discutere la derivabilià di f' e calcolarne la derivata f''; determinare la convessità di f ed eventuali punti di flesso;
- d) fare un abbozzo qualitativo del grafico di f.
- (e) Facoltativo: Mostrare che esiste un unico punto x_0 tale che $f(x_0) = 0$.

Svolgimento. (a). Entrambe le funzioni coinvolte hanno come dominio \mathbb{R} e pertanto $Dom(f) = \mathbb{R}$. Ricordando che la funzione arcotangente è limitata, i noti teoremi sui limiti (somma di funzione limitata con funzione avente limite uguale a $+\infty$ oppure $-\infty$) forniscono

$$\lim_{x \to -\infty} f(x) = -\infty \quad \text{e} \quad \lim_{x \to +\infty} f(x) = +\infty.$$

Possiamo quindi dedurre che f non ha estremi globali essendo illimitata sia superiormente che inferiormente. Inoltre f non ammette né asintoti orizzontali né verticali.

Osserviamo che

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{x - \arctan(x+1)}{x} = \lim_{x \to -\infty} \left(1 - \frac{\arctan(x+1)}{x}\right) = 1$$

dato che la funzione arcotangente è limitata ed il denominatore tende a $-\infty$. Notiamo inoltre

$$\lim_{x \to -\infty} (f(x) - x) = -\lim_{x \to -\infty} \arctan(x+1) = -\lim_{u \to -\infty} \arctan u = \frac{\pi}{2},$$

per il teorema di sostituzione dei limiti ed i noti valori dei limiti della funzione arcotangente. Pertanto la retta di equazione $y = x + \pi/2$ è asintoto obliquo a $-\infty$. Analogamente si mostra che la retta di equazione $y = x - \pi/2$ è asintoto obliquo a $+\infty$.

(b). La funzione è composizione e somma di funzioni derivabili su Dom(f). Pertanto essa è continua e derivabile su Dom(f). Otteniamo che

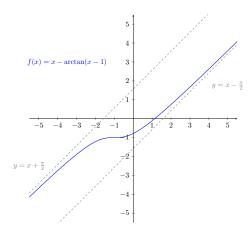
$$f'(x) = 1 - \frac{1}{1 + (x+1)^2} = \frac{(x+1)^2}{1 + (x+1)^2},$$

da cui segue che l'unico punto critico di f è $x_0 = -1$. Inoltre f'(x) > 0 per ogni $x \in \mathbb{R} \setminus \{-1\}$. La funzione è pertanto strettamente crescente e non ammette punti di minimo o massimo, relativo o assoluto. Inoltre: $\inf(f) = -\infty$ e $\sup(f) = \infty$.

$$f''(x) = \left(1 - (1 + (x+1)^2)^{-1}\right)' = \frac{2(x+1)}{(1 + (x+1)^2)^2}.$$

Osservando che il denominatore di f'' è positivo per ogni punto di Dom(f), si conclude che: f è convessa per x > -1, f è concava per x < -1 e $x_0 = -1$ è un punto di flesso a tangente orizzontale.

(d). Abbozzo qualitativo del grafico di f:



(e). Da quanto visto nei punti precedenti, f è continua e strettamente crescente in Dom(f). Inoltre $f(0) = -\arctan(1) = -\pi/4 < 0$ e $f(2) = 2 - \arctan(3) > 0$. Il teorema degli zeri implica che esiste $x_0 \in (-0,2)$ tale che $f(x_0) = 0$. Inoltre, grazie alla stretta monotonia, se $x > x_0$ si ha che $f(x) > f(x_0) = 0$ ed inoltre se $x < x_0$ si ha che $f(x) < f(x_0) = 0$. In conclusione, f ammette un unico punto di azzeramento.

Esercizio 2 (punti 8) Discutere, al variare di $x \in \mathbb{R}$, la convergenza assoluta e semplice della serie

$$\sum_{n=1}^{\infty} \frac{4n}{3n^2 + 1} (x - 2)^n.$$

Svolgimento. Il termine generale della serie è $a_n = \frac{4n}{3n^2+1} (x-2)^n$ che è a segno variabile. Studiamo per prima cosa la convergenza assoluta, ricordando che la convergenza assoluta implica anche quella semplice. Applicando il criterio del rapporto otteniamo

$$\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to +\infty} \frac{4(n+1)}{4n} \frac{3n^2 + 1}{3(n+1)^2 + 1} \frac{|x-2|^{n+1}}{|x-2|^n} = |x-2|.$$

Discutiamo i vari casi.

Per |x-2| < 1, cioè per $x \in (1,3)$, la serie $\sum |a_n|$ converge, e quindi la serie $\sum a_n$ converge assolutamente, e quindi anche semplicemente.

Per |x-2| > 1, cioè $a \in (-\infty,1) \cup (2,+\infty)$, la serie $\sum |a_n|$ diverge, e si ha che $\lim_{n\to+\infty} |a_n| = +\infty$. Pertanto a_n non è infinitesima per $n\to+\infty$, cioè la condizione necessaria di convergenza per le serie numeriche non è soddisfatta. Di conseguenza la serie $\sum a_n$ o è divergente o indeterminata (in ogni caso non converge).

Il criterio del rapporto non si applica nel caso |x-2|=1, cioè x=1 oppure x=3. Discutiamo quindi questi casi separatamente.

Per x=3, la serie data è a termini positivi e $a_n=\frac{4n}{3n^2+1}$. Siccome $\frac{4n}{3n^2+1}$ è un infinitesimo di ordine 1 per $n\to +\infty$, per il criterio del confronto la serie in questione ha lo stesso carattere di convergenza della serie armonica. Pertanto la serie data diverge per x=3.

Consideriamo ora x = 1. Se si studia la convergenza assoluta si riottiene la stessa serie di x = 3. Pertanto diverge assolutamente. Studiamo ora la convergenza semplice: la serie data è a segni alterni e

$$a_n = (-1)^n \, \frac{4n}{3n^2 + 1}.$$

Ponendo $b_n = \frac{4n}{3n^2+1}$, osserviamo che la serie data è della forma $\sum (-1)^n b_n$, con $\{b_n\}$ successione tale che $b_n \geq 0$ per ogni n (non negativa) e b_n infinitesima (dato che il numeratore ha ordine di infinito inferiore a quello del denominatore). Resta da verificare che b_n sia decrescente. Sia $n \geq 1$; abbiamo che

$$b_{n+1} \le b_n \iff \frac{4(n+1)}{3(n+1)^2+1} \le \frac{4n}{3n^2+1} \iff 3n^2+3n \ge 1 \quad \text{per ogni } n \ge 1.$$

In alternativa, la monotonia di b_n può essere studiata introducendo $f(u) = \frac{4u}{3u^2+1}$, u > 0, osservando che $b_n = f(n)$ e valutando la monotonia di f(u) mediante lo studio del segno di $f'(u) = 4\frac{1-3u^2}{(3u^2+1)^2}$. Per il criterio di Leibniz la serie data quindi converge per x = 1.

In conclusione la serie converge assolutamente per 1 < x < 3 e converge semplicemente per $1 \le x < 3$.

Esercizio 3 (punti 8) Al variare di $a \in (0, \infty)$, calcolare il seguente limite

$$\lim_{x \to 0^+} \frac{1 - \cos x - \frac{x^a}{2}}{\arcsin x - x}.$$

Svolgimento. Grazie alle formule di Maclaurin sappiamo che

$$\arcsin x - x = \frac{x^3}{6} + o(x^3) \text{ per } x \to 0^+,$$

e quindi il denominatore è un infinitesimo di ordine 3 per $x \to 0^+$. Dobbiamo determinare l'ordine di infinitesimo del numeratore. Usando nuovamente le formule di Maclaurin si ha

$$1 - \cos x - \frac{x^a}{2} = \frac{x^2}{2} - \frac{x^a}{2} - \frac{x^4}{24} + o(x^5) \quad \text{per } x \to 0^+.$$

Se a=2, allora il numeratore ha ordine di infinitesimo pari a 4 per $x\to 0^+$; il limite richiesto sarà quindi zero (l'ordine di infinitesimo del numeratore è superiore a quello del denominatore). Possiamo anche scrivere il calcolo come segue:

$$\lim_{x \to 0^+} \frac{1 - \cos x - \frac{x^a}{2}}{\frac{x^3}{6} + o(x^3)} = \lim_{x \to 0^+} \frac{-\frac{x^4}{24} + o(x^5)}{\frac{x^3}{6} + o(x^3)} = \lim_{x \to 0^+} \frac{\frac{x^4}{24}}{\frac{x^3}{6}} \frac{-1 + o(1)}{1 + o(1)} = -\lim_{x \to 0^+} \frac{x}{4} = 0.$$

Se a > 2 allora $x^a = o(x^2)$ per $x \to 0^+$, quindi il numeratore ha ordine di infinitesimo pari a 2 per $x \to 0^+$; la funzione di cui è richiesto il limite sarà quindi un infinito per $x \to 0^+$ (l'ordine di infinitesimo del numeratore è inferiore a quello del denominatore). Inoltre

$$\lim_{x \to 0^+} \frac{1 - \cos x - \frac{x^a}{2}}{\frac{x^3}{6} + o(x^3)} = \lim_{x \to 0^+} \frac{\frac{x^2}{2} + o(x^2)}{\frac{x^3}{6} + o(x^3)} = \lim_{x \to 0^+} \frac{3}{x} = +\infty,$$

per il principio di sostituzione degli infinitesimi di ordine superiore.

Se infine $a \in (0,2)$, allora $x^2 = o(x^a)$ per $x \to 0^+$, quindi il numeratore ha ordine di infinitesimo pari ad $a \in (0,2)$ per $x \to 0^+$; la funzione di cui è richiesto il limite sarà quindi un infinito per $x \to 0^+$ (l'ordine di infinitesimo del numeratore è inferiore a quello del denominatore). Inoltre

$$\lim_{x \to 0^+} \frac{1 - \cos x - \frac{x^a}{2}}{\frac{x^3}{6} + o(x^3)} = \lim_{x \to 0^+} \frac{-\frac{x^a}{2} + o(x^a)}{\frac{x^3}{6} + o(x^3)} = -\lim_{x \to 0^+} \frac{3}{x^{3-a}} = -\infty$$

dato che a < 3, e per il principio di sostituzione degli infinitesimi di ordine superiore.

Esercizio 4 (punti 8) Si consideri l'EDO data da

$$y'(t) = 2t(y(t))^2$$

- a) trovarne la soluzione generale
- b) trovarne l'unica soluzione $\hat{y}(t)$ che verifica la condizione iniziale $\hat{y}(1) = 1$ e determinarne il suo insieme di definizione.

Svolgimento. L'equazione differenziale ordinaria assegnata è del primo ordine non lineare, a variabili separabili.

(a). Se y(t) = k per ogni $t \in \mathbb{R}$ con $k \in \mathbb{R}$, allora y'(t) = 0 per ogni $t \in \mathbb{R}$ e quindi deve essere

$$0 = 2tk^2 \iff tk^2 = 0$$
 per ogni $t \in \mathbb{R}$.

Scegliendo t=1 si trova k=0, quindi l'unica soluzione costante dell'equazione differenziale ordinaria assegnata è la funzione nulla. Sfruttiamo la separazione delle variabili. Abbiamo, per $y(t) \neq 0$, che

$$y'(t) = 2t (y(t))^2 \implies \frac{y'(t)}{(y(t))^2} = 2t \implies \left(-\frac{1}{y(t)}\right)' = (t^2)' \implies -\frac{1}{y(t)} = t^2 + c, \quad c \in \mathbb{R},$$

da cui ricaviamo

$$y(t) = -\frac{1}{t^2 + c}, \quad c \in \mathbb{R}.$$

Si noti che le funzioni soluzione, y(t), non hanno punti di azzeramento; in altre parole il loro grafico non interseca la retta delle ascisse.

(b). Imponendo la condizione iniziale data, troviamo che

$$1 = -\frac{1}{1+c} \iff c = -2.$$

Quindi la soluzione cercata (notare che è unica!) è

$$y(t) = \frac{-1}{t^2 - 2}.$$

L'insieme di definizione D di questa funzione è dato da $D = (-\sqrt{2}, \sqrt{2})$.

Esercizio 4b (punti 8) (a scelta per iscritti al corso in $AA \leq 23/24$) Determinare le radici complesse dell'equazione $z^3 = 8i$, scriverle in forma algebrica e disegnarle sul piano di Gauss.

Svolgimento. Vedi Tema 1.

Tempo: due ore e mezza (comprensive di domande di teoria). Viene corretto solo ciò che è scritto sul foglio intestato. È vietato tenere libri, appunti, telefoni e calcolatrici di qualsiasi tipo.

Alcuni sviluppi di Mac Laurin.

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$
$$\arcsin x = x + \frac{x^3}{6} + \frac{3}{40}x^5 + \dots + \frac{(2n)!}{4^n(n!)^2(2n+1)}x^{2n+1} + o(x^{2n+2})$$

Area dell'Ingegneria dell'Informazione - Canali B e D

Appello del 08.09.2025

TEMA 3

Esercizio 1 (punti 8) Si consideri la funzione

$$f(x) = x - \arctan(x+2).$$

- a) Determinarne il dominio; i limiti ed eventuali asintoti;
- b) discutere la derivabilità di f e calcolarne la derivata f' (compresi i limiti della derivata ove necessario); discutere la monotonia di f e determinare l'estremo inferiore e l'estremo superiore di f ed eventuali punti di minimo e massimo relativo ed assoluto;
- c) discutere la derivabilià di f' e calcolarne la derivata f''; determinare la convessità di f ed eventuali punti di flesso;
- d) fare un abbozzo qualitativo del grafico di f.
- (e) Facoltativo: Mostrare che esiste un unico punto x_0 tale che $f(x_0) = 0$.

Svolgimento. (a). Entrambe le funzioni coinvolte hanno come dominio \mathbb{R} e pertanto $Dom(f) = \mathbb{R}$. Ricordando che la funzione arcotangente è limitata, i noti teoremi sui limiti (somma di funzione limitata con funzione avente limite uguale a $+\infty$ oppure $-\infty$) forniscono

$$\lim_{x \to -\infty} f(x) = -\infty \quad \text{e} \quad \lim_{x \to +\infty} f(x) = +\infty.$$

Possiamo quindi dedurre che f non ha estremi globali essendo illimitata sia superiormente che inferiormente. Inoltre f non ammette né asintoti orizzontali né verticali.

Osserviamo che

$$\lim_{x\to -\infty}\frac{f(x)}{x}=\lim_{x\to -\infty}\frac{x-\arctan(x+1)}{x}=\lim_{x\to -\infty}\Bigl(1-\frac{\arctan(x+2)}{x}\Bigr)=1$$

dato che la funzione arcotangente è limitata ed il denominatore tende a $-\infty$. Notiamo inoltre

$$\lim_{x \to -\infty} (f(x) - x) = -\lim_{x \to -\infty} \arctan(x + 2) = -\lim_{u \to -\infty} \arctan u = \frac{\pi}{2},$$

per il teorema di sostituzione dei limiti ed i noti valori dei limiti della funzione arcotangente. Pertanto la retta di equazione $y = x + \pi/2$ è asintoto obliquo a $-\infty$. Analogamente si mostra che la retta di equazione $y = x - \pi/2$ è asintoto obliquo a $+\infty$.

(b). La funzione è composizione e somma di funzioni derivabili su Dom(f). Pertanto essa è continua e derivabile su Dom(f). Otteniamo che

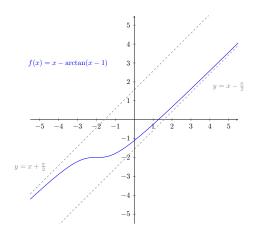
$$f'(x) = 1 - \frac{1}{1 + (x+2)^2} = \frac{(x+2)^2}{1 + (x+2)^2},$$

da cui segue che l'unico punto critico di f è $x_0 = -2$. Inoltre f'(x) > 0 per ogni $x \in \mathbb{R} \setminus \{-2\}$. La funzione è pertanto strettamente crescente e non ammette punti di minimo o massimo, relativo o assoluto. Inoltre: $\inf(f) = -\infty$ e $\sup(f) = \infty$.

$$f''(x) = \left(1 - (1 + (x+2)^2)^{-1}\right)' = \frac{2(x+2)}{(1 + (x+2)^2)^2}.$$

Osservando che il denominatore di f'' è positivo per ogni punto di Dom(f), si conclude che: f è convessa per x > -2, f è concava per x < -2 e $x_0 = -2$ è un punto di flesso a tangente orizzontale.

(d). Abbozzo qualitativo del grafico di f:



(e). Da quanto visto nei punti precedenti, f è continua e strettamente crescente in Dom(f). Inoltre $f(2) = 2 - \arctan(4) > 0$ e $f(0) = -\arctan(2) < 0$. Il teorema degli zeri implica che esiste $x_0 \in (0, 2)$ tale che $f(x_0) = 0$. Inoltre, grazie alla stretta monotonia, se $x > x_0$ si ha che $f(x) > f(x_0) = 0$ ed inoltre se $x < x_0$ si ha che $f(x) < f(x_0) = 0$. In conclusione, f ammette un unico punto di azzeramento.

Esercizio 2 (punti 8) Discutere, al variare di $x \in \mathbb{R}$, la convergenza assoluta e semplice della serie

$$\sum_{n=1}^{\infty} \frac{2n}{3n^2 + 1} (x+2)^n.$$

Svolgimento. Il termine generale della serie è $a_n = \frac{2n}{3n^2+1}(x+2)^n$ che è a segno variabile. Studiamo per prima cosa la convergenza assoluta, ricordando che la convergenza assoluta implica anche quella semplice. Applicando il criterio del rapporto otteniamo

$$\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to +\infty} \frac{2(n+1)}{2n} \frac{3n^2 + 1}{3(n+1)^2 + 1} \frac{|x+2|^{n+1}}{|x+2|^n} = |x+2|.$$

Discutiamo i vari casi.

Per |x+2| < 1, cioè per $x \in (-3,-1)$, la serie $\sum |a_n|$ converge, e quindi la serie $\sum a_n$ converge assolutamente, e quindi anche semplicemente.

Per |x+2| > 1, cioè $a \in (-\infty, -3) \cup (-1, +\infty)$, la serie $\sum |a_n|$ diverge, e si ha che $\lim_{n \to +\infty} |a_n| = +\infty$. Pertanto a_n non è infinitesima per $n \to +\infty$, cioè la condizione necessaria di convergenza per le serie numeriche non è soddisfatta. Di conseguenza la serie $\sum a_n$ o è divergente o indeterminata (in ogni caso non converge).

Il criterio del rapporto non si applica nel caso |x+2|=1, cioè x=-3 oppure x=-1. Discutiamo quindi questi casi separatamente.

Per x = -1, la serie data è a termini positivi e $a_n = \frac{2n}{3n^2+1}$. Siccome $\frac{2n}{3n^2+1}$ è un infinitesimo di ordine 1 per $n \to +\infty$, per il criterio del confronto la serie in questione ha lo stesso carattere di convergenza della serie armonica. Pertanto la serie data diverge per x = -1.

Consideriamo ora x = -3. Se si studia la convergenza assoluta si riottiene la stessa serie di x = -1. Pertanto diverge assolutamente. Studiamo ora la convergenza semplice: la serie data è a segni alterni e

$$a_n = (-1)^n \, \frac{2n}{3n^2 + 1}.$$

Ponendo $b_n = \frac{2n}{3n^2+1}$, osserviamo che la serie data è della forma $\sum (-1)^n b_n$, con $\{b_n\}$ successione tale che $b_n \geq 0$ per ogni n (non negativa) e b_n infinitesima (dato che il numeratore ha ordine di infinito inferiore a quello del denominatore). Resta da verificare che b_n sia decrescente. Sia $n \geq 1$; abbiamo che

$$b_{n+1} \le b_n \iff \frac{2(n+1)}{3(n+1)^2+1} \le \frac{2n}{3n^2+1} \iff 3n^2+3n \ge 1 \text{ per ogni } n \ge 1.$$

In alternativa, la monotonia di b_n può essere studiata introducendo $f(u) = \frac{2u}{3u^2+1}$, u > 0, osservando che $b_n = f(n)$ e valutando la monotonia di f(u) mediante lo studio del segno di $f'(u) = 2\frac{1-3u^2}{(3u^2+1)^2}$. Per il criterio di Leibniz la serie data quindi converge per x = -3.

In conclusione la serie converge assolutamente per -3 < x < -1 e converge semplicemente per $-3 \le x < -1$.

Esercizio 3 (punti 8) Al variare di $a \in (0, \infty)$, calcolare il seguente limite

$$\lim_{x \to 0^+} \frac{\tan x - x^a}{\arctan x - x}.$$

Svolgimento. Grazie alle formule di Maclaurin sappiamo che

$$\arctan x - x = -\frac{x^3}{3} + o(x^4) \quad \text{per } x \to 0^+,$$

e quindi il denominatore è un infinitesimo di ordine 3 per $x \to 0^+$. Dobbiamo determinare l'ordine di infinitesimo del numeratore. Usando nuovamente le formule di Maclaurin si ha

$$\tan x - x^a = x - x^a + \frac{x^3}{3} + o(x^4)$$
 per $x \to 0^+$.

Se a=1, allora il numeratore ha ordine di infinitesimo pari a 3 per $x\to 0^+$; il limite richiesto sarà un numero reale non nullo perché numeratore e denominatore hanno lo stesso ordine di infinitesimo per $x\to 0^+$. Inoltre

$$\lim_{x \to 0^+} \frac{\tan x - x^a}{\arctan x - x} = \lim_{x \to 0^+} \frac{\frac{x^3}{3} + o(x^4)}{-\frac{x^3}{3} + o(x^4)} = \lim_{x \to 0^+} \frac{\frac{x^3}{3}}{\frac{x^3}{3}} \frac{1 + o(x)}{-1 + o(x)} = -1.$$

Se a > 1, allora $x^a = o(x)$ per $x \to 0^+$, quindi il numeratore ha ordine di infinitesimo pari a 1 per $x \to 0^+$; la funzione di cui è richiesto il limite sarà quindi un infinito per $x \to 0^+$ (l'ordine di infinitesimo del numeratore è inferiore a quello del denominatore). Inoltre

$$\lim_{x \to 0^+} \frac{\tan x - x^a}{\arctan x - x} = \lim_{x \to 0^+} \frac{x + o(x)}{-\frac{x^3}{2} + o(x^4)} = \lim_{x \to 0^+} \frac{-3}{x^2} = -\infty,$$

per il principio di sostituzione degli infinitesimi di ordine superiore.

Se infine $a \in (0,1)$, allora $x = o(x^a)$ per $x \to 0^+$, quindi il numeratore ha ordine di infinitesimo pari ad $a \in (0,1)$ per $x \to 0^+$; la funzione di cui è richiesto il limite sarà quindi un infinito per $x \to 0^+$ (l'ordine di infinitesimo del numeratore è inferiore a quello del denominatore). Inoltre

$$\lim_{x \to 0^+} \frac{\tan x - x^a}{\arctan x - x} = \lim_{x \to 0^+} \frac{-x^a + o(x^a)}{-\frac{x^3}{3} + o(x^4)} = \lim_{x \to 0^+} \frac{3}{x^{3-a}} = +\infty$$

dato che a < 3, e per il principio di sostituzione degli infinitesimi di ordine superiore.

Esercizio 4 (punti 8) Si consideri l'EDO data da

$$y'(t) = 4t(y(t))^2$$

- a) trovarne la soluzione generale
- b) trovarne l'unica soluzione $\hat{y}(t)$ che verifica la condizione iniziale $\hat{y}(1) = 1$ e determinarne il suo insieme di definizione.

Svolgimento. L'equazione differenziale ordinaria assegnata è del primo ordine non lineare, a variabili separabili.

(a). Se y(t) = k per ogni $t \in \mathbb{R}$ con $k \in \mathbb{R}$, allora y'(t) = 0 per ogni $t \in \mathbb{R}$ e quindi deve essere

$$0 = 4tk^2 \iff tk^2 = 0$$
 per ogni $t \in \mathbb{R}$.

Scegliendo t=1 si trova k=0, quindi l'unica soluzione costante dell'equazione differenziale ordinaria assegnata è la funzione nulla. Sfruttiamo la separazione delle variabili. Abbiamo, per $y(t) \neq 0$, che

$$y'(t) = 4t (y(t))^2 \implies \frac{y'(t)}{(y(t))^2} = 4t \implies \left(-\frac{1}{y(t)}\right)' = (2t^2)' \implies -\frac{1}{y(t)} = 2t^2 + c, \quad c \in \mathbb{R},$$

da cui ricaviamo

$$y(t) = \frac{-1}{2t^2 + c}, \quad c \in \mathbb{R}.$$

Si noti che le funzioni soluzione, y(t), non hanno punti di azzeramento; in altre parole il loro grafico non interseca la retta delle ascisse.

(b). Imponendo la condizione iniziale data, troviamo che

$$1 = \frac{-1}{2+c} \iff c = -3.$$

Quindi la soluzione cercata (notare che è unica!) è

$$y(t) = \frac{-1}{2t^2 - 3}.$$

L'insieme di definizione D di questa funzione è dato da $D = (-\sqrt{3/2}, \sqrt{3/2})$.

Esercizio 4b (punti 8) (a scelta per iscritti al corso in $AA \leq 23/24$) Determinare le radici complesse dell'equazione $z^3 = 8i$, scriverle in forma algebrica e disegnarle sul piano di Gauss.

Svolgimento. Vedi Tema 1.

Tempo: due ore e mezza (comprensive di domande di teoria). Viene corretto solo ciò che è scritto sul foglio intestato. È vietato tenere libri, appunti, telefoni e calcolatrici di qualsiasi tipo.

Alcuni sviluppi di Mac Laurin.

$$\tan x = x + \frac{x^3}{3} + \frac{2}{15}x^5 + o(x^6)$$
$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$$

Area dell'Ingegneria dell'Informazione - Canali B e D

Appello del 08.09.2025

TEMA 4

Esercizio 1 (punti 8) Si consideri la funzione

$$f(x) = x - \arctan(x - 2).$$

- a) Determinarne il dominio; i limiti ed eventuali asintoti;
- b) discutere la derivabilità di f e calcolarne la derivata f' (compresi i limiti della derivata ove necessario); discutere la monotonia di f e determinare l'estremo inferiore e l'estremo superiore di f ed eventuali punti di minimo e massimo relativo ed assoluto;
- c) discutere la derivabilià di f' e calcolarne la derivata f''; determinare la convessità di f ed eventuali punti di flesso;
- d) fare un abbozzo qualitativo del grafico di f.
- (e) Facoltativo: Mostrare che esiste un unico punto x_0 tale che $f(x_0) = 0$.

Svolgimento. (a). Entrambe le funzioni coinvolte hanno come dominio \mathbb{R} e pertanto $Dom(f) = \mathbb{R}$. Ricordando che la funzione arcotangente è limitata, i noti teoremi sui limiti (somma di funzione limitata con funzione avente limite uguale a $+\infty$ oppure $-\infty$) forniscono

$$\lim_{x \to -\infty} f(x) = -\infty \quad \text{e} \quad \lim_{x \to +\infty} f(x) = +\infty.$$

Possiamo quindi dedurre che f non ha estremi globali essendo illimitata sia superiormente che inferiormente. Inoltre f non ammette né asintoti orizzontali né verticali.

Osserviamo che

$$\lim_{x\to -\infty}\frac{f(x)}{x}=\lim_{x\to -\infty}\frac{x-\arctan(x-2)}{x}=\lim_{x\to -\infty}\Bigl(1-\frac{\arctan(x-2)}{x}\Bigr)=1$$

dato che la funzione arcotangente è limitata ed il denominatore tende a $-\infty$. Notiamo inoltre

$$\lim_{x \to -\infty} (f(x) - x) = -\lim_{x \to -\infty} \arctan(x - 2) = -\lim_{u \to -\infty} \arctan u = \frac{\pi}{2},$$

per il teorema di sostituzione dei limiti ed i noti valori dei limiti della funzione arcotangente. Pertanto la retta di equazione $y = x + \pi/2$ è asintoto obliquo a $-\infty$. Analogamente si mostra che la retta di equazione $y = x - \pi/2$ è asintoto obliquo a $+\infty$.

(b). La funzione è composizione e somma di funzioni derivabili su Dom(f). Pertanto essa è continua e derivabile su Dom(f). Otteniamo che

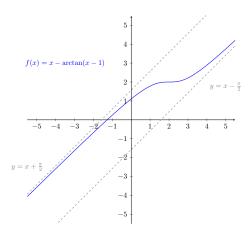
$$f'(x) = 1 - \frac{1}{1 + (x-2)^2} = \frac{(x-2)^2}{1 + (x-2)^2},$$

da cui segue che l'unico punto critico di f è $x_0 = 2$. Inoltre f'(x) > 0 per ogni $x \in \mathbb{R} \setminus \{2\}$. La funzione è pertanto strettamente crescente e non ammette punti di minimo o massimo, relativo o assoluto. Inoltre: $\inf(f) = -\infty$ e $\sup(f) = \infty$.

$$f''(x) = (1 - (1 + (x - 2)^2)^{-1})' = \frac{2(x - 2)}{(1 + (x - 2)^2)^2}.$$

Osservando che il denominatore di f'' è positivo per ogni punto di Dom(f), si conclude che: f è convessa per x > 2, f è concava per x < 2 e $x_0 = 2$ è un punto di flesso a tangente orizzontale.

(d). Abbozzo qualitativo del grafico di f:



(e). Da quanto visto nei punti precedenti, f è continua e strettamente crescente in Dom(f). Inoltre $f(-2) = -2 - \arctan(-4) = -2 + \arctan(4) < 0$ e $f(0) = -\arctan(-2) = \arctan(2) > 0$. Il teorema degli zeri implica che esiste $x_0 \in (-2,0)$ tale che $f(x_0) = 0$. Inoltre, grazie alla stretta monotonia, se $x > x_0$ si ha che $f(x) > f(x_0) = 0$ ed inoltre se $x < x_0$ si ha che $f(x) < f(x_0) = 0$. In conclusione, f ammette un unico punto di azzeramento.

Esercizio 2 (punti 8) Discutere, al variare di $x \in \mathbb{R}$, la convergenza assoluta e semplice della serie

$$\sum_{n=1}^{\infty} \frac{4n}{2n^2 + 1} (x+2)^n.$$

Svolgimento. Il termine generale della serie è $a_n = \frac{4n}{2n^2+1} (x+2)^n$ che è a segno variabile. Studiamo per prima cosa la convergenza assoluta, ricordando che la convergenza assoluta implica anche quella semplice. Applicando il criterio del rapporto otteniamo

$$\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to +\infty} \frac{4(n+1)}{4n} \frac{2n^2 + 1}{2(n+1)^2 + 1} \frac{|x+2|^{n+1}}{|x+2|^n} = |x+2|.$$

Discutiamo i vari casi.

Per |x+2| < 1, cioè per $x \in (-3,-1)$, la serie $\sum |a_n|$ converge, e quindi la serie $\sum a_n$ converge assolutamente, e quindi anche semplicemente.

Per |x+2| > 1, cioè $a \in (-\infty, -3) \cup (-1, +\infty)$, la serie $\sum |a_n|$ diverge, e si ha che $\lim_{n \to +\infty} |a_n| = +\infty$. Pertanto a_n non è infinitesima per $n \to +\infty$, cioè la condizione necessaria di convergenza per le serie numeriche non è soddisfatta. Di conseguenza la serie $\sum a_n$ o è divergente o indeterminata (in ogni caso non converge).

Il criterio del rapporto non si applica nel caso |x + 2| = 1, cioè x = -3 oppure x = -1. Discutiamo quindi questi casi separatamente.

Per x = -1, la serie data è a termini positivi e $a_n = \frac{4n}{2n^2+1}$. Siccome $\frac{4n}{2n^2+1}$ è un infinitesimo di ordine 1 per $n \to +\infty$, per il criterio del confronto la serie in questione ha lo stesso carattere di convergenza della serie armonica. Pertanto la serie data diverge per x = -1.

Consideriamo ora x = -3. Se si studia la convergenza assoluta si riottiene la stessa serie di x = -1. Pertanto diverge assolutamente. Studiamo ora la convergenza semplice: la serie data è a segni alterni e

$$a_n = (-1)^n \, \frac{4n}{2n^2 + 1}.$$

Ponendo $b_n = \frac{4n}{2n^2+1}$, osserviamo che la serie data è della forma $\sum (-1)^n b_n$, con $\{b_n\}$ successione tale che $b_n \geq 0$ per ogni n (non negativa) e b_n infinitesima (dato che il numeratore ha ordine di infinito inferiore a quello del denominatore). Resta da verificare che b_n sia decrescente. Sia $n \geq 1$; abbiamo che

$$b_{n+1} \le b_n \iff \frac{4(n+1)}{2(n+1)^2+1} \le \frac{4n}{2n^2+1} \iff 2n^2+2n \ge 1 \text{ per ogni } n \ge 1.$$

In alternativa, la monotonia di b_n può essere studiata introducendo $f(u) = \frac{4u}{2u^2+1}$, u > 0, osservando che $b_n = f(n)$ e valutando la monotonia di f(u) mediante lo studio del segno di $f'(u) = 4\frac{1-2u^2}{(2u^2+1)^2}$. Per il criterio di Leibniz la serie data quindi converge per x = -3.

In conclusione la serie converge assolutamente per -3 < x < -1 e converge semplicemente per $-3 \le x < -1$.

Esercizio 3 (punti 8) Al variare di $a \in (0, \infty)$, calcolare il seguente limite

$$\lim_{x \to 0^+} \frac{\log(1+x) - x^a}{\arctan x - x}.$$

Svolgimento. Grazie alle formule di Maclaurin sappiamo che

$$\arctan x - x = -\frac{x^3}{3} + o(x^4) \text{ per } x \to 0^+,$$

e quindi il denominatore è un infinitesimo di ordine 3 per $x \to 0^+$. Dobbiamo determinare l'ordine di infinitesimo del numeratore. Usando nuovamente le formule di Maclaurin si ha

$$\log(1+x) - x^a = x - x^a - \frac{x^2}{2} + o(x^2)$$
 per $x \to 0^+$.

Se a=1, allora il numeratore ha ordine di infinitesimo pari a 2 per $x\to 0^+$; la funzione di cui è richiesto il limite sarà un infinito per $x\to 0^+$ (l'ordine di infinitesimo del numeratore è inferiore a quello del denominatore). Inoltre

$$\lim_{x \to 0^+} \frac{\log(1+x) - x^a}{\arctan x - x} = \lim_{x \to 0^+} \frac{-\frac{x^2}{2} + o(x^2)}{-\frac{x^3}{3} + o(x^4)} = \lim_{x \to 0^+} \frac{\frac{x^2}{2}}{\frac{x^3}{3}} \frac{1 + o(1)}{1 + o(1)} = \lim_{x \to 0^+} \frac{3}{2x} = +\infty,$$

per il principio di sostituzione degli infinitesimi di ordine superiore.

Se a > 1, allora $x^a = o(x)$ per $x \to 0^+$, quindi il numeratore ha ordine di infinitesimo pari a 1 per $x \to 0^+$; la funzione di cui è richiesto il limite sarà quindi un infinito per $x \to 0^+$ (l'ordine di infinitesimo del numeratore è inferiore a quello del denominatore). Inoltre

$$\lim_{x\to 0^+}\frac{\log(1+x)-x^a}{\arctan x-x}=\lim_{x\to 0^+}\frac{x+o(x)}{-\frac{x^3}{3}+o(x^4)}=\lim_{x\to 0^+}\frac{-3}{x^2}=-\infty,$$

per il principio di sostituzione degli infinitesimi di ordine superiore.

Se infine $a \in (0,1)$, allora $x = o(x^a)$ per $x \to 0^+$, quindi il numeratore ha ordine di infinitesimo pari ad $a \in (0,1)$ per $x \to 0^+$; la funzione di cui è richiesto il limite sarà quindi un infinito per $x \to 0^+$ (l'ordine di infinitesimo del numeratore è inferiore a quello del denominatore). Inoltre

$$\lim_{x \to 0^+} \frac{\log(1+x) - x^a}{\arctan x - x} = \lim_{x \to 0^+} \frac{-x^a + o(x^a)}{-\frac{x^3}{3} + o(x^4)} = \lim_{x \to 0^+} \frac{3}{x^{3-a}} = +\infty$$

dato che a < 3, e per il principio di sostituzione degli infinitesimi di ordine superiore.

Esercizio 4 (punti 8) Si consideri l'EDO data da

$$y'(t) = 5t(y(t))^2$$

- a) trovarne la soluzione generale
- b) trovarne l'unica soluzione $\hat{y}(t)$ che verifica la condizione iniziale $\hat{y}(1) = 1$ e determinarne il suo insieme di definizione.

Svolgimento. L'equazione differenziale ordinaria assegnata è del primo ordine non lineare, a variabili separabili.

(a). Se y(t) = k per ogni $t \in \mathbb{R}$ con $k \in \mathbb{R}$, allora y'(t) = 0 per ogni $t \in \mathbb{R}$ e quindi deve essere

$$0 = 5tk^2 \iff tk^2 = 0$$
 per ogni $t \in \mathbb{R}$.

Scegliendo t=1 si trova k=0, quindi l'unica soluzione costante dell'equazione differenziale ordinaria assegnata è la funzione nulla. Sfruttiamo la separazione delle variabili. Abbiamo, per $y(t) \neq 0$, che

$$y'(t) = 5t (y(t))^2 \implies \frac{y'(t)}{(y(t))^2} = 5t \implies \left(-\frac{1}{y(t)}\right)' = \left(\frac{5t^2}{2}\right)' \implies -\frac{1}{y(t)} = \frac{5t^2}{2} + c, \quad c \in \mathbb{R},$$

da cui ricaviamo

$$y(t) = -\frac{1}{\frac{5t^2}{2} + c} = \frac{-2}{5t^2 + 2c}, \quad c \in \mathbb{R}.$$

Si noti che le funzioni soluzione, y(t), non hanno punti di azzeramento; in altre parole il loro grafico non interseca la retta delle ascisse.

(b). Imponendo la condizione iniziale data, troviamo che

$$1 = \frac{-2}{5+2c} \iff 2c = -7 \iff c = -\frac{7}{2}.$$

Quindi la soluzione cercata (notare che è unica!) è

$$y(t) = \frac{-2}{5t^2 - 7}.$$

L'insieme di definizione D di questa funzione è dato da $D = (-\sqrt{7/5}, \sqrt{7/5})$.

Esercizio 4b (punti 8) (a scelta per iscritti al corso in $AA \leq 23/24$) Determinare le radici complesse dell'equazione $z^3 = 8i$, scriverle in forma algebrica e disegnarle sul piano di Gauss.

Tempo: due ore e mezza (comprensive di domande di teoria). Viene corretto solo ciò che è scritto sul foglio intestato. È vietato tenere libri, appunti, telefoni e calcolatrici di qualsiasi tipo.

 $Alcuni\ sviluppi\ di\ Mac\ Laurin.$

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n+1} \frac{x^n}{n} + o(x^n)$$
$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$$