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Abstract

We discuss a cheap tetrahedra-free approach to the numerical integra-
tion of polynomials on polyhedral elements, based on hyperinterpolation
in a bounding box and Chebyshev moment computation via the diver-
gence theorem. No conditioning issues arise, since no matrix factorization
or inversion is needed. The resulting quadrature formula is theoretically
stable even in the presence of some negative weights.
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1 Introduction

Within the field of polytopal FEM, which has been costantly growing during the
last two decades, one of the main computational bottlenecks, especially for high-
order methods in 3D, is the necessity of computing in a fast and stable way the
integrals of products of polynomials naturally arising on arbitrary polyhedral
elements, avoiding sub-tessellation into tetrahedra.

Indeed, a specific literature on this topic has been emerging, where we may
quote for example, with no pretence of exahustivity, [1, 2, 4, 5, 9, 10, 14, 21,
23, 24] and the references therein. Among them we focus on tetrahedra-free
moment-based quadratures, which rely on the divergence theorem, together
with the availability of efficient quadrature formulas for the polygonal faces and
a possible compression in case of high-cardinality; cf., e.g., [21, 23, 24].

The recent paper [10] proposed an appealing way to reduce the computa-
tional cost, that ultimately corresponds to moment-matching with the monomial
basis by supporting the quadrature formula on approximate Fekete points of an
enclosing box for the polyhedral element, computed by QR factorization with
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column pivoting of a large Vandermonde matrix (cf. [20]). In such a way the
relevant computations can be made once and for all in a reference box, and
the formula weights can be computed by solving relatively small linear systems
(whose size is the dimension of the exactness polynomial space). The result-
ing weights are not all positive, but the sums of their absolute values remains
experimentally bounded, ensuring empirical stability.

In the present paper we adopt a similar idea, namely that of supporting
the quadrature formula on a low cardinality set, but this time such a set is the
support itself of a suitable hyperinterpolation formula in the enclosing box, by
a sort of generalized Clenshaw-Curtis approach proposed in [22]. We recall that
hyperinterpolation, introduced by Sloan in the seminal paper [17], is a Fourier-
like orthogonal projection on a total-degree polynomial space with respect to an
absolutely continuous measure, discretized by an algebraic quadrature formula
with positive weights.

This approach gives not only a simple explicit and cheap formula for the
computation of the quadrature weights, consisting essentially of a single matrix-
by-vector product, but also theoretically ensures stability of the quadrature for-
mula. In practice, the computational cost substantially reduces to the mere cost
of computing the moments of the orthogonal basis used for hyperinterpolation.
Moreover, differently from [10], no conditioning issue can arise by increasing
the exactness degree, not only because we can use in a natural way for exam-
ple the Chebyshev basis instead of the monomial basis, but mainly because no
QR factorization or linear system is involved. The theoretical foundation upon
hyperinterpolation following [22], with the consequent stability result, make the
present approach also quite different from the adaptive scheme recently proposed
in [2].

The paper is organized as follows. In Section 2 we describe the theoretical
base of the method, while in Section 3 we discuss its implementation and provide
some numerical examples.

2 Polyhedral quadrature by hyperinterpolation

The proposed quadrature formula relies on two main results, that were proved
in [17] and [22]. We summarize for convenience these results as a single theorem,
which concerns product-like formulas obtained via hyperinterpolation, and their
stability.

Below, we shall denote by Pd
n the space of d-variate polynomials with total

degree not exceeding n, with dimension N =
(
n+d
n

)
.

Theorem 1 Let K ⊂ Rd be a compact subset, µ an absolutely continuous mea-
sure on K with respect to the Lebesgue measure. Denote by {ϕj}1≤j≤N an
orthonormal polynomial basis of Pd

n for µ. Moreover, let (X,u) = ({Pi}, {ui)}),
1 ≤ i ≤ ν = ν(n), be the nodes and positive weights of a quadrature formula for
integration in dµ, exact on Pd

2n (the polynomials with total degree not exceeding
2n), and h ∈ L2

µ(K).
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Then, the following algebraic product-like formula holds∫
K

h(P )f(P ) dµ =

ν∑
i=1

wi f(Pi) , ∀f ∈ Pd
n , (1)

where the quadrature weights {wi} are defined by the product-like moments

wi = ui

N∑
j=1

ϕj(Pi)mj , 1 ≤ i ≤ ν , mj =

∫
K

ϕj(P )h(P ) dµ . (2)

Moreover, the formula is stable, since

lim
n→∞

ν∑
i=1

|wi| =
∫
K

|h(P )| dµ . (3)

For the proof of this theorem, we refer the reader to [17] and [22]. We
recall that ν ≥ N , and that when ν = N the quadrature formula for µ is
called minimal; cf. [13]. Concerning stability, though there could be some
negative weights, (3) clearly implies that

∑ν
i=1 |wi| is bounded. Moreover, notice

that if h is almost everywhere nonnegative, then the stability parameter of the
quadrature formula, namely

∑
i |wi|/|

∑
i wi| =

∑
i |wi|/∥h∥L1(K), tends to 1 as

n → ∞.
We turn now to the main goal of the present paper, that is constructing a

cheap and stable quadrature formula for∫
Ω

f(P ) dP , Ω ⊂ R3 polyhedron , f polynomial . (4)

Here and below, P = (x, y, z) and dP = dx dy dz.
Now, take K = B ⊇ Ω, where B is a Cartesian bounding box for a

polyhedron Ω, that up to an affine change of variables can be taken as the
cube B = [−1, 1]3. Given any absolutely continuous measure dµ = σ(P ) dP ,
σ ∈ L1

+(B), for which we know an algebraic quadrature formula with positive
weights for total degree 2n, we can apply Theorem 1 by writing∫

Ω

f(P ) dP =

∫
B

h(P )f(P )σ(P ) dP , h(P ) = IΩ(P )/σ(P ) , (5)

provided that h ∈ L2
µ(B), that is 1/σ ∈ L1

+(Ω). We then obtain

∫
Ω

f(P ) dP =

ν∑
i=1

wi f(Pi) ,∀f ∈ P3
n , wi = ui

N∑
j=1

ϕj(Pi)mj , 1 ≤ i ≤ ν ,

mj =

∫
Ω

ϕj(P ) dP , (6)
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where N = dim(P3
n) = (n+ 1)(n+ 2)(n+ 3)/6. Moreover, in this case we have

by (3)

lim
n→∞

ν∑
i=1

|wi| =
∫
B

(IΩ(P )/σ(P ))σ(P ) dP = vol(Ω) . (7)

Observe that this approach to quadrature on polyhedra is quite general,
and clearly extendable to any compact set where one is able to compute the
Lebesgue measure moments {mj} in (6), for a polynomial basis orthogonal with
respect to an absolutely continuous measure in a bounding box. In the case of
polyhedra, as we shall see below, this can be effectively done by the divergence
theorem.

We have several natural choices for the measure µ. The first that comes
to mind is simply dµ = dP , the Lebesgue measure itself. In such a way, the
orthogonal basis is the total-degree product Legendre basis (cf. e.g. [8]), and as
quadrature formula of exactness degree 2n we can choose the tensorial Gauss-
Legendre rule with ν = (n + 1)3 nodes, or even a minimal (ν = N) or near-
minimal formula for the degrees where it is available in the quadrature literature
(cf. e.g. [6]).

It is worth stressing however that the choice of the underlying quadrature
formula in the cube is not decisive, because the cardinalities are in any case
small enough to make largely predominant the cost of moment computation,
via the divergence theorem and algebraic quadrature on the polygonal faces
of the polyhedral surface (as we shall see in the numerical section). On the
other hand, the computation of the necessary primitives is facilitated by known
analytical formulas for the classical univariate orthogonal polynomials.

But we can also choose the product Chebyshev measure. In this case the
orthogonal basis is the total-degree product Chebyshev basis, and the tensorial
Gauss-Chebyshev or Gauss-Chebyshev-Lobatto rules with ν = (n + 1)3 nodes
become a natural choice. A lower cardinality formula could be adopted, for
example the formula proposed in [7] with ν ≈ (n+ 1)3/4, or even a minimal or
near-minimal formula at the available degrees in the quadrature literature (cf.
e.g. [16]), but again this is not really relevant for a significative reduction of the
overall cost.

Remark 1 We stress that the present approach, like that developed in [10],
gives not only a numerical integration method for polynomials, but also a quadra-
ture formula on a polyhedron Ω, applicable to any function that is defined and
well-approximated by polynomials in the whole bounding box B ⊇ Ω. Standard
estimates in quadrature theory together with (7) allow indeed to write the fol-
lowing error bound for every f ∈ C(B)∣∣∣∣∣
∫
Ω

f(P )dP −
ν∑

i=1

wi f(Pi)

∣∣∣∣∣ ≤
(
vol(Ω) +

ν∑
i=1

|wi|

)
En(f ;B) ∼ 2 vol(Ω)En(f ;B) ,

(8)
where En(f ;B) = infϕ∈Pn

maxP∈B |f(P )− ϕ(P )|. The decay rate of En(f ;B)
as n → ∞ depends on the regularity of f , by a multivariate version of Jackson
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theorem; in particular, if f ∈ Ck+1(B) then En(f ;B) = O(n−k), cf. e.g. [15].
From this point of view, we mark a difference with respect to other methods like
[1], that are by construction restricted to polynomials.

3 Implementation and numerical tests

The computational steps necessary for the construction of the quadrature for-
mula (6), exact for P3

n on an arbitrary polyhedron Ω, can be briefly summarized
as follows:

(i) determine a Cartesian bounding box for the polyhedron and compute the
nodes {Pi} and weights u = {ui}, 1 ≤ i ≤ ν, of a quadrature formula
exact for P3

2n for a given absolutely continuous measure dµ = σ(P )dP on
the bounding box;

(ii) compute an orthonormal basis {ϕ1, . . . , ϕN} of P3
n with respect to dµ,

and the corresponding Lebesgue moments m = {m1, . . . ,mN}, mj =∫
Ω
ϕj(P ) dP , by the divergence theorem via the (oriented) planar polygo-

nal faces of the polyhedron

mj =

∫
∂Ω

ϕj(P )n1(P ) dS =
∑
faces

∫
face

ϕj(P )nface
1 dS ,

where dS is the surface measure, ϕj(P ) =
∫
ϕj(P ) dx is a primitive with

respect for example to x, that is ∂xϕj(P ) = ϕj(P ), and n1 is the first
component of the outward normal vector to the polyhedral surface, which
is constant on each planar face;

(iii) form the Vandermonde-like matrix V = Vn({Pi}) = [ϕj(Pi)] ∈ Rν×N and
compute the final weights as a scaling of a matrix-by-vector product as

w = diag(u)Vm ,

or in a Matlab-like notation w = u. ∗ Vm .

Notice that (i) can be made completely independent of the polyhedron,
by choosing a reference box such as [−1, 1]3, via an affine change of variables
(namely, a translation plus scaling of variables) which affects the integrals and
the weights only by multiplicative constants. On the other hand, (iii) depends
on the polyhedron only via the moment vector m computed in (ii), because

• the Vandermonde-like matrix can be computed once and for all in the
reference cube.

This aspect is particularly relevant in the application to polyhedral FEM, where
quadrature has to be applied to a potentially very large number of different
polyhedral elements.
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Concerning (ii), assuming again with no loss of generality that B = [−1, 1]3,
the computation is substantially simplified by choosing a product type orthog-
onal basis, like e.g. the Chebyshev basis

ϕj(P ) = cj Tα(x)Tβ(y)Tγ(z)

where (α, β, γ) ∈ {0, 1, . . . , n}3, 0 ≤ α + β + γ ≤ n, the cj are normalization
constants, and the index j corresponds to a suitable ordering of the triples, for
example a lexicographical ordering. In particular, if j corresponds to a certain
triple (α, β, γ), then cj = aαaβaγ , where a0 = 1/

√
π and ak =

√
2/π for k > 0.

Indeed, a primitive in this case is analytically known,

ϕj(P ) = cj

∫ x

0

Tα(x)dx Tβ(y)Tγ(z)

where
∫ x

0
Tα(x)dx = Tα+1(x)

2(α+1) −
Tα−1(x)
2(α−1) for α ≥ 2, whereas trivially

∫ x

0
T0(x)dx =

x,
∫ x

0
T1(x)dx = x2/2; cf. e.g. [11]. The integrals on the planar faces in (ii) can

be computed in several ways, for example by the formulas based on piecewise
product Gauss-Legendre quadrature, developed in [19]. For a complete discus-
sion on the computation of the polyhedral moments for the product Chebyshev
basis, we refer the reader to [21, §2.1].

Finally, the cost of (iii) is substantially that of a matrix-by-vector product.
Even though it is not the dominant one, with the choice of the total-degree prod-
uct Chebyshev basis and of the tensorial Gauss-Chebyshev rule, this cost could
be even lowered since it essentially corresponds to a discrete cosine transform
of the moment vector, that can be accelerated by the FFT.

The numerical tests below have been performed using Matlab R2024A on
an Intel Core Ultra 5 125H processor, with frequency 3.60 GHz and 16 GB of
RAM. A preliminary non-optimized version of the Matlab code, named cheapQ,
is available at [18]. In our implementation, to compute a cheap formula with
degree of exactness n on Ω, in accordance to Theorem 2.1 we used as set of nodes
those of a tensorial Gauss-Chebyshev rule on [−1, 1]3 with degree of exactness
2n, namely (n+ 1)3 nodes, scaled to the bounding box.

In Figure 2 we show the relative integration errors for the random polyno-
mials gk(x, y, z) = (akx + bky + ckz + dk)

n on the three polyhedral domains
of Figure 1, where ak, bk, ck, dk are uniform random coefficients in [−1, 1]. The
domains have been obtained starting from suitable point clouds by the Matlab
built-in command alphashape, which also provides the boundary facets. For
each even n in the range between 4 and 20, we have made 200 tests and com-
puted the average logarithmic relative error

∑200
k=1 log(E(gk))/200, displayed by

a black circle. The relative errors E(gk) have been computed using as reference
integral the value produced by a tessellation-based formula with exactness de-
gree n, taken from [21]. We have chosen even degree of exactness n, since in a
possible application to FEM these correspond to polynomial elements of degree
n/2. The numerical experiments show that as expected, such average errors are
not far from machine precision.
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Next in Table 1 we list the average cputimes in seconds of the CheapQ
algorithm. We notice that, as expected, the results for Ω2 are higher in view
of the larger number of facets of the domain. On the other hand, with the
two polyhedral elements with 20 facets, we see a good performance, with times
ranging from the order of 10−3 seconds per element for the lowest degrees to 10−2

seconds for degree 20. These times are up to one order of magnitude lower than
those of the tetrahedra-free Tchakaloff-like formulas with positive weights and
interior nodes, that we have recently constructed in [21] by moment-matching
with NonNegative Least Squares. Finally in Table 2 we report the stability
ratios

∑ν
j=1 |wj |/vol(Ωi). We can see that these quantities do not exceed 2 and

tend to decrease towards 1 as n increases, as suggested by Theorem 1.

Figure 1: Examples of polyhedral domains. Left: Ω1 (nonconvex, 20 facets);
Center: Ω2 (convex, 760 facets); Right: Ω3 (multiply connected, 20 facets).
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Figure 2: Relative errors E(gk) of the tetrahedra-free rule over 200 polynomial
integrands of the form gk = (akx + bky + ckz + dk)

n on the three polyhe-
dra of Figure 1, where ak, bk, ck, dk are uniform random coefficients in [−1, 1]
and n = 4, 6, 8, . . . , 20; the circles correspond to the average logarithmic error∑200

k=1 log(E(gk))/200.
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deg n 4 6 8 10 12 14 16 18 20

Ω1 1.2-e03 1.4-e03 1.7e-03 2.3-e03 3.4e-03 5.1e-03 7.7e-03 1.9e-02 3.4e-02

Ω2 3.0e-02 3.4e-02 4.3e-02 5.9e-02 8.2e-02 1.2e-01 1.8e-01 4.4e-01 9.7e-01

Ω3 8.1e-04 9.0e-04 1.1e-03 1.7e-03 2.3e-03 3.5e-03 5.4e-03 1.3e-02 2.6e-02

Table 1: Average cputimes (in seconds) of CheapQ on the domains of Fig. 1,
varying the algebraic degree of exactness.

deg n 4 6 8 10 12 14 16 18 20

Ω1 1.55 1.40 1.30 1.25 1.23 1.21 1.19 1.17 1.17

Ω2 1.30 1.14 1.21 1.12 1.13 1.12 1.10 1.10 1.09

Ω3 1.63 1.81 1.89 1.86 1.82 1.79 1.74 1.67 1.63

Table 2: Ratios
∑ν

j=1 |wj |/vol(Ωi) for CheapQ on the domains of Fig. 1, varying
the algebraic degree of exactness.

4 Conclusions

We have implemented a quadrature formula without sub-tessellation, which is
exact for polynomials up to a given degree on polyhedral elements. The for-
mula is based on hyperinterpolation in a bounding box and Chebyshev moment
computation via the divergence theorem. The computational bulk is given by
computation of the Chebyshev moments, since the final weights are obtained
via a matrix-by-vector product where the matrix is element-independent, and
can be computed once and for all. No conditioning issues arise, since no matrix
factorization or inversion is needed. Moreover, the resulting quadrature formula
is theoretically stable even in the presence of some negative weights. We are
confident that the present method could become an additional tool, with some
improved features with respect to [10] and other techniques adopted in the lit-
erature, for the efficient and stable computation of stiffness and mass matrices
within polyhedral Finite Elements. Cheap but still accurate assembly of such
matrices, due to the increasing adoption of polytopal FEM simulations, could
have a non negligible fall-out on large scale numerical modelling.
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[9] S. Hubrich, A. Düster, Numerical integration for nonlinear problems of
the finite cell method using an adaptive scheme based on moment fitting,
Comput. Math. Appl. 77 (2019), 1983–1997.

[10] C. Langlois, T. van Putten, H. Bériot, E. Deckers, Frugal numerical inte-
gration scheme for polytopal domains, Eng. Comput. (2024).

[11] J.C. Mason, D.C. Handscombe, Chebyshev Polynomials, Chap-
man&Hall/CRC, 2002.

[12] The Mathworks, alphaShape, Polygons and polyhedra from points in 2-D
and 3-D, https://www.mathworks.com/help/matlab/ref/alphashape.

html.
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