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Abstract The backward error analysis is a great tool which allows to select
in an effective way the scaling parameter s and the polynomial degree of ap-
proximation m when the action of the matrix exponential exp(A)v has to be
approximated by

(

pm(s−1A)
)s

v = exp(A+∆A)v. We propose here a rigorous
bound for the relative backward error ‖∆A‖2 / ‖A‖2, which is of particular
interest for matrices whose field of values is skinny, such as the discretization
of the advection–diffusion or the Schrödinger operators. The numerical results
confirm the superiority of the new approach with respect to methods based
on the classical power series expansion of the backward error for the matrices
of our interest, both in terms of computational cost and achieved accuracy.

Keywords backward error analysis · action of matrix exponential · Leja–
Hermite interpolation · skinny field of values
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1 Introduction

In the recent years, the problem of approximating the action of the matrix
exponential on a vector exp(A)v has attracted an increasing amount of at-
tentions. Among polynomial methods we recall the recent implementations of
the Krylov method (see [8,9,20]), the truncated Taylor series expansion [2]
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and polynomial interpolation methods (e.g., [5,6]). Among rational meth-
ods we recall instead the rational Krylov methods (see [10,19,23]) and the
Carathéodory–Fejér approach used in [21]. For a survey on these and other
methods we refer to [18] and [13, § 10 and § 13]. This interest is mainly due
to the several applications where the action of the matrix exponential plays
a fundamental role. Prominent examples are the exponential integrators [15],
which constitute effective methods for the time integration of large stiff or
oscillatory systems of differential equations. These very practical applications
led the authors of this manuscript into refining existing techniques to achieve
better accuracy and performances over a fairly specific class of matrices, that is
the family of matrices having a skinny field of values. In fact, when it comes to
the real applications, very often the spectrum of the matrices of interest is not
just a scattered bunch of points on the complex plane. It is, on the contrary,
contained in a skinny rectangle centered at the origin of the complex plane,
after a proper shift of the matrix. We just mention the spatial discretization
of diffusion, advection–diffusion, advection, and Schrödinger operators, among
others.

The goal of this paper is to outline an algorithm for the computation of
the action of the matrix exponential which exploits the information coming
from the field of values.

In particular, we first split the problem into s easier-to-approximate sub-
steps. Then, we employ a polynomial interpolation pm of degree m of the
exponential function at the so-called Leja–Hermite points. Through such ap-
proximation, we compute the action of the exponential of a slightly perturbed
matrix, i.e. exp(A+∆A). For this approximation to be backward accurate, we
have to ensure thatm and s are taken so that the inequality ‖∆A‖2 ≤ tol·‖A‖2
holds true, for a prescribed tolerance tol. To do so, we rely on a tool called
backward error analysis, which was employed in [2] for computing the action of
the matrix exponential using a truncated Taylor expansion of degree m of the
exponential function. By analyzing the norm of A, or some of its powers, the
algorithm proposed in [2] can select effectively the number of sub-steps s and
the polynomial degree m such that the action of the matrix exponential is ap-
proximated up to the desired accuracy. That original idea was then extended
to the interpolation of the exponential function at Leja [5] and Leja–Hermite
points [6]. These families of interpolation points enjoy useful numerical prop-
erties that are going to be crucial in the development of this work. In [5, § 3.2]
the idea was introduced that the backward error can be analyzed by a contour
integral expansion along a curve which embraces the ε-pseudo-spectrum of the
matrix. In this paper, we refine this idea by considering a compact K which
resembles the shape of the field of values. This choice produces more effective
parameters s and m for the matrices of interest.

The paper is developed as follows. In section 2, we recall the idea of inter-
polating the exponential function in the Hermite sense. We then show how to
equip interpolation polynomials with a backward error analysis as it was done
in [6]. In section 3, we recall the classical backward error analysis based on the
norms of A and some of its powers. In section 4, we formulate the backward
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error analysis based on the field of values of A. We then apply this technique
to the interpolation at Leja–Hermite points. Moreover, we overcome the idea
of choosing the parameters s and m merely trying to minimize the expected
cost s ·m in terms of matrix-vector products. This turns out to be a reward-
ing strategy both in achieved accuracy and in terms of the total number of
matrix-vector products, as confirmed by the numerical experiments presented
in section 5. We finally draw some conclusions in section 6.

2 Polynomial interpolation of the exponential function

For computing the desired approximation of exp(A)v for a matrix A ∈ C
n×n

and a vector v ∈ C
n, following the papers [2,5,6], we consider the polynomial

approximation pm of degree m of the exponential function coupled with a sub-
stepping strategy. Namely, we pick a positive integer s such that pm(s−1A)v is
easier to compute than pm(A)v and then we recover the wanted approximation
by marching as follows

v(l+1) = pm(s−1A)v(l), l = 0, 1, . . . , s− 1 (2.1)

where we set v(0) = v. In particular, pm is the polynomial which interpolates
the function ex in the Hermite sense at m + 1 points {zi}mi=0 over the real
interval [−c, c], c ∈ R

+
0 . We fix z0 = 0, which means that pm(0) = e0 = 1.

Moreover we assume, without loss of generality, that z0 = z1 = . . . = zℓ = 0
for 0 ≤ ℓ ≤ m.

In order to determine if approximation (2.1) is accurate, we represent the
backward error, that is the matrix ∆A such that

(pm(s−1A))s = exp(A+∆A),

as a function ofA. In order to do so, we exploit the properties of the exponential
function to obtain

exp(−A)(pm(s−1A))s = exp(∆A).

Then, by applying the principal logarithm, we get the desired representation
of the backward error as a function of A

s−1∆A = hm+1(s
−1A)

where

hm+1(X) := log(exp(−X)pm(X))

is a function defined on the matrix set

{X ∈ C
n×n : ρ(exp(−X)pm(X)− I) < 1},

with ρ(·) denoting the spectral radius of the matrix argument and I denoting
the identity matrix of size n.
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The function hm+1 has a power series expansion

hm+1(X) =
∞
∑

k=ℓ+1

ckX
k (2.2)

in which the first power of X is precisely ℓ + 1. We refer to [1,2,5,6,12] for
more details. The function hm+1 depends on ℓ and c, as well. Here we prefer to
keep the notation used, for instance, in [2]. If we consider c = 0 or ℓ = m, then
all the points coincide with z0 = 0 and the Hermite interpolation is nothing
else than the truncated Taylor series approximation of ex.

Additionally, we can consider a purely imaginary interpolation interval
[−c, c] = i[−|c|, |c|], for c ∈ iR+. In this case, in order to keep real arithmetic for
real input A (see [5,22], for instance), it is necessary to use complex conjugate
points defined by

z0 = . . . = zℓ = 0, ℓ+m even

zi+2 = zi+1, i = ℓ, ℓ+ 2, . . . ,m− 2.

Clearly, the real and the imaginary interpolations above are more effective
when approximating the exponential function around the origin of the com-
plex plane. Since the matrix exponential can be written as a polynomial in-
terpolation in the Hermite sense

exp(A) =

n−1
∑

i=0



exp[λ0, λ1, . . . , λi]

i−1
∏

j=0

(A− λjI)



 ,

where exp[λ0, λ1, . . . , λi] denotes the divided difference of order i of the expo-
nential function at the set {λj}ij=0 of the eigenvalues of A, it is convenient that
the eigenvalues lay around the origin, too. It is usual to shift the matrix A in
order to reach such a desired result, for instance, by considering the shift given
by trace(A)/n, which corresponds to the average eigenvalue of A (see [2]). Here
we prefer to consider the following distinct shift strategy (see [6]). We split the
matrix A into its Hermitian AH and skew-Hermitian AsH parts and estimate
their extreme eigenvalues (real and pure imaginary values, respectively) by
using Geršgorin’s disks. We obtain

conv(σ(AH)) ⊆ [α, ν], conv(σ(AsH)) ⊆ i[η, β],

where conv denotes the convex hull of a set. Therefore, by considering the field
of values of a matrix

W(A) = {z ∈ C : z = x∗Ax, for x ∈ C
n with x∗x = 1},

using its sub-additivity property and the equivalence between field of values
and convex hull of the spectrum for normal matrices, we have

W(A) = W(AH +AsH) ⊆ W(AH) +W(AsH) =

= conv(σ(AH)) + conv(σ(AsH)) ⊆ [α, ν] + i[η, β].
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If we define R(A) = [α, ν] + i[η, β], the previous chain of inclusions becomes

W(A) ⊆ R(A). (2.3)

Given the rectangle R(A) containing the field of values of the matrix A, our
choice of the shift µ is given by its center, that is

µ = (α+ ν)/2 + i(η + β)/2. (2.4)

Therefore, we work in practice with A− µI whose rectangle

R(A− µI) =

[

α− ν

2
,
ν − α

2

]

+ i

[

η − β

2
,
β − η

2

]

lays symmetrically about the origin of the complex plane. In order to recover
the desired approximation of exp(A)v, thanks to the properties of the expo-
nential function, we can multiply eµ into the vector v(s) obtained by marching
as in formula (2.1). On the other hand, if the real part of µ is negative, it is

convenient to recover the desired approximation by multiplying es
−1µ into v(l)

at each sub-step l. Although the two ways of recovering the approximation of
exp(A)v are mathematically equivalent, the second one reduces the possibility
to over-flow when the matrix A has eigenvalues with large negative real parts
(see [2]). For sake of simplicity, we denote the shifted matrix again by A and
the corresponding rectangle by R(A) = [−ν, ν] + i[−β, β], with ν, β ≥ 0.

We conclude this section by recalling that there exist more sophisticated
ways to enclose the field of values into shapes different from the rectangular
one. We refer to [16].

3 Backward error analysis based on the norm of A

In this section, we recall the classical way to perform the backward error
analysis, which is based on the norms of the matrices. We refer to [2,5].

If A is the null matrix, we already know that pm(A) = exp(A) = I. Oth-
erwise, the starting point is the following inequality

‖∆A‖
‖A‖ =

∥

∥hm+1(s
−1A)

∥

∥

‖s−1A‖ ≤ h̃m+1(s
−1 ‖A‖)

s−1 ‖A‖ (3.1a)

where

h̃m+1(X) =

∞
∑

k=ℓ+1

|ck|Xk.

It is possible to compute a priori and with the help of a software for multiple
precision arithmetic the scalar value θm defined by

θm = max{θ : h̃m+1(θ)/θ ≤ tol}
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where tol is a prescribed tolerance (usually the unit round off for the double or
the single precision). If we select 0 as interpolation point at least twice (ℓ > 0),
we can write

h̃m+1(θ)

θ
=

∞
∑

k=ℓ+1

|ck|θk−1.

In this way, since h̃m+1(θ)/θ is a monotonic increasing function of θ, θm is the
unique positive solution of

h̃m+1(θ)

θ
= tol.

For a given matrix A, if s−1 ‖A‖ ≤ θm, for a proper integer scaling s, then
from (3.1a) we have ‖∆A‖ / ‖A‖ ≤ tol.

According to [1, Thm. 4.2(a)], it is possible to refine estimate (3.1a) with
the following

‖∆A‖
‖A‖ =

∥

∥hm+1(s
−1A)

∥

∥

‖s−1A‖ ≤ h̃m+1(s
−1αq(A))

s−1αq(A)
, if q(q − 1) ≤ ℓ+ 1 (3.1b)

where

αq(X) = max{‖Xq‖
1
q ,

∥

∥Xq+1
∥

∥

1
q+1 }.

In fact
ρ(X) ≤ ‖Xq‖

1
q ≤ ‖X‖ , lim

q→∞
‖Xq‖

1
q = ρ(X) (3.2)

and the values αq(A) can be much smaller than ‖A‖, for instance for non-
normal matrices. When it happens, the estimate of the relative backward er-
ror given in (3.1b) is sharper than (3.1a) and it allows to satisfy the require-
ment ‖∆A‖ ≤ tol · ‖A‖ provided that the weaker inequality s−1αq(A) ≤ θm
holds. The choice of a smaller scaling parameter s reduces the over-scaling

phenomenon. In fact, when the scaling parameter s is chosen too large, it is
possible that rounding errors seriously affect the final result. For instance, for
x sufficiently small, (1 + x) can be closer to ex than (1 + x/s)s, for s large.
The values ‖Xq‖ can be estimated in the 1-norm by using the algorithm de-
scribed in [14]. It is important to remark that it is possible to use the inequality
in (3.1b) only if the number ℓ + 1 of zeros among the interpolation points is
large enough. In particular, it is not possible to use this technique with pure
Chebyshev or Leja interpolation points (see [5]). In [6] it has been shown that
the possibility to select the interpolation intervals [−c, c] or i[−|c|, |c|] and the
number ℓ + 1 of zeros among the points leads to polynomial approximations
that often outperform the truncated Taylor series approach.

4 Backward error analysis based on the field of values of A

The use of the αq(A) values may help a lot to reduce the scaling parameter s.
On the other hand, the backward error analysis based on the norms of the
matrices cannot distinguish, for instance, matrices with real eigenvalues in an
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interval from matrices with eigenvalues spread in a disk with that interval as
a diameter. Therefore we aim at exploiting the information contained into the
rectangle R(A).

Since 0 is among the interpolation points, we can write

hm+1(X) = X

∞
∑

k=ℓ+1

ckX
k−1 = Xgm+1(X). (4.1)

By using the estimate [7, inequality (3)]

‖gm+1(X)‖2 ≤ (1 +
√
2) sup

z∈W(X)

|gm+1(z)|,

we get
‖gm+1(X)‖2 ≤ (1 +

√
2) ‖gm+1‖Γ ,

where Γ = ∂K denotes the contour of a domain K ⊂ C that contains the field
of values W(X) of X and

‖gm+1‖Γ = max
z∈Γ

|gm+1(z)| = max
z∈K

|gm+1(z)|.

Therefore

‖∆A‖2
‖A‖2

=

∥

∥hm+1(s
−1A)

∥

∥

2

‖s−1A‖2
≤

∥

∥gm+1(s
−1A)

∥

∥

2
≤ (1 +

√
2) ‖gm+1‖Γ (4.2)

if Γ = ∂K, with K now containing the field of values W(s−1A) of s−1A.
Thanks to (2.3), this is certainly true if

R(s−1A) = s−1R(A) ⊆ K. (4.3)

Now we have to restrict the choice of possible domains K of interest. We
consider the domain K circumscribed by an ellipses Γγ

x2

a2
+

y2

b2
= 1, z = x+ iy

whose focal interval is the interpolation interval [−c, c] and the capacity (a+
b)/2 is γ. Since c2 = a2 − b2 (c can be real or purely imaginary), it turns out
that the ellipse Γγ has semi-axes

a = γ +
c2

4γ
, b = γ − c2

4γ
.

Such a choice for the domains K makes it possible to select the ellipse Γγm
,

for a given c, which realizes

(1 +
√
2) ‖gm+1‖Γγm

= tol (4.4)

by finding the root (by the secant method, e.g.) of the uni-variate function

γ 7→ (1 +
√
2) ‖gm+1‖Γγ

− tol.
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Such a function has at most one positive root. In fact, γ ≥ |c|/2 and the func-
tion is monotonically increasing with γ, by the maximum modulus principle.
Therefore, either the error estimate exceeds tol already for Γ|c|/2 = [−c, c]
(it means that the interpolation degree m is not large enough for the given
interval) or there exists one positive root. Therefore, for each polynomial of
interest pm : [−c, c] → R (pm : i[−|c|, |c|] → R) which interpolates ex at m+ 1
points containing ℓ + 1 zeros, it is possible to pre-compute once and for all,
with a software for multiple precision arithmetic, the semi-axes am and bm of
the ellipse Γγm

with capacity γm which satisfies (4.4).

In order to find the smallest integer value s for which inclusion (4.3) is
satisfied, it is now possible to solve the inequality

ν2

s2a2m
+

β2

s2b2m
≤ 1,

where s−1(ν, β) is the top-right vertex of the rectangle s−1R(A), which gives

s =

⌈
√

ν2

a2m
+

β2

b2m

⌉

. (4.5)

We briefly sketch again the procedure:

1. For a given matrix A, compute the rectangle which contains its field of
values, shift it by µI (see (2.4)) and compute the final centered rectangle
R(A) = [−ν, ν] + i[−β, β].

2. Compute s as in (4.5).
3. Approximate exp(A)v by v(s) as in (2.1).

The backward error analysis ensures that the result is such that v(s) = exp(A+
∆A)v, with ‖∆A‖2 ≤ tol · ‖A‖2.

If approximations at different matrix scales exp(tiA)vi, ti ≥ 0, are required
(this is quite common in the so-called exponential integrators [15]), it is pos-
sible to compute the matrix-dependent quantity

r(A) =

√

ν2

a2m
+

β2

b2m

once and for all and later to select the scaling parameter as

si = ⌈tir(A)⌉.

This was not possible in [5, § 3.2] where a contour integral expansion of the
backward error on the ε-pseudo-spectrum was employed for a fixed value ε =
1/50 independent of the matrix A.
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4.1 Possible refinement of the rectangle R(A)

Once the original matrix has been shifted, it would be possible to compute
the rectangle R(A) in the following way

R(A) = [−‖AH‖2 , ‖AH‖2] + i[−‖AsH‖2 , ‖AsH‖2],

thanks to the inclusions

σ(AH) ⊆ [−ρ(AH), ρ(AH)] = [−‖AH‖2 , ‖AH‖2],
σ(AsH) ⊆ i[−ρ(AsH), ρ(AsH)] = i[−‖AsH‖2 , ‖AsH‖2].

Such a rectangle is in general smaller than the one given by the Geršgorin’s
disks. On the other hand, it requires two 2-norm computations (or estimates).
The standard power method can be used to produce two non-decreasing se-
quences of estimates of the 2-norms of AH and AsH (see [11]), in a fast way
and without even forming the matrices AH and AsH. However, running too
few iterations could yield to a rectangle which in principle does not contain
the eigenvalues. As a remedy, it is possible to exploit the inequalities in (3.2)

which ensure that ρ(AH) ≤ ‖Aq
H‖

1/q

1 and ρ(AsH) ≤ ‖Aq
sH‖

1/q

1 , and compute or

approximate the values ‖Aq
H‖

1/q

1 and ‖Aq
sH‖

1/q

1 for small values of q. Estimates
with few iterations of the required norms are commonly used in the literature
(see [2,5,6]).

4.2 Application to Leja–Hermite interpolation points

As an application of the above ideas, we consider the Leja–Hermite interpola-
tion points introduced in [3] and whose classical (norm based) backward error
estimate was considered in [6].

Leja–Hermite points are defined by

z0 = z1 = . . . = zℓ = 0,

zi+1 ∈ arg max
x∈[−c,c]

i
∏

j=0

|x− zj |, i = ℓ, ℓ+ 1, . . . ,m− 1,
(4.6a)

where ℓ ≥ 0. Points zℓ+1, zℓ+2, and zℓ+3 are not uniquely determined and we
select them as zℓ+1 = c, zℓ+2 = −c, and zℓ+3 = c

√

(ℓ+ 1)/(ℓ+ 3).
When we work in the complex interval [−c, c] = i[−|c|, |c|] we use complex

conjugate Leja–Hermite points defined by

z0 = . . . = zℓ = 0, ℓ+m even,

zi+1 ∈ arg max
x∈[−c,c]

i
∏

j=0

|x− zi|, zi+2 = zi+1, i = ℓ, ℓ+ 2, . . . ,m− 2
(4.6b)

The points zℓ+1, zℓ+2, and zℓ+3 are selected in a similar way as above. With
the introduction of Leja–Hermite points we have plenty of possibilities to select
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the degree m of interpolation, the number ℓ + 1 of zeros among the interpo-
lation points, and the interpolation interval [−c, c], both real and imaginary.
We propose in this section a way to perform a choice on a limited subset of
possibilities.

Let us start with the real case and fix tol = 2−53. For each m and ℓ,
consider ck = k/2, k ∈ N, and denote by ck̄ the smallest value of this form
for which it is not possible to satisfy (4.4). Between ck̄−1 and ck̄ there may
be additional values of c ∈ R

+ such that (4.4) is satisfied. We look for them
by using few iterations of the bisection method. The final set of intervals to
be considered for interpolation is made out of ck, k = 0, 1, . . . , k̄ − 1 together
with those values obtained in the bisection process.

Table 4.1 Values of am and bm for degrees m = 30 and m = 50 (ℓ = 1) and selected values
of c.

m = 30 m = 50
c am bm c am bm
0 3.447e0 3.447e0 0 8.419e0 8.419e0
0.5 3.457e0 3.421e0 0.5 8.430e0 8.414e0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
4 4.523e0 2.111e0 10 11.19e0 5.027e0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
5.5 5.573e0 0.902e0 11.5 12.13e0 3.874e0
6 6.013e0 0.390e0 12.5 12.53e0 0.878e0
6.5 / / 13 / /
..
.

..

.
..
.

..

.
..
.

..

.
6.172e0 6.173e0 0.107e0 12.52e0 12.53e0 0.515e0
6.180e0 / / 12.53e0 / /

-10 -5 0 5 10

-10

-5

0

5

10

x

y

-10 -5 0 5 10

-10
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0

5

10

x

y

Fig. 4.1 Ellipses corresponding to degree 30 (left) and degree 50 (right) of Table 4.1. The
ellipses corresponding to c = 0 and c = 0.5 cannot be distinguished in the plot.
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For instance, for degrees m = 30 and m = 50 and ℓ = 1, we can see in
Table 4.1 that the largest possible values for a real c are 6.172e0 and 12.52e0,
respectively (values reported with the exponential notation were rounded).
The ellipses corresponding to the values displayed in Table 4.1 are drawn in
Figure 4.1.

In a totally analogous way, we obtained the set of imaginary interpolation
intervals.

For a given matrix A it remains now open the choices of the degree m, the
number ℓ, and the interval [−c, c] of interpolation. Since for a given number of
sub-steps s and degree of interpolationm the cost of the polynomial evaluation,
in terms of matrix-vector multiplications, is s ·m, we select m and c in order
to minimize it. To give an example, we consider the discretization of the one-
dimensional advection–diffusion operator ∂x + 0.02 · ∂xx with homogeneous
Dirichlet boundary conditions and 149 inner nodes in the interval [0, 1]. In
Matlab syntax it is

n = 149;

h = 1/(n+1);

A = toeplitz(sparse([1,1],[1,2],[-2,1]/h^2,1,n))/50+...

toeplitz(sparse(1,2,-1/(2*h),1,n),sparse(1,2,1/(2*h),1,n));

We have α = −1800, ν = 0, η = −150, and β = 150 and after the shift the
rectangle R(A) is [−900, 900]+i[−150, 150]. If we compute s as in (4.5) for the
values am and bm as in Table 4.1, we get 265, 265, 212, 232, 413, and 1410,
for m = 30 and the different values of c, and 109, 109, 86, 84, 186, and 300 for
m = 50. If we now multiply these values for the corresponding degree m, we
find out that the smallest evaluation cost (s ·m = 4200) is attained for m = 50
and c = 11.5. The strategy of minimizing the expected cost s · m is already
used in [2,5,6].

Although the backward error analysis guarantees the required accuracy in
exact arithmetic, there is a phenomenon that we should take into account:
the hump phenomenon. We observe that the interpolation error does not al-
ways decrease monotonically with the degree of interpolation (see [5, § 4.3]).
This behavior can lead to a significant loss of accuracy due to round-off er-
rors. This cannot be predicted by the backward error analysis since it is a
pure finite arithmetic side effect. It was already observed in [5] that the hump
is related to a bad distribution of the interpolation points with respect to
the localization of the eigenvalues. If we consider again the example in this
section, we see that the selection of s = 84 and m = 50 as the one minimiz-
ing the cost s · m has the drawback to scale the original rectangle R(A) to
R(s−1A) = [−10.71e0, 10.71e0]+i[−1.786e0, 1.786e0], while the corresponding
interpolation interval is [−c, c] with c = 11.5. Therefore, it is not contained
into R(s−1A). With the additional constraint that [−c, c] ⊆ R(s−1A), we get
that the optimal values are s = 86 and m = 50 (corresponding to c = 10),
with a computational cost s ·m = 4300. We show in Figure 4.2 the two scaled
rectangles and corresponding ellipses for the choices m = 50, s = 86, and
c = 10 and m = 50, s = 84, and c = 11.5, respectively. In the case that differ-
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m = 50, ℓ = 1, s = 86, c = 10

m = 50, ℓ = 1, s = 84, c = 11.5

Fig. 4.2 Two scaled rectangles containing the field of values of an advection–diffusion
matrix with the corresponding ellipses. The interpolation interval of the magenta dashed-
dotted ellipse is not included in the corresponding rectangle and thus has to be excluded.

ent combinations of degrees (m, ℓ, c) lead to the same computational cost s ·m
and [−c, c] ⊆ R(s−1A), we select the one corresponding to a ratio am/bm as
close as possible to the ratio of the corresponding edges of the rectangle R(A).

5 Numerical experiments

5.1 Technical details

For an efficient and reliable implementation of interpolation at Leja–Hermite
points, some considerations have to be made. First of all, Leja–Hermite points
(both in their standard form (4.6a) and in the complex conjugate form (4.6b))
can be computed once and for all in reference intervals, say [−2, 2] and i[−2, 2],
and later scaled to [−c, c] and i[−|c|, |c|], respectively. Due to their recursive
definition, the proper way to implement the polynomial interpolation is the
Newton form

pm(A)v =

m
∑

i=0



di

i−1
∏

j=0

(A− zjI)v



 .
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It requires an accurate evaluation of the divided differences {di}mi=0, di =
exp[z0, z1, . . . , zi], for which the algorithm described in [4,17] or the very recent
in [24] can be used. When using complex conjugate points for real inputs A
and v, Newton evaluation scheme has to be adapted in order to keep real
arithmetic, see [22]. Both in the real and the complex case, it is possible to
interrupt the scheme before reaching the desired degree m. This feature is
called early termination and it is usually triggered when the magnitude of the
updates is much smaller than the current approximation. Another feature that
may help the early termination is a good ordering of the interpolation points.
Leja points naturally have such a property, but Leja–Hermite points have the
leading set of zeros with multiplicity ℓ+ 1. With the strategy described in [6,
§ 3.2] we order à la Leja the set {zi}mi=ℓ and add the remaining ℓ zeros at the
end of the Newton interpolation process. We refer to [2,5,6] for further details.

In the next sections, we will show the effectiveness of the new approach
with respect to the classical backward error analysis based on norms for the
truncated Taylor series [2] and interpolation at Leja or Leja–Hermite points [6].
To be fair, all the methods have been limited to the maximum degree polyno-
mial m = 55, as it is in [2]. The computation of the parameters θm and γm for
each selected degree m and interval of interpolation [−c, c] was done once and
for all. The result is a long table of candidate interpolation polynomials. For
each of them, it is possible to compute in advance the corresponding divided
differences up to the needed degree.

For each example, we will report the number of iterations (matrix-vector
products) for the evaluation of the polynomial

(

pm(s−1A)
)s

v as an indication
of the overall computational cost. The algorithms share the same idea of scaling
the matrix and approximating its exponential using a polynomial. Therefore,
the number of matrix-vector products is a reliable indication of their total
cost. On the other hand, since we compare the methods on matrices of modest
dimension, the measured CPU times are prone to fluctuations and cannot be
used to infer the behavior of the algorithms on larger matrices. The cost of
approximating the values αq(A) or R(A) is not reported, since it is negligible
for the examples we consider. On the other hand, it is a pre-processing cost
common to all the methods which bound the backward error.

5.2 Examples with real Leja–Hermite points

In the first five numerical examples, we consider interpolation at real Leja–
Hermite points.

5.2.1 Two-dimensional advection–diffusion matrices

We consider the discretization by second-order finite differences of the advec-
tion–diffusion partial differential equation

∂u

∂t
+ b · ∇u = d∇2u
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defined in the two-dimensional spatial domain [0, 1]2, subject to homogeneous
Dirichlet boundary conditions and initial solution u0(x, y) = 16x(1− x)y(1−
y). The discretization is done with 49 inner points and thus h = 1/50. The
diffusion coefficient is fixed to d = 1/100 and the advection term is b = (b, b),
b ≥ 0. The grid Péclet number turns out to be

Pe =
hb

2d
= b.

We first consider the diffusion case (b = 0, corresponding to a symmetric
matrix). After the shift, the “rectangle” R(A) is the real interval [−100, 100].
The 1-norm, together with the values αq(A) up to q = 8, is 100. Table 5.1
contains the results for the truncated Taylor series, for interpolation at pure
Leja points based on the 1-norm of the matrix, and for interpolation at Leja–
Hermite points based on the field of values of the matrix. We report the scaling
parameter s, the degree of interpolation m, the value ℓ, the endpoint c (in
exponential notation when rounded) of the symmetric interpolation interval,
the values θm (for methods based on the norm of the matrix) or γm (for
the presented method), the expected number of iterations s · m, the actual
number of iterations due to the early termination criterion and the relative
error measured in the 1-norm with respect to the Matlab R© R2017b command
expm(A)*v on the original un-shifted matrix.

Table 5.1 Results for the diffusion case (b = 0).

Method s m ℓ c θm or γm s ·m Act. its. Rel. err.
T ‖A‖

1
11 53 53 0 9.3e0 583 495 4.4e-14

L ‖A‖
1

10 55 0 4.8e0 1.0e1 550 460 4.9e-14
LH W(A) 7 55 30 14.2e0 7.8e0 385 235 1.5e-14

From the table, we see that the expected number of iterations is much
smaller with the presented approach (denoted by LH W(A)) than with the
methods based on the norm of the matrix (Taylor truncated series, denoted
by T ‖A‖1 and interpolation at Leja points, denoted by L ‖A‖1). This is even
more clear from the number of actual iterations: all the three methods benefit
a lot from the early termination criterion, but the new method takes less than
half of the iterations of the Taylor approach. The final errors are comparable,
with a small advantage for the new method.

In the second example we consider b = 0.25. The rectangle is [−100, 100]+
i[−25, 25]. The values αq(A) are still constant and equal to 100. Table 5.2
collects the results.

Since the values αq(A) are the same as in the previous case, it is not
surprising that the Taylor method and interpolation at pure Leja points adopt
the same strategies as before. The new method selects a different ellipse and
turns out to be still the best in terms of both expected and actual number of
iterations.



Approximation of the matrix exponential for matrices with skinny fields of values 15

Table 5.2 Results for the advection–diffusion case (b = 0.25).

Method s m ℓ c θm or γm s ·m Act. its. Rel. err.
T ‖A‖

1
11 53 53 0 9.3e0 583 495 9.1e-15

L ‖A‖
1

10 55 0 4.8e0 1.0e1 550 460 1.5e-14
LH W(A) 9 55 4 11 9.3e0 495 315 1.9e-14

The final example in this series is relative to the case b = 0.5. The rectangle
R(A) is [−100, 100]+ i[−50, 50]. The αq(A) values are still constant and equal
to 100. Table 5.3 collects the results.

Table 5.3 Results for the advection–diffusion case (b = 0.5).

Method s m ℓ c θm or γm s ·m Act. its. Rel. err.
T ‖A‖

1
11 53 53 0 9.3e0 583 495 9.1e-15

L ‖A‖
1

10 55 0 4.8e0 1.0e1 550 456 1.5e-14
LH W(A) 11 55 2 9 9.6e0 605 375 2.6e-14

The new approach still takes a considerably smaller number of iterations
with respect to the competitors, although the expected number of iterations
is larger.

5.2.2 triw matrices

The next two experiments show the behavior of the new approach in case
the rectangle containing the field of values is not skinny. The first matrix we
consider is given by the Matlab R© command -gallery(’triw’,20,4) which
corresponds to a 20 × 20 matrix with −1 on the main diagonal and −4 on
the remaining upper triangular part. The initial vector has components vj =
cos(j). After the shift with µ = −1, the matrix is nilpotent and A20 is the
null matrix. Its field of values is contained in the square R(A) = [−38, 38] +
i[−38, 38] and the sequence of the αq(A) values decreases from α1(A) = ‖A‖1 =
76 to α8(A) =1.63e1. Since this matrix is nilpotent, the truncated Taylor series
with degreem at least 20 can compute exactly (in exact arithmetic) the matrix
exponential at any sub-step s. This example is taken from [2, Experiment 6].

Table 5.4 Results for the triw example, dimension n = 20.

Method s m ℓ c θm or γm s ·m Act. its. Rel. err.
T α7(A) 2 54 54 0 9.6e0 108 42 3.1e-14
LH W(A) 6 53 53 0 9.2e0 318 109 1.0e-15

From Table 5.4 we see that the Taylor method requires much fewer iter-
ations than the new approach, which, with the choice c = 0, is, in fact, the
Taylor method too. But the former uses the information coming from the se-
quence of the αq(A) values (in particular it uses the value α7(A) =1.88e1) and
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manages to select a much smaller number of sub-steps s. The analysis based on
the field of values cannot use this information and performs an over-scaling of
the matrix. Of course, it would be possible to endow all the candidate interpo-
lation polynomials pm with the value θm associated to the classical backward
error analysis based on the norms.

The second matrix is still a triw but with dimension 110 × 110 and the
initial vector has constant components equal to 1. The rectangle R(A) is the
square [−218, 218] + i[−218, 218]. The sequence of the αq(A) values decreases
from α1(A) = ‖A‖1 = 436 to α8(A) =1.12e2. This time, the truncated Taylor
series of maximum degree m = 55 cannot compute the solution up to machine
precision.

Table 5.5 Results for the triw example, dimension n = 110.

Method s m ℓ c θm or γm s ·m Act. its. Rel. err.
T α8(A) 12 55 55 0 9.9e0 660 313 3.2e-12
LH W(A) 32 55 55 0 9.7e0 1760 608 9.1e-15

From Table 5.5, we see again that the Taylor method uses the information
coming from the sequence of values αq(A) and selects a number of sub-steps
s = 12 much smaller than the other method. However, the final error is two
orders of magnitude larger due to the hump phenomenon. In this case, the use
of the value α8(A) makes the Taylor method to under-scale the matrix.

5.3 Examples with complex conjugate Leja–Hermite points

In the final two numerical examples, we consider interpolation at complex
conjugate Leja–Hermite points.

5.3.1 Advection matrix

We consider the one-dimensional discretization by central second-order finite
differences of the advection operator ∂x with periodic boundary conditions on
the spatial domain [0, 1]. The length of the discretization step is h = 1/70.
The application vector is the discretization of the initial solution u0(x) =
1/(2+cos(2πx)). The resulting matrix of dimension 70×70 is skew-symmetric.
The “rectangle” R(A) is i[−70, 70] and αq(A) = 70 up to q = 8. Table 5.6
collects the results.

Table 5.6 Results for the advection case.

Method s m ℓ c θm or γm s ·m Act. its. Rel. err.
T ‖A‖

1
8 51 51 0 8.8e0 408 304 4.2e-15

LH ‖A‖
1

9 53 1 8.0e0 8.0e0 477 297 4.6e-15
LH W(A) 6 48 38 11.5 7.0e0 288 246 4.5e-15
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The ellipse selected by the new approach corresponds to the interpolation
on a set with quite a lot of repeated zeros (ℓ+1 = 39). This probably did not
help into triggering the early termination criterion. On the other hand, the
new method is the most efficient in terms of actual number of iterations.

5.3.2 Schrödinger matrix

In this example, we consider the discretization by second order central finite
differences of the free Schrödinger operator i∂xx in the one-dimensional spatial
domain [−1, 1] with homogeneous Dirichlet boundary conditions. The space
step size h is 1/35, the matrix has dimension 69× 69 and is skew-Hermitian.
The application vector is the discretization of u0(x) = 1/(2+ cos(2πx))− 1/3.
The “rectangle” R(A) is i[−2450, 2450]. The values αq(A) are constant and
equal to 2450. Table 5.7 collects the results.

Table 5.7 Results for the Schrödinger case.

Method s m ℓ c θm or γm s ·m Act. its. Rel. err.
T ‖A‖

1
249 55 55 0 9.9e0 13695 13197 5.1e-11

LH ‖A‖
1

292 55 1 8.4e0 8.4e0 16060 10220 6.1e-13
LH W(A) 176 55 49 13.9e0 7.3e0 9680 9680 3.5e-13

Once again the new method outperforms the other two methods in terms
of the actual number of iterations, although the early termination criterion is
not triggered. The chosen scaling parameter s is much smaller with respect
to the competitors. Moreover, as already observed in [6], the Taylor method
loses more than two orders of magnitude in the relative error. This result, as
analyzed in [5, § 4.3] is due to a strong hump phenomenon which affects the
Taylor truncated series in this case.

6 Conclusions

In this paper, we overcame the analysis of contour integral expansion of the
backward error for the action of the matrix exponential exp(A)v, initially
developed in [5]. In particular, we have shown that it is possible to bound the
backward error by considering ellipses which enclose the field of values W(A).
The analysis can be performed for any interpolation (or even approximation)
polynomial or sets of interpolation polynomials which take the value 1 at 0.
We applied it to polynomials interpolating the exponential function at the
so-called Leja–Hermite points. For matrices whose field of values has a skinny
shape, our numerical experiments show a neat advantage in the actual number
of iterations (matrix-vector products) with respect to methods based on the
classical expansion into a power series of the backward error, such as the
truncated Taylor method [2] and interpolation at Leja [5] and Leja–Hermite
points [6].
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We briefly highlight the main features and novelties of our approach.

– Differently from the Taylor method, that is a particular case of Hermite
interpolation where all the interpolation points are taken in 0, our main
priority is to interpolate near the eigenvalues of the matrix. This not only
mitigates the hump phenomenon, but it also helps triggering earlier the
termination criterion. It is for these reasons that we dedicated special at-
tention to the choice of the interpolation points as it was done in [5,6].

– We introduced a new estimate of the backward error based on the field of
values which outperforms the power series expansion used in the Taylor
method. Also, we proposed a refinement for the estimation of the rectangle
containing the field of values.

– Moreover, we did not base the choice of the interpolant on the mere mini-
mization of s ·m as in [2], but we also tried to choose it accordingly with
the shape of the field of values.

Therefore, the method is effective for several important matrices aris-
ing from the spatial discretization of partial differential equations (diffusion,
advection–diffusion, advection, Schrödinger, for instance).

Our numerical examples show that the expected number of iterations s·m is
almost always an over-estimate (sometimes a large one) of the actual number
of iterations, both with the error expanded as a power series or a contour
integral. Moreover, the hump phenomenon turns out to be hard to detect. We
would like, in a future work, to address these issues and assemble a method
which can profitably take the best from the two backward error analysis and
reduce the risk of over- or under-scaling.
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