ON THE LIMIT UNDER SCALING OF
POLYNOMIAL LAGRANGE INTERPOLATION
ON ANALYTIC MANIFOLDS

Len Bos and Stefano De Marchi!

Abstract

We consider interpolation at points on an analytic manifold M C IR%
and describe the limiting behaviour of the associated fundamental Lagrange
polynomials as the points coalesce.

1 Polynomial interpolation on Spheres

Univariate polynomial interpolation is a classical and much studied subject. In
recent years there has been a growing interest in the corresponding multivariate
problem (cf. [3, 4, 5, 6, 7] and references therein) including the important special
case of interpolation at points restricted to lie on special surfaces such as a sphere
(cf. [2, 8, 9]).

In our recent paper [2] we described the interesting behaviour of polynomial
interpolation on spheres as the points coalesce under an angular scaling, a study
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motivated in part by an application to radial basis functions (cf. [8]). Subse-
quently we have discovered that this is a special instance of a much more general
phenomenon for polynomial interpolation on analytic manifolds, and it is the gen-
eralization that is the subject of this current work.

To make our notions more precise, we begin with a description of multivariate
polynomial interpolation.

Suppose that M C IR" is compact (we shall later assume that M is in fact
(a piece of) an analytic manifold). We shall denote by P, (M) the space of the
polynomials of degree at most n in d real variables, restricted to M. As a vector
space, P,(M) has a dimension d,, and a basis {p1, ..., pa, }-

Now, given a set X = {z!,...,2%} C M, of d, distinct points and a function
f i M — IR, the polynomial interpolation problem, is to find a polynomial
p € Pr(M) such that
p(z)=f(z), ze€X.

If p(x) is written in the form p = Y% a;p;, then this amounts to solving the system
n . .
Zazp’L(x]):f(xj) ) 1 S]Sdna
i=1

for some coefficients a;, which is uniquely possible provided the associated Van-
dermonde determinant

VDM (z',...,x%) = det [p,(mj)]

1<i,j<dn
We say then that the interpolation problem is unisolvent. If it is indeed the case,
then we may form the fundamental Lagrange polynomials defined by
_VDM(a!, ..., ot ot L ade)
B VDM (..., %) ’

li(z; X) 1<i<d,. (1)

They have the property that /;(z7; X) = &, 1 < 4,5 < dj, and hence the
interpolating polynomial may then be succinctly written as

p(z) = z F@)li(; X) .

Now to describe the result of [2], suppose that M = S* ' = {z € IR? : |z|> =1}
is the unit sphere, and write the points of X as

X = {(a:'“,yk) €S 1<k< d.},
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where z¥ € IR and y* € IR. We may express each point (z*,4*) in spherical
coordinates by

8 = cos(6¥)sin(65)
8 = cos(0¥) cos(65) sin(6%)
¥ = cos(6¥)cos(6%) - cos(65_,) cos(6k )

y* = sin(fy)
We refer to this choice of coordinates by (z*,y*) = (z*(0*%),y(6*)), 6* € IR**.

Supposing that the associated Vandermonde determinant is non-zero, to these
points we associate a second interpolation problem for polynomials of degree n on
the paraboloid

Vit = {0, =07 +...+ 05 ,} C IR*,

with interpolation point set
e={6"10"?) : 1<k<d,}.
(We emphasize that these are the angles of our original spherical point set!)

If this second problem is again unisolvent, we denote the corresponding La-
grange polynomials by L;(0), 1 <i < d,.

Now, consider the points, X C S~ ! scaled by an angular factor t:

¥ = cos(t6¥) sin(t0%)
¥ = cos(tF) cos(t05) sin(t6%)

¥ = cos(t0F) cos(t0) - - - cos(t0%_,) cos(t0_,)
y* = sin(t}) ;

which we refer to as X;. Then the main result of [2] is

Theorem 1
%i_r}r&li(x(tﬁ);Xt) =L;0), 1<i<d,.

Of course, we might naturally ask what is the effect of the specific type of scaling
on the limiting interpolation. As a discussion of other scalings also leads us natu-
rally to the case of surfaces more general than just spheres, we first consider this
problem.
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Figure 1: The tangent plane at the point a

Hence, let a € S% ! be a point to which we wish to have our interpolation
points coalesce. Without loss of generality, we may assume that a = (1,0, ...,0).
We parametrize the hemi-sphere with a as a pole, by considering it as a function
above the tangent plane at a. If x,,...,x4 are coordinates on this tangent plane
with a as the origin, then the equation of the hemi-sphere is

p=1— 11— (a3 +---+22). (2)

Now, suppose that our points z¥, 1 < k < d,, are in the hemi-sphere. If we scale
Z3, ..., Tq by the factor ¢ so that

2 4

t t
xl(t)zl—\/1—152(.’13%-!-"'4-1‘3):§(I§+"'+$3)+§($§+"'+I§)+"'

then, as t — 0, these points again coalesce at a, however at different rates than
under angular scaling.

We shall refer to the present scaling as tangential scaling.

In order to understand the behaviour of the interpolation problem as ¢t — 0,
we work with a particular basis of polynomials. Any polynomial p € P, (IR*) of
degree n in d real variables, may be written in the form

n

p(T1, ey q) = Z ap(T1, oy Tg_1)Th |
k=0
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where ay, € P,_x(IR*).

On the sphere, S*! 22 =1 — 22 — ... — 22 | and thus on replacing even
powers of x4 by the previous expression we have that any p € P,(S%"!) may be
written in the form

p(331, ---,fb"d) = p1($1, ---,fUd—1) + deZ(xla ---,fUd—1) )
for some p; € P,(IR*™") and py € P (IRT).

It follows that a basis for P,(S%1) is

{(21, .oy 2a—1)® | |a| < nYU{zg(@1, .0y 20 1)? | |B] <0 — 1},

To calculate the limy_,o/;(z(t); X;) we use formula (1) and expand z%(¢) in a
Taylor series

t? ¢t
zi(t) = §(x§+---+x3)+§(x§+---+x3)+---
Each monomial (zy, ..., 24-1)® becomes
t2a1

201

a1 Qg—1 __
Ty o Tgor =

{@+- - +ad)@ag -2y + 0} (3)

while each (z1, ..., 74_1)?z4 becomes

251
B Ba-1y, _ 1t
(@1 -7y )z = 2681

{(ac% RS x3)31$g2 ‘.- xg‘i_llxd + O(tZ)} . (4)
Now the ith row of the determinant VDM (z!,- -, z%) = det[p;(2?)] consists of the
ith basis function (in this case ith monomial) evaluated at all the points. Hence,
the row corresponding to (x1, - -, x4_1)® has a common factor of ?*1 /2%1 and that
corresponding to z4(z1, -+, Tq 1)? has a common factor of #2%1/2%1. Since each
such factor appears in both the numerator and denominator of (1), we may cancel
off the powers of , t;Tall, t;Tﬂll in (1). Then, letting t — 0 we have, from (3) and (4),
that lim;_, /;(z(t); X;) is a ratio of Vandermonde determinants (1), for the basis

{(@3+ - +ah)as? 27 | la| < nyU{(@3+- - +a) P -z T g | |B] < m—1} 5

and the points
(z%) == (ah,...,2%), 1<k <d,.
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In [2] it is shown that this is precisely a basis for ’P(le) restricted to the paraboloid
T =2+ -+ 122, i.e. essentially to V¢! mentioned above.

The interpolation points of the limiting interpolation problem are
(ykaxga "'axldc)a 1 S k S dna
where y¥ = (25)2 +--- + (2F)2

Clearly, we may think of these as the projections of the original points onto
the tangent plane at a, and then lifted to the paraboloid.

In summary, we have that the interpolation problem on the sphere S%! be-
comes, in the limit as the points coalesce, an interpolation problem on the paraboloid
V4=1 with interpolation points the original spherical angles, in the case of angular
scaling and with interpolation points the tangent plane coordinates of the original
points in the case of tangential scaling.

The reader who finds the presentation somewhat sketchy may refer to [2] for
supporting details.

2 The general case

At this point we are ready to discuss a more general limiting process. Suppose
that 7 : S9! — IR ! is an analytic coordinate system on S%!, valid on a
neighbourhood, U, of our point a, so that a is the origin: i.e. 7(a) = 0. We of
course assume that all of our points z* € U.

Let y* := m(2*) be the coordinates of z*. Then the points

g*(t) =7l (ty") (5)
have the property that z%(1) = 2* and limy_,¢ 2*(t) = a.

Now, we ask for the limit of the interpolation problem as ¢ — 0 under this gen-
eral scaling. For the answer we must understand what is really happening when
we expand the monomials in ¢ as in (2). To recapitulate, since the leading factor
of t*** multiplies the entire row in the Vandermonde determinant corresponding
to that basic element, and since this is the case in both the numerator and de-
nominator of the expression for the Lagrange polynomials (1), we may cancel this
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factor. This leaves, as t — 0, in that case
(a5 + - wg)M g - agly?
which is precisely the leading homogeneous term in the Taylor expansion at the

origin of the function
Qg—1

a1 .00
Ty Xp™ " Tg1 s
where x; = (2, ..., 4) is given by (2).

In [4], the authors refer to the leading homeogenous term of a function analytic
in a neighbourhood of the origin, as the least of f and write f; for this term. More
generally if W is a vector space of such functions, then

W, :=span{f, : feW}.

They proved the following theorem:

Theorem 2 ([4]) If W is finite dimensional, then W, is a homogeneous polyno-
mial space of the same dimension as W.

Using this result, we can state the following result.

Theorem 3 Suppose that X = {a* : 1 <k < d,} C S, is a set of distinct
points which is made to coalesce at the point a € S* ' under the scaling given by
(5). Denote the scaled points by X;.

We may consider two interpolation problems.

1. Interpolation at the z* by polynomials from P,(S47t). If this problem is
unisolvent, we denote the corresponding Lagrange polynomials by 1;(-; X).

2. Interpolation at the points Y = {y* € IR} by polynomials from (P, (S*)o
7=Y),. If the problem is unisolvent, we denote the corresponding Lagrange
polynomials by L;(-;Y).

Then, in the case that the second problem is unisolvent
%E}% Li(z(t); Xo) = Li(y; Y) ,

where y := w(z(1)).
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It is instructive to note that in general the resulting basis (P(S% ) o7 1), is not
necessarily P(V471) as in the case of angular and tangential scaling.

Example 1 Consider the sphere S? C IR’ and the point a = (1,0,0). Let

m(z,y,2) = (y+ 2,9+ 22) so that 7~ (y,2) = (1— \/1 —Q2y—2)2—(2—y)?% 2y —
2,2 —y). Then as

1
1—\/1—(2y—z)2—(z—y)2=5(5y2—6y2+2z2)+---

it follows that, e.g. (P1(S?) om 1), is span{1,y, z,5y* — 6yz + 22?} which differs
from P;(V?) = span{l,y, z,y? + 2°}.

OO

Now, the above theorem makes no use of the special properties of a sphere
and hence the same result holds with the sphere replaced by a general analytic
manifold. To be precise we may state the following theorem which is the natural
extension of the previous one.

Theorem 4 Suppose that M C IR%, is an analytic manifold of dimension m,
with local analytic coordinates m : M — IR™, wvalid in a neighbourhood, U, of
a € M. Suppose further that X = {z* : 1 <k < d, == dim(P,(M))} C U is
a set of distinct points which is made to coalesce at the point a under the scaling
given by

X, ={z*@t) =77 (ty*) : 1<k <d,}.

Here the y* are the coordinates of z*, i.e. y* := n(z*).

Then we may consider two interpolation problems:

1. Interpolation at the z* by polynomials from P,(M). If this problem is uni-
solvent, we denote the corresponding Lagrange polynomials by I;(-; X).

2. Interpolation at the points Y = {y* € IR™ '} by polynomials from (Pn(M)o
7 Y),. If the problem is unisolvent, we denote the corresponding Lagrange
polynomials by L;(-;Y).
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Then, in the case that the second problem is unisolvent,
11_{%5@(33(75);)@ = Li(y;Y) ,

where y := w(z(1)).

It should be noted that the limiting basis of (P,(M) o 77!); may not always be
expressible as the restriction of polynomials to an associated surface, i.e. there
need not always be an analogue of the paraboloid for the case of angular scaling
on the sphere.

Example 2 Take M to be the curve y(z) = 2® + 22. It is readily seen that
{1,2,2%, 2%, 2%, 2° 2% 27, 32 + 2%}
is a basis for P3(M).

Hence consider 9 distinct points (zy, 22 +z3) € M, 1 <k <9 and scale them
into the origin tangentially, i.e. by

Xy = {(tay, (a} +tz}) : 1<k <9}.
The limit basis is thus
span{l,z,2%,...,2",32° + 2°}, = span{1,z,2°,...,27,2%} .

Now, we claim that this latter is not the restriction of P3(IR?) to any curve I
of degree 3.

Proof. Suppose to the contrary that such a I'" does exist. Then, since the
dimension of span{l,z,22,...,27,2°} = 9 < 10 = dimP;(IR?), there exists a
cubic p(z,y) € P3(IR?) such that p(z,y) = 0 on I, i.e. I'is a cubic curve. Now
y € P3(IR?) so there exists a polynomial g(z) of degree 8 so that

y—q(z) =0, on I.

But since y — ¢(z) is always irreducible, it must be the case that deg(q) < 3. In
fact, deg(q) = 3 since otherwise dim(Ps(I")) < 7 (since then at least y — ¢(z) = 0,
z(y — q(z)) and y(y — g(z)) are all 0 on I).

Then, on the one hand y? € P3(IR?), so that y*> = pg(x) on T, for some
polynomial pg of degree 8, and on the other hand, for some ¢ # 0,

VY=¢@) =c’+--- onT.
It follows that z° € span{1,z,....,2%} on I' which is impossible.
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OO

Example 3 A second, non-algebraic, example results from taking M to be the
curve y(x) = €.

In this case, as M is non-algebraic, P, (M) = P, (IR?), hence d,, = dim(P,(M) =

%. We take d,, points (zx,e"), 1 < k < d, and scale them into a = (0, 1)

via
Xy ={ (twg,e™) : 1<k<d,}.
The coordinate of the generic point (z,€e?) is 7(x, €*) := x with 7! (z) = (x, €%).
We claim that (P,(IR*)(z,e%)), is just the span{1,z, 22, ...,z%1}.

Proof. To see this, take the monomial basis for P, (IR?), m;(z,y) := z'y’.
We denote the resulting composition by f;;(z), i.e.

fij(x) := () = 2", 0<i+j<n.
We wish to show that for ¥, 0 < k < d,, — 1 there is a linear combination of the

fij, that is an
fe(@) = Y aijfij(@),

i+j<n
so that fy(r) = z*¥+ higher order terms. For then it would follow that z* €
(Pu(IR?)(z,€%)), for each k, 0 < k < d, — 1.

But, since dim(P, (IR?)(x, %)), = d, by [4, Prop. 1], it then would follow that
(Pn(IR*)(z,€%)), = span{l,x, ..., z%1}.

To establish the existence of the fi, we may expand each f;;(z) in a Taylor
series of degree d,, — 1 about the origin, i.e.

dn—1 £(k) ()
faw =3 P04 Ry ),

k=0
where R;;(z) = ajjzt+h.o.t.s.

Hence, it suffices for our purposes to show that there are constants b;; such
that for each k£, 0 <k <d,—1

af = 3" by Pij(x)

i+j<n
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where 5
gy e (1) s
Pj(z) = JTﬂf :
s=0 .

This is certainly the case if the d,, X d,, matrix

()
o (fijs'w))

(with row index the pair 7j and column index s) is non-singular. But this is true
since det(F,) = [1{=y" & times the Wronskian of the d,, functions { fi;}i1j<n evalu-
ated at the origin, which is non-zero since the f;;(x) are the d, linearly independent
solutions of the constant coefficient linear ODE with characteristic polynomial

A = 1) — 2)" e (A = n) .

This proves that (P, (IR%)(z, ¢%)), = span{1, 3,27,z }.

OO

Although in general it is difficult to explicitly determine least spaces (P, (M)omr ™),
given M and 7, in certain circumstances, generalizing the case of a sphere, it is
possible to do so.

Theorem 5 Suppose that M C IR® is an algebraic hypersurface given by p(z) =0
with p irreducible and that a € M is a smooth point. Without loss of generality we
may assume that a = 0 and that the tangent plane to M at a is given by 4 = 0.
Take the coordinate w(zx) of x € M to be n(x) := (21, -, 2q-1). Then if, near
a =0, M may be expressed by

zq = f(2'), = (r1, -, Tq_1)

where f(z') = h(z")+ higher order terms, with h(z') a homogeneous polynomial of
deg(h) = deg(p), then

(Pu(M) om™), = Pu(za = h(z')).

Proof. Since both z4 — h(z") and p(z) are irreducible of the same degree,
Pn(zq = h(z')) and P,(M) have the same dimension, d, say. Moreover, clearly
Pn(za = h(z')) has a basis of “monomials” of the form (x')¢(h(z"))’. But each such
(z')*(h(z"))? may be realized as ((z')*(f(z'))?),, seeing that f(z'); = h(z'). Thus
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10

Figure 2: The set H: lattice points above the dashed line

(Pn(M)or™); D Pul(za = h(z')), and in fact, they are equal since they both have
dimension d,,. []

In general it is still possible to calculate any desired such least space, as we
illustrate in the following example.

Example 4 Let us consider the curve displayed in Figure 3, i.e. y(y—1)>—2% =0
where near z = 0 we may write y = y(x). By using standard methods of algebra,
cf. [1, Ch.2, §5], it is possibile to find a Grébner basis for any particular ideal
Z. In this case, since the ideal generated is principal, it is simply the function
y(y —1)% — 22 itself. To find a basis for the polynomials restricted to the curve, we
again resort to standard arguments (cf. [1, Ch.5, §3]). For any consistent order,
the leading term in our polynomial is ®. From the theory of Grobner bases, it
follows that the leading term for any polynomial p € Z must be divisible by /3.
Hence, we consider the diagram H = {(0,3) + Zi} , of such leading terms (see
Figure 2), which consists of all monomials divisible by y3. By Proposition 1 of [1,
Ch.5, §3], the monomials corresponding to the complement of H form a basis for
the polynomials restricted to our curve. Let us, for example, consider the basis of
all bivariate polynomials of degree 4 in x, y restricted to our curve. From Figure 2
this is the set generated by

{1,2,y,2°, 2y, y%, 2°, 2%y, 2y?, 2, 2%y, 2%y* } .

We wish to compute the least space for this set for y = y(x) determined implicitly
by the curve.
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This requires the calculation of the derivatives of y(z)(y(z) — 1) — 2% = 0
at x = 0, by means of implicit differentiation. Any number of coefficients for
the function y(z) can be easily generated. Since y(0) = 0, we find the following
expansion :

y(r) = 2* + 22" + 82° + 342® + higher order terms .

The de Boor-Ron algorithm (as described in [5]), can be used to calculate any
particular least space. In this case, substituing y(x) with its expansion, we can
reproduce all the 12 powers {1,z, ...,z }. From the fact that the least space has
the same dimension as the original one, it follows that this is the desired space. In
fact, we get:

In order to get all other powers, again by the algorithm, we repeat the above
process as follows.

(zy(z) —2%), = 22°,
(y*(z) —a%), = 4a®,
(2*y(z) —a*), = 22°,
(@®y(z) —2%), = 227,
(2%y(z) —2%), = 4a',
(zy*(z) —2°), = 202°.

To get the power z'! we must apply the algorithm three times to the monomial
3y(z), that is (((z*y(z) — 2°) — 227) — 82%), = 34z'! .

OO

Remark. The previous example is instructive because it points out two im-
portant aspects of the results presented in the paper. For an algebraic surface
given either by pi(z) = po(z) = -+ = pg—m(x) = 0, or in parametric form
x; = x;i(u1, -, um), 1 < i < d, and a smooth point a on it, we have seen that
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Figure 3: The curve y(y — 1)? = z? in [-2,2] x [0, 3]

there is a method for finding the appropriate least space using a Grobner basis for
the ideal of the variety so generated and the de Boor-Ron algorithm for finding
a least space at the point a. It is worthwhile noting that we must ensure that
in order to find an expansion it is necessary that the Jacobian associated to the
functions p;, 1 < i < d — m must be non zero at a.
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