ANALISI III (Corso di Laurea in Matematica, Facoltà di Scienze mm.ff.nn., Università degli Studi di Padova, a.a. 1994/95), FASCICOLO 2: esercizi e complementi di teoria della misura e dell'integrazione (v. Appendice in H. Brezis, Analisi Funzionale, Liguori, Napoli, 1986 e G.B. Folland, Real Analysis, J. Wiley, New York, 1984, Cap.1,2). Gli esercizi contrassegnati con ** presentano parti impegnative; gli esercizi contrassegnati con ** sono molto impegnativi.

DEFINIZIONI E PROPRIETÀ FONDAMENTALI.

Esercizio 2.1

Ricordiamo che un'algebra di parti di un insieme Ω è una famiglia $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ chiusa rispetto all'unione finita e alla complementazione. Mostrare che $\Omega, \emptyset \in \mathcal{A}$ e che $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ è un'algebra se e solo se $\Omega \in \mathcal{A}$ ed \mathcal{A} è chiusa rispetto all'unione finita e alla differenza (oppure rispetto all'intersezione finita e alla differenza).

Commenti: allo stesso modo si vede che $\mathcal{M} \subseteq \mathcal{P}(\Omega)$ è una σ -algebra di parti di Ω se e solo se $\Omega \in \mathcal{M}$ ed \mathcal{M} è chiusa rispetto all'unione numerabile e alla differenza (oppure rispetto all'intersezione numerabile e alla differenza). Si osservi che una famiglia di parti di Ω contenente Ω e chiusa rispetto all'unione finita e all'intersezione finita non è in generale un'algebra (si pensi ad esempio alla topologia di uno spazio topologico connesso, oppure si consideri $\mathcal{F} = \{\Omega, \emptyset, \{x\}\}$ con $x \in \Omega$ e $card(\Omega) > 1$). Analogamente la chiusura per unione ed intersezione numerabile non basta per avere una σ -algebra (si veda il secondo controesempio).

Esercizio 2.2

Dimostrare che le seguenti famiglie di parti di ${\bf R}$ generano la stessa σ -algebra

$$\mathcal{F}_{1} = \{(a,b), a < b\} , \quad \mathcal{F}_{2} = \{[a,b], a < b\} , \quad -\infty < a < b < +\infty ,$$

$$\mathcal{F}_{3} = \{(a,b], a < b\} , \quad \mathcal{F}_{4} = \{[a,b), a < b\} , \quad -\infty < a < b < +\infty ,$$

$$\mathcal{F}_{5} = \{(a,+\infty), a \in \mathbf{R}\} , \quad \mathcal{F}_{6} = \{(-\infty,b), b \in \mathbf{R}\} ,$$

$$\mathcal{F}_{7} = \{[a,+\infty), a \in \mathbf{R}\} , \quad \mathcal{F}_{8} = \{(-\infty,b], b \in \mathbf{R}\} ,$$

 \mathcal{A}_h ="famiglia delle unioni finite disgiunte di h-intervalli", dove gli h-intervalli sono: \emptyset , $(a, +\infty)$, (a, b], con $-\infty \le a < b < +\infty$.

Esercizio 2.3*

Dimostrare che la famiglia \mathcal{A}_h delle unioni finite di h-intervalli è un'algebra di parti di \mathbf{R} , che coincide con la famiglia delle unioni finite disgiunte.

Sugg.: per provare la chiusura rispetto alla complementazione, si osservi che l'intersezione di due h-intervalli è un h-intervallo e il complementare di un h-intervallo è unione di due h-intervalli disgiunti. Queste due proprietà permettono anche di far

vedere che ogni unione finita di h-intervalli si può riscrivere come unione finita disgiunta.

Esercizio 2.4*

Siano \mathcal{A}_1 , \mathcal{A}_2 due algebre di parti di Ω_1 , Ω_2 ripettivamente; diremo rettangolo un sottoinsieme di $\Omega_1 \times \Omega_2$ del tipo $E \times F$, dove $E \in \mathcal{A}_1$, $F \in \mathcal{A}_2$. Dimostrare che la famiglia delle unioni finite di rettangoli è un'algebra di parti di $\Omega_1 \times \Omega_2$, che coincide con la famiglia delle unioni finite disgiunte.

Sugg.: vedi Es. 2.3; in questo caso il complementare di un rettangolo è unione di tre rettangoli disgiunti.

Esercizio 2.5*

Diciamo che $\mathcal{E} \subseteq \mathcal{P}(\Omega)$ è una famiglia elementare se:

- $(i) \emptyset \in \mathcal{E};$
- (ii) è chiusa per intersezioni finite;
- (iii) se $E \in \mathcal{E}$, E^c è unione finita di elementi disgiunti di \mathcal{E} .

Si dimostri che la famiglia delle unioni finite di elementi di \mathcal{E} è un'algebra di parti di Ω , che coincide con la famiglia delle unioni finite disgiunte.

Sugg.: vedi Es. 2.3.

Commenti: il risultato enunciato è chiaramente una generalizzazione degli Es. 2.3, 2.4.

Esercizio 2.6

Sia Ω un'insieme e \mathcal{A} un'algebra di parti di Ω . Sia $\mu : \mathcal{A} \to [0, +\infty]$ una funzione finitamente additiva. Dimostrare che:

- (6a) μ è monotona, cioè se $E, F \in \mathcal{A}$ e $E \subseteq F \Rightarrow \mu(E) \leq \mu(F)$;
- (6b) μ è (finitamente) sub-additiva.

Dimostrare inoltre che $\mu: \mathcal{A} \to [0, +\infty]$ è numerabilmente additiva (pre-misura) se e solo se μ è finitamente additiva e (numerabilmente) sub-additiva.

Sugg.: per la sub-additività (finita e numerabile) osservare che $\bigcup_j E_j = \bigcup_j F_j$, dove $F_j = E_j \setminus \bigcup_{i=1}^{j-1} E_i$ e che gli F_j sono a due a due disgiunti.

Conseguenze: le asserzioni precedenti sono ovviamente valide per una misura μ su una σ -algebra \mathcal{M} .

Esercizio 2.7

Sia \mathcal{A} un'algebra di parti di Ω , $\mu: \mathcal{A} \to [0, +\infty]$ una funzione finitamente additiva. Allora

$$(7a) \ \forall E, F \in \mathcal{A}, \ \mu(E \cup F) + \mu(E \cap F) = \mu(E) + \mu(F);$$

(7b)
$$\forall E, F \in \mathcal{A}$$
 tali che $\mu(E \cap F) < \infty \Rightarrow \mu(E \setminus F) = \mu(E) - \mu(E \cap F)$.

Conseguenze: gli stessi risultati valgono per una misura su una σ -algebra. Si osservi che da (7b) segue che se $F \subseteq E$ e $\mu(F) < \infty$ allora $\mu(E \setminus F) = \mu(E) - \mu(F)$ e se $E, F \in \mathcal{A}$ con $\mu(F) = 0$ allora $\mu(E \setminus F) = \mu(E)$.

Esercizio 2.8

Sia $(\Omega, \mathcal{M}, \mu)$ una spazio con misura, $E \in \mathcal{M}$. Dimostrare che $\mathcal{M}_E = \{I \cap E : I \in \mathcal{M}\}$ è una σ -algebra di parti di E, $\mathcal{M}_E = \mathcal{M} \cap \mathcal{P}(E)$, $\mu_E = \mu|_{\mathcal{M}_E}$ è una misura, cioè $(E, \mathcal{M}_E, \mu_E)$ è uno spazio con misura.

Sugg.: la complementazione va fatta rispetto ad E.

Commenti: si osservi che \mathcal{M}_E è sempre una σ -algebra, anche per E non misurabile.

Esercizio 2.9*

Sia \mathcal{M} una σ -algebra di parti di Ω , $\mu : \mathcal{M} \to [0, +\infty]$ una funzione. Dimostrare che se μ è una funzione finitamente additiva le seguenti affermazioni sono equivalenti:

- (9a) μ è una misura;
- (9b) per ogni successione di insiemi $\{E_j\} \subset \mathcal{M}$ tale che $E_j \subseteq E_{j+1} \ \forall \ j \Rightarrow \mu(\bigcup_{j=1}^{\infty} E_j) = \lim_{j\to\infty} \mu(E_j)$ (continuità da sotto).

Dimostrare inoltre che se μ è una misura, allora

(9c) per ogni successione di insiemi $\{E_j\} \subset \mathcal{M}$ tale che $E_{j+1} \supseteq E_j \ \forall j, \ \mu(E_1) < \infty$ $\Rightarrow \mu(\bigcap_{j=1}^{\infty} E_j) = \lim_{j \to \infty} \mu(E_j)$ (continuità da sopra).

Dimostrare infine che se $\mu(\Omega) < \infty$ allora $(9b) \Leftrightarrow (9c)$.

Conseguenze: è chiaro che se μ è una funzione finitamente additiva e $\mu(\Omega) < \infty$ allora $(9a) \Leftrightarrow (9c)$.

Commenti: l'ipotesi $\mu(E_1) < \infty$ è necessaria per dimostrare $(9b) \Rightarrow (9c)$; si consideri infatti $\Omega = \mathbf{N}$, $\mathcal{M} = \mathcal{P}(\mathbf{N})$, $\mu = card$ (misura che "conta i punti") e $E_j = (j, +\infty)$ (hanno tutti misura infinita e l'intersezione è vuota). I risultati precedenti sono validi anche per una pre-misura su un'algebra, purché $\bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$ in (9b) e $\bigcap_{j=1}^{\infty} E_j \in \mathcal{A}$ in (9c).

Esercizio 2.10

Sia $\{E_j\}$ una successione di sottoinsiemi di un insieme Ω . Definiamo

$$\lim \inf E_j = \bigcup_{m} \bigcap_{j>m} E_j \ , \quad \lim \sup E_j = \bigcap_{m} \bigcup_{j>m} E_j \ .$$

Sia $(\Omega, \mathcal{M}, \mu)$ uno spazio con misura; dimostrare che per $\{E_j\} \subset \mathcal{M}$ si ha

$$\mu(\liminf E_j) \le \liminf \mu(E_j)$$
; $\limsup \mu(E_j) \le \mu(\limsup E_j)$ se $\mu(\bigcup_{j=1}^{\infty} E_j) < \infty$.

Sugg.: usare opportunamente l'Es. 2.9, osservando che $\{\bigcap_{j\geq m} E_j\}$ è non decrescente e $\{\bigcup_{j\geq m} E_j\}$ è non crescente.

Esercizio 2.11

Siano (Ω, \mathcal{M}) uno spazio misurabile, $a_1, ..., a_m$ reali positivi e $\mu_1, ..., \mu_m$ misure sulla σ -algebra \mathcal{M} . Si dimostri che $\mu = \sum_{i=1}^m a_i \mu_i$ è una misura su \mathcal{M} , σ -finita se tali sono tutte le μ_i , completa se tale è almeno una μ_i . Si ricordi che una misura viene detta σ -finita se $\exists \{E_n\} \subset \mathcal{M}$ tale che $\Omega = \bigcup_n E_n, \mu(E_n) < +\infty \,\forall n$ e che una misura viene detta completa se i sottoinsiemi degli insiemi misurabili di misura nulla sono misurabili (ovviamente hanno misura nulla per monotonia).

COSTRUZIONE DI MISURE; MISURE DI LEBESGUE-STIELTJES E DI BOREL.

Proposizione 2.1

Sia $\mathcal{F} \subseteq \mathcal{P}(\Omega)$, $\rho : \mathcal{F} \to [0, +\infty]$ con Ω , $\emptyset \in \mathcal{F}$, $\rho(\emptyset) = 0$ ("proto-misura"). Allora $\mu^*(E) = \inf \{ \sum_i \rho(E_j) : E_j \in \mathcal{F}, \bigcup_i E_j \supseteq E \}$ è una misura esterna su $\mathcal{P}(\Omega)$.

Definizione 2.1

Data una misura esterna μ^* su $\mathcal{P}(\Omega)$, $E \in \Omega$ si dice μ^* -misurabile se $\forall T \in \Omega$, $\mu^*(T) = \mu^*(T \cap E) + \mu^*(T \cap E^c)$.

Esercizio 2.12

Sia μ^* una misura esterna su $\mathcal{P}(\Omega)$, $E \subset \Omega$ tale che $\mu^*(E) = 0$. Dimostrare che E è μ^* -misurabile.

Teorema di Caratheodory

Data μ^* misura esterna su $\mathcal{P}(\Omega)$, la famiglia \mathcal{M} dei μ^* -misurabili è una σ -algebra e la restrizione di μ^* ad \mathcal{M} è una misura completa.

Proposizione 2.2

Sia μ^* è la misura esterna costruita a partire da una pre-misura μ su \mathcal{A} algebra di parti di Ω , allora $\mu^* \equiv \mu$ su \mathcal{A} e $\mathcal{A} \subseteq \mathcal{M}$ (σ -algebra dei μ^* -misurabili).

Proposizione 2.3

Sia μ^* la misura esterna costruita a partire da una pre-misura μ su \mathcal{A} algebra di parti di Ω . Sia ν una misura su $\sigma(\mathcal{A})$ coincidente con μ su \mathcal{A} , allora $\nu(E) \leq \mu^*(E)$ $\forall E \in \sigma(\mathcal{A})$ (con uguaglianza se $\mu^*(E) < +\infty$). Se μ è σ -finita, allora $\nu \equiv \mu^*$ su $\sigma(\mathcal{A})$.

Proposizione 2.4

Ogni aperto di \mathbb{R}^n è unione al più numerabile di intervalli aperti disgiunti.

Esercizio 2.13

Si dimostri che $\mathcal{B}_{\mathbf{R}}$, la σ -algebra dei boreliani di \mathbf{R} , coincide con la σ -algebra dell'Es. 2.2.

Commenti: si osservi che la σ -algebra dei boreliani, che è la σ -algebra generata dagli aperti, è definita in qualsiasi spazio topologico.

Proposizione 2.5

Sia $F: \mathbf{R} \to \mathbf{R}$ una funzione monotona (non decrescente); allora l'insieme dei punti di discontinuità di F è al più numerabile e le discontinuità sono tutte di salto (cioè esistono finiti i limiti da destra e da sinistra). Inoltre $\exists F(+\infty) = \lim_{x \to +\infty} F(x) = \sup_{x \in \mathbf{R}} F(x)$ e $\exists F(-\infty) = \lim_{x \to -\infty} F(x) = \inf_{x \in \mathbf{R}} F(x)$.

Proposizione 2.6

Sia $F: \mathbf{R} \to \mathbf{R}$ non decrescente e continua da destra. Definiamo $\mu: \mathcal{A}_h \to [0, +\infty]$ tramite $\mu(\emptyset) = 0$, $\mu(\bigcup_{i=1}^m I_i) = \sum_{i=1}^m [F(b_i) - F(a_i)]$, dove $I_i = (a_i, b_i]$, $-\infty \le a_i < b_i < +\infty$ oppure $I_i = (a_i, +\infty)$, cioè $b_i = +\infty$ (si intende che $\mu(\mathbf{R}) = F(+\infty) - F(-\infty)$). Allora μ è una pre-misura su \mathcal{A}_h .

Proposizione 2.7 (misure di Borel)

Sia $F: \mathbf{R} \to \mathbf{R}$ non decrescente e continua da destra. Allora esiste de è unica una misura su $\mathcal{B}_{\mathbf{R}}$, diciamola μ_F , tale che $\mu_F((a,b]) = F(b) - F(a) \, \forall \, a,b \in \mathbf{R}$. Se $G: \mathbf{R} \to \mathbf{R}$ è anch'essa non decrescente e continua da destra, $\mu_F \equiv \mu_G$ se e solo se F-G=cost. Infine ogni misura μ su $\mathcal{B}_{\mathbf{R}}$ che sia finita sui boreliani limitati si scrive come $\mu = \mu_F$, dove $F(x) = \mu((0,x])$ se x > 0, F(0) = 0, $F(x) = -\mu((x,0])$ se x < 0.

Traccia della dim.: l'esistenza è conseguenza del fatto che F induce una pre-misura μ su \mathcal{A}_h (v. Prop. 2.6) e quindi permette di costruire una misura sulla σ -algebra dei μ^* -misurabili, diciamola $\mathcal{M}_F \supseteq \mathcal{B}_{\mathbf{R}}$; l'unicità discende dal risultato sull'unicità dell'estensione di una pre-misura (v. Prop. 2.3).

Commenti: la misura su \mathcal{M}_F è una misura di Lebesgue-Stieltjes, la sua restrizione a $\mathcal{B}_{\mathbf{R}}$ è una misura di Borel; una misura di Borel in generale non è completa.

Esercizio 2.14

Sia $F: \mathbf{R} \to \mathbf{R}$ una funzione non decrescente e continua da destra, μ_F la misura di Borel associata. Calcolare

$$\mu_F(\{x\})$$
, $\mu_F([a,b))$, $\mu_F((a,b))$, $\mu_F([a,b])$.

Conseguenze: i punti di continuità di F hanno misura μ_F nulla.

Esercizio 2.15

Sia μ una misura finita su $\mathcal{B}_{\mathbf{R}}$. Si dimostri che $\mu = \mu_F$ con $F(x) = \mu((-\infty, x])$.

Esercizio 2.16

Sia $F: \mathbf{R} \to \mathbf{R}$ una funzione non decrescente e continua da destra. Si dimostri che se F è strettamente monotona i boreliani dotati di punti interni hanno misura μ_F positiva e che se F non è strettamente monotona ci sono aperti di misura μ_F nulla.

Conseguenze: gli aperti di **R** hanno misura di Lebesgue positiva ($m = \mu_F$ con $F(x) \equiv x$).

Proposizione 2.8

Sia $F: \mathbf{R} \to \mathbf{R}$ una funzione non decrescente e continua da destra. Allora $\forall E \in \mathcal{M}_F$ si ha

$$\mu_F(E) = \inf \{ \sum_{j=1}^{\infty} \mu_F((a_j, b_j)) : \bigcup_{j=1}^{\infty} (a_j, b_j) \supseteq E \}.$$

Proposizione 2.9

Sia $F: \mathbf{R} \to \mathbf{R}$ una funzione non decrescente e continua da destra. Se $E \in \mathcal{M}_F$ allora

$$\mu_F(E) = \inf \{ \mu(A) : A \supseteq E, A \text{ aperto} \} = \sup \{ \mu(K) : K \subseteq E, K \text{ compatto} \}.$$

Proposizione 2.10

Sia $F: \mathbf{R} \to \mathbf{R}$ una funzione non decrescente e continua da destra, $E \subseteq \mathbf{R}$. Le seguenti affermazioni sono equivalenti:

- (i) $E \in \mathcal{M}_F$;
- (ii) $E = \bigcap_{i=1}^{\infty} A_i \setminus N_1$, con A_i aperto $\forall j, \mu_F(N_1) = 0$;
- (iii) $E = \bigcup_{j=1}^{\infty} K_j \cup N_2$, con K_j compatto $\forall j, \mu_F(N_2) = 0$.

Commenti: si osservi che se $E \in \mathcal{B}_{\mathbf{R}}$ allora $N_1, N_2 \in \mathcal{B}_{\mathbf{R}}$, cioè ogni boreliano è intersezione numerabile di aperti o unione numerabile di compatti a meno di un boreliano di misura μ_F nulla.

Esercizio 2.17**

Dato $E \subseteq \mathbf{R}$, si consideri $E + t = \{x + t : x \in E\}$, $\rho E = \{\rho x : x \in E\}$, dove $t, \rho \in \mathbf{R}$. Se E è Lebesgue-misurabile allora E + t, ρE sono Lebesgue-misurabili e m(E + t) = m(E), $m(\rho E) = |\rho| m(E)$.

Commenti: si è dimostrata l'invarianza per traslazioni della misura di Lebesgue; si osservi che in generale una misura di Lebesgue-Stieltjes non presenta tale invarianza (fare un esempio).

Esercizio 2.18**

Sia $(\Omega, \mathcal{M}, \mu)$ uno spazio con misura; si provi che $\forall I \in \mathcal{M} \ \mu_I(E) = \mu(E \cap I)$ è una misura su \mathcal{M} . Usando tale riusltato, data $F : \mathbf{R} \to \mathbf{R}$ definita da F(x) = x per $x < 0, F(x) = 1/(n+1)^2$ per $n \le x < n+1, n \ge 0$, si dimostri che $\forall E \in \mathcal{B}_{\mathbf{R}}$ si ha $\mu_F(E) = m(E \cap (-\infty, 0)) + \sum_{n \in E} 1/(n+1)^2$. Si dica infine quali sono i boreliani di misura finita e si calcoli $\mu_F(E)$ dove $E = (\mathbf{R}^- \setminus \mathbf{Q}) \cup (\mathbf{R}^+ \setminus \mathbf{Q})$.

Sugg.: per la seconda parte, si cominci col provare che $\nu(E) = \sum_{n \in E} 1/(n+1)^2$ è una misura su $\mathcal{B}_{\mathbf{R}}$.

FUNZIONI MISURABILI.

Definizione 2.2 Siano (Ω, \mathcal{M}) , (W, \mathcal{N}) due spazi misurabili; $f : \Omega \to W$ si dice $(\mathcal{M}, \mathcal{N})$ -misurabile se $f(N) \in \mathcal{M}$ per ogni $N \in \mathcal{N}$.

Commenti: è evidente che la composta di due funzioni misurabili è misurabile.

Proposizione 2.11

Siano (Ω, \mathcal{M}) , (W, \mathcal{N}) due spazi misurabili; se $\mathcal{N} = \sigma(\mathcal{F})$, con $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ famiglia qualsiasi, $f \in (\mathcal{M}, \mathcal{N})$ -misurabile se e solo se $f(N) \in \mathcal{M}$ per ogni $N \in \mathcal{F}$.

Dim.: esercizio.

Conseguenze: se Ω, W sono spazi topologici ha sempre senso considerare \mathcal{B}_{Ω} e \mathcal{B}_{W} , le σ -algebre generate dalle rispettive topologie. Allora una funzione *continua* $f: \Omega \to W \ \dot{e} \ (\mathcal{B}_{\Omega}, \mathcal{B}_{W})$ -misurabile.

Definizione 2.3

Sia (Ω, \mathcal{M}) uno spazio misurabile; una funzione $f: \Omega \to \mathbf{R}$ si dice misurabile se è $(\mathcal{M}, \mathcal{B}_{\mathbf{R}})$ -misurabile. Una funzione $f: \mathbf{R} \to \mathbf{R}$ si dice Lebesgue-misurabile se è $(\mathcal{L}, \mathcal{B}_{\mathbf{R}})$ -misurabile $(\mathcal{L}$ rappresenta la σ -algebra dei Lebesgue-misurabili) e Borel-misurabile (o boreliana) se è $(\mathcal{B}_{\mathbf{R}}, \mathcal{B}_{\mathbf{R}})$ -misurabile.

Commenti: si osservi che la composta $f \circ g$ di due Lebesgue-misurabili non è necessariamente Lebesgue-misurabile, anche se g è continua. Basta però che f sia boreliana, perché $f \circ g$ sia Lebesgue-misurabile oppure boreliana se tale è g.

Esercizio 2.19

Sia (Ω, \mathcal{M}) uno spazio misurabile; $f: \Omega \to \mathbf{R}$ è misurabile se e solo se:

- (i) $\{x \in \Omega : f(x) > a\} \in \mathcal{M} \ \forall a \in \mathbf{R};$
- (ii) $\{x \in \Omega : f(x) > a\} \in \mathcal{M} \ \forall a \in \mathbf{R};$
- (iii) $\{x \in \Omega : f(x) < a\} \in \mathcal{M} \ \forall a \in \mathbf{R};$
- (iv) $\{x \in \Omega : f(x) < a\} \in \mathcal{M} \ \forall a \in \mathbf{R}.$

Sugg.: v. Es. 2.2.

Esercizio 2.20

Siano (Ω, \mathcal{M}) uno spazio misurabile, $f_i : \Omega \to \mathbf{R}, i = 1, ..., m$, funzioni misurabili, $F : \mathbf{R}^m \to \mathbf{R}$ una funzione continua. Si provi che $F \circ \underline{f} : \Omega \to \mathbf{R}$ è misurabile.

Sugg.: si usi la Prop. 2.4.

Conseguenze: se $f, g: \Omega \to \mathbf{R}$ sono misurabili, allora f + g e fg sono misurabili.

Definizione 2.4

Sia (Ω, \mathcal{M}) uno spazio misurabile; una funzione $f : \Omega \to \tilde{\mathbf{R}} = [-\infty, +\infty]$ si dice misurabile se vale una delle (i) - (iv) dell'Es. 2.18, dove f può assumere i valori $\pm \infty$.

Commenti: si osservi che la definizione data corrisponde a chiedere la $(\mathcal{M}, \mathcal{B}_{\tilde{\mathbf{R}}})$ misurabilità, dove $\mathcal{B}_{\tilde{\mathbf{R}}} = \{E \subseteq \tilde{\mathbf{R}} : E \cap \mathbf{R} \in \mathcal{B}_{\mathbf{R}}\}$. È facile infatti far vedere che $\mathcal{B}_{\tilde{\mathbf{R}}}$ è la σ -algebra generata dalle famiglie $\{[-\infty, a) : a \in \mathbf{R}\}$, $\{[-\infty, a] : a \in \mathbf{R}\}$, $\{(a, +\infty) : a \in \mathbf{R}\}$ e $\{[a, +\infty] : a \in \mathbf{R}\}$. Si osservi infine che $\mathcal{B}_{\tilde{\mathbf{R}}}$ è proprio la σ -algebra dei boreliani di $\tilde{\mathbf{R}}$ reso spazio metrico tramite la distanza $d(x, y) = |\arctan(x)|$ arctan (y).

Proposizione 2.12

Sia (Ω, \mathcal{M}) uno spazio misurabile, $\{f_n\}$, $f_n: \Omega \to \tilde{\mathbf{R}}$, una successione di funzioni misurabili; allora $\sup_n f_n$, $\inf_n f_n$ sono misurabili.

Dim.: esercizio.

Conseguenze: $\liminf f_n$, $\limsup f_n$, $f^+ = \max(f,0)$, $f^- = \min(-f,0)$, |f|, sgn(f) sono misurabili.

Esercizio 2.21

Si dimostri che il limite puntuale di una successione di funzioni misurabili è una funzione misurabile.

Esercizio 2.22

Si dimostri che una funzione monotona $f: \mathbf{R} \to \mathbf{R}$ è boreliana.

Esercizio 2.23

Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione Lebesgue (Borel)-misurabile. Si provi che $x \mapsto f(x+t), t \in \mathbf{R}$, è Lebesgue (Borel)-misurabile.

Esercizio 2.24

È noto che f misurabile $\Rightarrow |f|$ misurabile. Si mostri che in generale il viceversa non è vero.

Sugg.: si usi il fatto che $\mathcal{L} \subset \mathcal{P}(\mathbf{R})$, cioè che esistono sottoinsiemi di \mathbf{R} che non sono Lebesgue-misurabili.

Esercizio 2.25

Sia (Ω, \mathcal{M}) uno spazio misurabile; si provi che $f: \Omega \to \tilde{\mathbf{R}}$ è misurabile se e solo se $f((q, +\infty)) \in \mathcal{M}$ per ogni $q \in \mathbf{Q}$.

Esercizio 2.26

Si mostri che il sup fatto su una famiglia non numerabile di funzioni misurabili può non essere misurabile.

Sugg.: vedi Es. 2.24, osservando che ovviamente un insieme non misurabile secondo Lebesgue non è numerabile.

Esercizio 2.27*

Sia $(\Omega, \mathcal{M}, \mu)$ uno spazio con misura, con μ misura completa. Allora

(i) f = g q.o., g misurabile $\Rightarrow f$ misurabile;

(ii) $f_n \stackrel{q.o.}{\to} f$, f_n misurabile $\forall n \Rightarrow f$ misurabile.

Esercizio 2.28

Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile ovunque. Dimostrare che f' è una funzione boreliana.

Sugg.: $f'(x) = \lim_{n \to \infty} n\{f(x+1/n) - f(x)\}, ...$

Commenti: si osservi che se f è derivabile solo q.o. allora f' risulta in generale Lebesgue-misurabile.

Esercizio 2.29

Siano $f, g : \mathbf{R} \to \mathbf{R}$ due funzioni continue. Si dimostri che se sono *equivalenti* (cioè coincidenti g.o.) rispetto alla misura di Lebesgue, allora coincidono dappertutto.

Esercizio 2.30

Sia (Ω, \mathcal{M}) uno spazio misurabile, $E \in \mathcal{M}$. Diciamo che $f : E \to \mathbf{R}$ è misurabile su E se è $(\mathcal{M}_E, \mathcal{B}_{\mathbf{R}})$ -misurabile (per la def. di \mathcal{M}_E v. Es. 2.8). Si provi che se $\Omega = A \cup B$, $A, B \in \mathcal{M}$, allora $f : \Omega \to \mathbf{R}$ è misurabile se e solo se f è misurabile su A e su B.

Esercizio 2.31

Sia $(\Omega, \mathcal{M}, \mu)$ uno spazio con misura, con μ misura finita; sia $f: \Omega \to \mathbf{R}$ una funzione misurabile. Dimostrare che ν definita da $\nu(E) = \mu(\{x \in \Omega : f(x) \in E\})$ è una misura di Borel su $\mathcal{B}_{\mathbf{R}}$. Disegnare inoltre il grafico di una $F: \mathbf{R} \to \mathbf{R}$ tale che $\nu = \mu_F$ nel caso in cui f assume un numero finito di valori.

Esercizio 2.32*

Sia (Ω, \mathcal{M}) uno spazio misurabile; sia $\{f_n\}$, $f_n : \Omega \to \tilde{\mathbf{R}}$ una successione di funzioni misurabili. Si provi che $\{x \in \Omega : \exists \lim f_n(x)\} \in \mathcal{M}$.

Esercizio 2.33

Sia (Ω, \mathcal{M}) uno spazio misurabile; si dimostri che lo spazio delle funzioni misurabili è un'algebra (rispetto al prodotto puntuale) e che il sottoinsieme delle funzioni semplici è una sua sottoalgebra.

TEOREMI DI PASSAGGIO AL LIMITE SOTTO IL SEGNO DI INTE-GRALE; MODI DI CONVERGENZA.

Esercizio 2.34

Sia $(\Omega, \mathcal{M}, \mu)$ uno spazio con misura, $f \in L^+$ (si ricordi che L^+ è l'insieme delle funzioni misurabili a valori in $[0, +\infty]$). Dato $E \in \mathcal{M}$, sia $\nu(E) = \int_E f d\mu$; è noto che ν è una misura su \mathcal{M} . Si provi che per ogni $g \in L^+$ si ha

$$\int_{\Omega} g d\nu = \int_{\Omega} f g d\mu .$$

Sugg.: si usi il fatto che ogni funzione di L^+ è limite puntuale di una succesione non decrescente di funzioni semplici.

Esercizio 2.35

Sia $(\Omega, \mathcal{M}, \mu)$ uno spazio con misura, $\{f_n\} \subset L^+$. Si provi che

$$\int_{\Omega} \sum_{n=1}^{\infty} f_n d\mu = \sum_{n=1}^{\infty} \int_{\Omega} f_n d\mu .$$

Esercizio 2.36*

Sia $(\Omega, \mathcal{M}, \mu)$ uno spazio con misura, $\{f_n\} \subset L^+$ con $f_n \stackrel{punt.}{\to} f$, $\int_{\Omega} f_n d\mu \to \int_{\Omega} f d\mu < +\infty$. Si provi che $\forall E \in \mathcal{M}$ si ha $\int_E f_n d\mu \to \int_E f d\mu$. Si verifichi inoltre che il risultato non è più valido se f non è integrabile.

Sugg.: si utilizzi il lemma di Fatou. Per il controesempio si consideri la successione in L^+ su $(\mathbf{R}, \mathcal{L}, m)$ definita da: $f_n(x) = 0$ per $-\infty < x < 1 - 1/n$; $f_n(x) = n$ per $1 - 1/n \le x < 1$; $f_n(x) = 1$ per $x \ge 1$.

Esercizio 2.37

Si dimostri che $f(x)=x^{-\alpha}$ è Lebesgue-integrabile in (0,1) per $0<\alpha<1$ e si calcoli $\int_0^x f(t)dt$.

Sugg.: si usi il fatto che $\nu(E) = \int_E f d\mu$ è una misura su $\mathcal{L}_{(0,1)}$ per $f \in L^+$, oppure si ricorra al teorema della convergenza monotona. Per il calcolo si osservi che f è continua ed è una derivata e si usi il teorema fondamentale del calcolo integrale secondo Riemann in $[\varepsilon, 1] \, \forall \, \varepsilon > 0$, ricordando che una funzione Riemann-integrabile è anche Lebesgue-integrabile e gli integrali coincidono.

Esercizio 2.38*

Sia $(\Omega, \mathcal{M}, \mu)$ uno spazio con misura, $\{f_n\} \subset L^+$ una successione non crescente e convergente q.o. ad $f \in L^+$, con $\int_{\Omega} f_{n^*} d\mu < +\infty$ per un certo n^* . Si provi che $\int_{\Omega} f_n d\mu \to \int_{\Omega} f d\mu$.

Commenti: si tratta dell'analogo del teorema di Beppo Levi per la convergenza monotona non crescente. Si osservi che l'ipotesi sull'integrabilità di un elemento della successione (e di conseguenza di tutti i successivi) è essenziale; basta infatti considerare su $(\mathbf{R}, \mathcal{L}, m)$ la successione definita da: $f_n(x) = 0$ per x < n; $f_n(x) = 1/n$ per $x \ge n$.

Esercizio 2.39*

Sia $(\Omega, \mathcal{M}, \mu)$ uno spazio con misura, $\{f_n\} \subset L^1(\mu)$ tale che $\sum_{n=1}^{\infty} \int_{\Omega} |f_n| d\mu < +\infty$. Si provi che $\sum_{n=1}^{\infty} f_n \in L^1(\mu)$ e che $\sum_{n=1}^{\infty} \int_{\Omega} f_n = \int_{\Omega} \sum_{n=1}^{\infty} f_n$.

Sugg.: si usi l'Es. 2.35 e si ricordi che una funzione integrabile può assumere i valori $+\infty$ o $-\infty$ solo su un insieme di misura nulla; poi si usi il teorema della convergenza dominata.

Esercizio 2.40

Sia $(\Omega, \mathcal{M}, \mu)$ uno spazio con misura, $\{f_n\} \subset L^1(\mu)$ una successione convergente uniformemente ad f su $E \in \mathcal{M}$, con $\mu(E) < +\infty$. Si provi che $f \in L^1(\mu)$, $\int_E f_n d\mu \to \int_E f d\mu$.

Sugg.: si usi il teorema della convergenza dominata; si cerchi poi anche di ragionare direttamente.

Esercizio 2.41

Interpretare i teoremi della convergenza dominata e della convergenza monotona come asserzioni sulle serie numeriche (ricordando che le serie numeriche assolutamente convergenti si possono considerare come integrali sullo spazio con misura $(\mathbf{N}, \mathcal{P}(\mathbf{N}), card)$).

Esercizio 2.42

Si dimostri l'implicazione " \Leftarrow " dell'Es. 1.21 ricorrendo al teorema della convergenza dominata su $(\mathbf{N}, \mathcal{P}(\mathbf{N}), card)$ (v. Es. 2.41).

Esercizio 2.43

Sia $(\Omega, \mathcal{M}, \mu)$ uno spazio con misura, f una funzione misurabile tale che $f \geq 0$ su $E \in \mathcal{M}$; sia c > 0. Si dimostri che

$$\mu(\{x : x \in E, f(x) > c\}) \le \frac{1}{c} \int_{E} f(x) d\mu$$
.

Commenti: si tratta della disuguaglianza di Tchebicheff.

Esercizio 2.44*

Sia $(\Omega, \mathcal{M}, \mu)$ uno spazio con misura, $f \in L^1(\mu)$. Si provi che $\forall \varepsilon > 0 \ \exists \delta$ tale che

$$\left| \int_{E} f(x) d\mu \right| < \varepsilon \ \forall E \in \mathcal{M} \text{ con } \mu(E) < \delta.$$

Commenti: questa proprietà viene denominata assoluta continuità dell'integrale.

Definizione 2.5

Sia $(\Omega, \mathcal{M}, \mu)$ uno spazio con misura, $\{f_n\}$ una successione di funzioni misurabili, f una funzione misurabile. Si dice che $\{f_n\}$ converge in misura ad f, $f_n \stackrel{mis.}{\to} f$, se $\forall \varepsilon > 0$ si ha $\mu(\{x \in \Omega : |f_n(x) - f(x)| > \varepsilon\}) \to 0$ per $n \to \infty$.

Definizione 2.6

Sia $(\Omega, \mathcal{M}, \mu)$ uno spazio con misura, $\{f_n\}$ una successione di funzioni misurabili, f una funzione misurabile. Si dice che $\{f_n\}$ converge quasi uniformemente ad f, $f_n \stackrel{q.u.}{\to} f$, se $\forall \varepsilon > 0$ esiste $E \in \mathcal{M}$ tale che $\mu(E) < \varepsilon$ e f_n converge uniformemente ad f su E^c .

Esercizio 2.45*

Si dimostri che la convergenza quasi uniforme implica la convergenza q.o. e si verifichi con un controesempio che il viceversa non è vero.

Esercizio 2.46*

Si dimostri che la convergenza quasi uniforme implica la convergenza in misura.

Esercizio 2.47

Si provi che la convergenza in L^1 implica la convergenza in misura.

Sugg.: si usi la disuguaglianza di Tchebicheff (v. Es. 2.43).

Esercizio 2.48

Sia $(\Omega, \mathcal{M}, \mu)$ uno spazio con misura; siano $\{f_n\}$, $\{g_n\}$ due successioni di funzioni misurabili tali che $f_n \stackrel{mis.}{\to} f$, $f_n \stackrel{mis.}{\to} g$. Si provi che

(i)
$$f_n + g_n \stackrel{mis.}{\rightarrow} f + g;$$

(ii)
$$\alpha f_n \stackrel{mis.}{\to} \alpha f, \alpha \in \mathbf{R};$$

$$(iii)^{**}$$
 se $\mu(\Omega) < +\infty$ allora $f_n g_n \stackrel{mis.}{\to} fg;$

$$(iv)$$
 $|f_n| \stackrel{mis.}{\rightarrow} |f|$.

Esercizio 2.49**

Sia $(\Omega, \mathcal{M}, \mu)$ uno spazio con misura con $\mu(\Omega) < +\infty$; si identifichino, nello spazio delle funzioni misurabili, le funzioni uguali q.o.. Posto

$$d(f,g) = \int_{\Omega} \frac{|f-g|}{1+|f-g|} d\mu ,$$

si provi che

- (i) d è una distanza;
- (ii) la convergenza rispetto a d equivale alla convergenza in misura;
- (ii) lo spazio metrico cosí definito è completo.

FUNZIONI A VARIAZIONE LIMITATA E FUNZIONI ASSOLUTAMENTE CONTINUE.

Proposizione 2.12

Sia $f:[a,b] \to \mathbf{R}$, con $-\infty < a < b < +\infty$, una funzione monotona non decrescente. Allora l'insieme dei punti di non derivabilità di f ha misura di Lebesgue nulla.

Proposizione 2.13

Sia $f:[a,b]\to \mathbf{R}$ una funzione monotona non decrescente. Allora $f'\in L^1(a,b)$ e vale

 $\int_{a}^{b} f'(t)dt \le f(b) - f(a) .$

Definizione 2.7

Una funzione $f:[a,b]\to \mathbf{R}$ si dice a $variazione\ limitata$ e si scrive $f\in BV([a,b])$ se

$$V_a^b(f) = \sup_{\pi} \sum_{i=1}^{\nu_{\pi}-1} |f(x_{i+1}) - f(x_i)| < +\infty$$

dove $\pi = \{x_1, ..., x_{\nu_{\pi}}\}$ è una generica partizione di [a, b], con $a = x_1 < x_2 < ... < x_{\nu_{\pi}} = b$. La quantità $V_a^b(f)$ si dice variazione totale di f su [a, b].

Esercizio 2.50

Si provi che

- (i) $V_a^b(f) = V_a^c(f) + V_c^b(f)$ se a < c < b;
- (ii) la funzione $V_a^x(f)$ è monotona non decrescente su [a,b].

Commenti: la funzione $V_a^x(f)$ si dice funzione variazione associata ad f su [a,b].

Proposizione 2.14

 $f \in BV([a,b])$ se e solo se f è differenza di funzioni monotone non decrescenti.

Traccia della dim.: si scriva $f(x) = V_a^x(f) - h(x)$ e si usi l'Es. 2.50-(ii) e la Prop. 2.13.

Conseguenze: ogni funzione a variazione limitata è derivabile q.o. in [a,b] con $f' \in L^1(a,b)$.

Proposizione 2.15

 $f \in BV([a,b])$ se e solo se il grafico di f è una curva rettificabile.

Dim.: esercizio.

Esercizio 2.51

Si provi che BV([a,b]) è uno spazio vettoriale.

Esercizio 2.52

Si provi che $Lip([a,b]) \subset BV([a,b])$, ove $f \in Lip([a,b])$ significa che f è Lipschitziana su [a,b], cioè $\exists K$ tale che $|f(x)-f(y)| \leq K|x-y| \ \forall x,y \in [a,b]$.

Definizione 2.8

Una funzione $f:[a,b] \to \mathbf{R}$ si dice assolutamente continua su [a,b] e si scrive $f \in AC([a,b])$, se $\forall \varepsilon > 0 \quad \exists \delta$ tale che per ogni famiglia finita di intervalli disgiunti $\{(a_i,b_i)\}, (a_i,b_i) \subset [a,b]$ per i=1,...,m tali che $\sum_{i=1}^m (b_i-a_i) < \delta$ si ha $\sum_{i=1}^m |f(b_i)-f(a_i)| < \varepsilon$.

Commenti: nella definizione di assoluta continuità è essenziale che gli intervalli siano disgiunti; si può infatti provare (non richiesto) che togliendo tale ipotesi si definiscono le funzioni Lipschitziane su [a, b]. Si osservi inoltre che nella definizione si potrebbe considerare equivalentemente una famiglia numerabile.

Esercizio 2.53

Si provi che $Lip([a,b]) \subset AC([a,b])$.

Sugg.: per dimostrare che si tratta di un sottospazio proprio si provi che $f \in Lip([a,b]) \Rightarrow f' \in L^{\infty}(a,b)$ (v. Es. 2.59).

Esercizio 2.54

Si dimostri che AC([a,b]) è un'algebra rispetto al prodotto puntuale.

Esercizio 2.55*

Si provi che $AC([a,b]) \subset BV([a,b])$.

Esercizio 2.56*

Si dimostri che $f \in AC([a,b]) \Leftrightarrow V_a^x(f) \in AC([a,b])$.

Conseguenze: ogni funzione assolutamente continua si può scrivere come differenza di funzioni monotone non decrescenti e assolutamente continue.

Esercizio 2.57

Sia $q \in L^1(a, b)$; si provi che la funzione

$$F(x) = \int_{a}^{x} g(t)dt$$

è assolutamente continua su [a, b].

Sugg.: v. Es. 2.44.

Commenti: F si dice funzione integrale (di Lebesgue).

Proposizione 2.16

Sia $g \in L^1(a, b)$; la funzione integrale $F(x) = \int_a^x g(t)dt$ è q.o. derivabile in (a, b) e si ha F' = g q.o. in (a, b).

Proposizione 2.17

Sia $f \in AC([a,b])$, f monotona non decrescente, f' = 0 q.o. in (a,b); allora $f \equiv cost.$

Teorema fondamentale del calcolo integrale (secondo Lebesgue)

Sia f una funzione a valori reali definita su [a, b]. Sono equivalenti:

- (i) $f \in AC([a,b]);$
- (ii) $\exists g \in L^1(a,b)$ tale che

$$f(x) = f(a) + \int_a^x g(t)dt$$
 per ogni $x \in [a, b]$;

(iii) $f \in q.o.$ derivabile in $(a, b), f' \in L^1(a, b)$ e

$$f(x) = f(a) + \int_a^x f'(t)dt$$
 per ogni $x \in [a, b]$.

Dim.: esercizio, utilizzando l'Es. 2.56 e le Prop. 2.16, 2.17.

Conseguenze: la Prop. 2.17 è valida anche se f non è monotona.

Esercizio 2.58

Si provi che le seguenti affermazioni sono equivalenti

- (i) $f \in AC([a,b]);$
- (ii) $f \in AC([a+\varepsilon,b]) \ \forall \varepsilon > 0, f$ è continua in $x = a, f \in BV([a,b])$;
- (iii) $f \in AC([a+\varepsilon,b]) \ \forall \varepsilon > 0, f \ \text{\'e} \ \text{continua in} \ x = a, f' \in L^1(a,b).$

Esercizio 2.59

Sia $f:[0,1] \to \mathbf{R}$ definita da: $f(0)=0, f(x)=x^{\alpha}\sin{(x^{-\beta})}$ per $0 < x \le 1$. Si provi che $f \in AC([0,1])$ per $0 < \beta < \alpha$ e che se $0 < \alpha \le \beta$ allora $f \notin BV([0,1])$.

Esercizio 2.60**

Si dimostri che se $f \in AC([a,b])$ allora

$$V_a^b(f) = \int_a^b |f'(t)| dt .$$

Sugg.: per provare che $V_a^b(f) \geq \int_a^b |f'(t)| dt$ si scriva |f'| = f' sgn(f'), si osservi che $sgn(f') \in L^1(a,b) \cap L^\infty(a,b)$ e si provi che se $g \in L^1(a,b) \cap L^\infty(a,b)$ allora g è limite in $L^1(a,b)$ di una successione di funzioni costanti a tratti $\{\psi_n\}$ tali che $\|\psi_n\|_{\infty} \leq \|g\|_{\infty}$.

Esercizio 2.61**

Si provi che $f \in AC([a,b])$ se e solo se $\forall E \subset [a,b]$ tale che m(E) = 0 si ha m(f(E)) = 0.

Esercizio 2.62

Si dimostri la formula di integrazione per parti (per l'integrale di Lebesgue); se $f,g\in AC([a,b])$ si ha

$$\int_{a}^{b} f'(t)g(t)dt + \int_{a}^{b} f(t)g'(t)dt = f(b)g(b) - f(a)g(a) .$$

Esercizio 2.63

Si provi che $f \in AC([a,b]) \Rightarrow f \in W^{1,1}(a,b)$.

Sugg.: si usi la formula di integrazione per parti.

Conseguenze: $AC([a,b]) = W^{1,1}(a,b)$ (v. Brezis, teorema VIII.2).