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Abstract

Existence of sufficient conditions for unisolvence of Kansa unsymmet-
ric collocation for PDEs is still an open problem. In this paper we make
a first step in this direction, proving that unsymmetric collocation ma-
trices with Thin-Plate Splines for the 2D Poisson equation are almost
surely nonsingular, when the discretization points are chosen randomly
on domains with analytic boundary.

1 Introduction

Kansa unsymmetric collocation, originally proposed in the mid ’80s [11], has be-
come over the years a popular meshless method for the discretization of bound-
ary value problems for PDEs. Despite its wide and successful adoption for the
numerical solution of a variety of physical and engineering problems (cf. e.g.
[4] with the references therein), a sound theoretical foundation concerning uni-
solvence of the corresponding linear systems is still missing. Indeed, it was
shown by Hon and Schaback [10] that there exist point configurations that lead
to singularity of the collocation matrices, though these are very special and
“rare”cases. For this reason greedy and other approaches have been developed
to overcome the theoretical problem and ensure invertibility, cf. e.g. [14, 18].
On the other hand, in the textbook [8] one can read : “Since the numerical ex-
periments by Hon and Schaback show that Kansa’s method cannot be well-posed
for arbitrary center locations, it is now an open question to find sufficient con-
ditions on the center locations that guarantee invertibility of the Kansa matrix”,
and the situation does not seem to have changed so far.

In this paper we make a first step in this direction, proving that unsymmetric
collocation matrices with Thin-Plate Splines (without polynomial addition) for
the 2D Poisson equation are almost surely nonsingular, when the discretization
points are chosen randomly on domains with analytic boundary. Though TPS
are not the most adopted option for Kansa collocation, they have been often
used in the meshless literature, cf. e.g. [4, 5, 20] with the references therein.
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One of their most relevant features is that they are scale invariant, thus avoiding
the delicate matter of the scaling choice with scale dependent RBF, which is
still an active research topic, cf. e.g. [2, 13]. On the other hand, the fact that
TPS without polynomial addition can guarantee unisolvence in the interpolation
framework has been recently recognized experimentally in [17] and theoretically
in [1, 6].

As we shall see, one of the key aspects is that Thin-Plate Splines ϕ(∥P−A∥2),
which correspond to the radial functions

ϕ(r) = r2ν log(r) , ν ∈ N , (1)

are real analytic functions off their center A, due to analyticity of the univariate
functions log(·) and

√
· in R+. Analiticity together with the presence of a

singularity at the center will be the key ingredients of our unisolvence result by
random collocation.

2 Unisolvence of random Kansa collocation

Consider the Poisson equation with Dirichlet boundary conditions (cf. e.g. [7]){
∆u(P ) = f(P ) , P ∈ Ω
u(P ) = g(P ) , P ∈ ∂Ω = γ([a, b]) ,

(2)

where we assume that Ω ⊂ R2 is a domain with analytic boundary (a bounded
connected open set whose boundary is an analytic curve), namely a curve γ :
[a, b] → R2 , γ(a) = γ(b), that is analytic and regular (i.e. γ′(t) ̸= (0, 0) for
every t ∈ [a, b]).

In Kansa collocation (see e.g. [8, 10, 11, 14, 18, 19]) one determines a function

uN (P ) =

n∑
j=1

cj ϕj(P ) +

m∑
k=1

dk ψk(P ) , N = n+m , (3)

where
ϕj(P ) = ϕ(∥P − Pj∥2) , {P1, . . . , Pn} ⊂ Ω , (4)

ψk(P ) = ϕ(∥P −Qk∥2) , {Q1, . . . , Qm} ⊂ ∂Ω , (5)

such that {
∆uN (Pi) = f(Pi) , i = 1, . . . , n
uN (Qh) = g(Qh) , h = 1, . . . ,m .

(6)

The following facts will be used below. Defining ϕA(P ) = ϕ(∥P − A∥), we
have ϕA(B) = ϕB(A) and ∆ϕA(B) = ∆ϕB(A). In fact, the Laplacian in polar
coordinates centered at A (cf. e.g. [7, Ch.2]) is the radial function

∆ϕA =
∂2ϕ

∂2r
+

1

r

∂ϕ

∂r
= 4νr2(ν−1)(ν log(r) + 1) . (7)

Moreover, ϕA(A) = 0 and ∆ϕA(A) = 0 for ν ≥ 2, since ∆ϕ→ 0 as r → 0.
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Kansa collocation can be rewritten in matrix form as ∆Φ ∆Ψ

Φ Ψ

 c

d

 =

 f

g

 (8)

where the block matrix is

KN = KN ({Pi}, {Qh}) =

 ∆Φ ∆Ψ

Φ Ψ



=



0 · · · · · · ∆ϕn(P1) ∆ψ1(P1) · · · ∆ψm(P1)

...
. . .

...
... · · ·

...
...

. . .
...

... · · ·
...

∆ϕ1(Pn) · · · · · · 0 ∆ψ1(Pn) · · · ∆ψm(Pn)

ϕ1(Q1) · · · · · · ϕn(Q1) 0 · · · ψm(Q1)

... · · · · · ·
...

...
. . .

...

ϕ1(Qm) · · · · · · ϕn(Qm) ψ1(Qm) · · · 0


and f = {f(Pi)}i=1,...,n, g = {g(Qh)}h=1,...,m.

We can now state and prove our main result.

Theorem 1 Let KN be the TPS Kansa collocation matrix defined above, with
N = n+m ≥ 2, where {Pi} is a sequence of independent uniformly distributed
random points in Ω, and {Qh} a sequence of independent uniformly distributed
points on ∂Ω. Namely, {Qh} = {γ(th)} with {th} sequence of independent
identically distributed random abscissas in (a, b) with respect to the arclength
density ∥γ′(t)∥2/L, L = length(γ([a, b])).

Then for every N ≥ 2 the matrix KN is a.s. (almost surely) nonsingular.

Proof. The proof proceeds by complete induction on N . For the induction
base, we prove that det(KN ) is a.s. nonzero for N = 2, that is for n = 2 and
m = 0, or n = 0 and m = 2, or n = 1 and m = 1. In the first case,

det(K2) = −∆ϕ2(P1)∆ϕ1(P2) = −(∆ϕ1(P2))
2

= −16ν2∥P2 − P1∥4ν−4
2 (ν log(∥P2 − P1∥2) + 1)

2
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which vanishes iff P2 = P1 (an event with null probability) or P2 falls on (the
intersection with Ω of) the curve ν log(∥P − P1∥2) + 1 = 0, that is on the circle

∥P − P1∥22 = exp(−2/ν) .

But this event has null probability, since any algebraic curve is a null set in R2.
In the second case,

det(K2) = −ψ2(Q1)ψ1(Q2) = −ψ2
1(Q2) = −ψ2

1(γ(t2)) .

Now, given P1 = γ(t1), the function λ(t) = ψ2
1(γ(t)) is analytic in (a, t1) and in

(t1, b). Then ψ2
1(γ(t2)) is zero iff t2 = t1 (an event that has null probability),

or t2 falls on the zero set of λ in (a, t1) or (t1, b). Again this event has null
probability since the zero set of an univariate analytic function in an open
interval is a null set (cf. [12, 15]).

As for the third case, assume that Q1 is chosen on the boundary (randomly
or not) and that P1 is chosen randomly in the interior. Since

det(K2) = −ϕ1(Q1)∆ψ1(P1)

= −4νϕ1(Q1)∥P1 −Q1∥2ν−2
2 (ν log(∥P1 −Q1∥2) + 1) ,

and ϕ1(Q1) ̸= 0 being P1 ̸= Q1, the determinant vanishes if and only if P1 falls
on (the intersection with Ω of) the curve ν log(∥P − Q1∥2) + 1 = 0, that is on
the circle

∥P −Q1∥22 = exp(−2/ν)

and again this event has null probability.
For the inductive step, we consider separately the case where a boundary

point is added, for which we define the matrix

U(P ) =



0 · · · · · · ∆ϕn(P1) ∆ψ1(P1) · · · ∆ψm(P1) ∆ϕ1(P )

...
. . .

...
... · · ·

...
...

...
. . .

...
... · · ·

...
...

∆ϕ1(Pn) · · · · · · 0 ∆ψ1(Pn) · · · ∆ψm(Pn) ∆ϕn(P )

ϕ1(Q1) · · · · · · ϕn(Q1) 0 · · · ψm(Q1) ψ1(P )

... · · · · · ·
...

...
. . .

...
...

ϕ1(Qm) · · · · · · ϕn(Qm) ψ1(Qm) · · · 0 ψm(P )

ϕ1(P ) · · · · · · ϕn(P ) ψ1(P ) · · · ψm(P ) 0
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Observe that in this case KN+1 = U(Qm+1). Indeed, ψk(Qh) = ψh(Qk) and
∆ϕi(Qm+1) = ∆ψm+1(Pi).

Differently, if an interior point is added, we define the matrix

V (P ) =



0 · · · · · · ∆ϕn(P1) ∆ϕ1(P ) ∆ψ1(P1) · · · ∆ψm(P1)

...
. . .

...
...

... · · ·
...

...
. . .

...
...

... · · ·
...

∆ϕ1(Pn) · · · · · · 0 ∆ϕn(P ) ∆ψ1(Pn) · · · ∆ψm(Pn)

∆ϕ1(P ) · · · · · · ∆ϕn(P ) 0 ∆ψ1(P ) · · · ∆ψm(P )

ϕ1(Q1) · · · · · · ϕn(Q1) ψ1(P ) 0 · · · ψm(Q1)

... · · · · · ·
...

...
...

. . .
...

ϕ1(Qm) · · · · · · ϕn(Qm) ψm(P ) ψ1(Qm) · · · 0


Observe that in this case KN+1 = V (Pn+1) since ψk(Pn+1) = ϕn+1(Qk) and

∆ϕj(Pi) = ∆ϕi(Pj).
Concerning the determinants, applying Laplace determinantal rule on the

last row of U(P ) we see that for every ℓ, 1 ≤ ℓ ≤ m, we get the representation

F (P ) = det(U(P )) = δN−1ψ
2
ℓ (P ) +A(P )ψℓ(P ) +B(P ) (9)

where
|δN−1| = |det(KN−1({Pi}, {Qh}h̸=ℓ))|

A ∈ span{ϕj ,∆ϕj , ψk ; 1 ≤ j ≤ n , 1 ≤ k ≤ m, k ̸= ℓ}
B ∈ span{ϕi∆ϕj , ψkϕi, ψk∆ϕi, ψkψh ; 1 ≤ i, j ≤ n , 1 ≤ k, h ≤ m, k, h ̸= ℓ} .
Similarly, developing det(V (P )) by the (n+ 1)-row we have

G(P ) = det(V (P )) = −det(KN−1)(∆ϕn(P ))
2 + C(P )∆ϕn(P ) +D(P ) (10)

where
C ∈ span{∆ϕj , ψk,∆ψk ; 1 ≤ j ≤ n− 1 , 1 ≤ k ≤ m}

D ∈ span{∆ϕi∆ϕj ,∆ϕi∆ψh, ψk∆ϕi, ψk∆ψh ; 1 ≤ i, j ≤ n− 1 , 1 ≤ k, h ≤ m} .
First, we prove that G is not identically zero in Ω if det(KN−1) ̸= 0 (the

latter a.s. holds by inductive hypothesis). Let P (t) = Pn + t(1, 0), t ∈ R, and
r(t) = ∥P (t)− Pn∥2 = |t|. If G ≡ 0 then G(P (t)) ≡ 0 in neighborhood of t = 0.
Then, we would locally have

u2(t) = c(t)u(t) + d(t) , u(t) = ∆ϕn(P (t)) , (11)
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where c(t) = C(P (t))/det(KN−1) and d(t) = D(P (t))/det(KN−1). Notice that
both c and d are analytic in a neighborhood of t = 0, since C and D are analytic
in a neighborhood of Pn. By (11) and (7) we get

u(t) = 4νt2(ν−1) (ν log(|t|) + 1) . (12)

Clearly c cannot be identically zero there, otherwise u2 would be analytic at
t = 0 and thus would have an algebraic order of infinitesimal as t→ 0, whereas
by (12) we have u2(t) ∼ 16ν4t4(ν−1) log2(|t|). Hence taking the Maclaurin ex-
pansion of c we get c(t) ∼ cst

s as t → 0 for some s ≥ 0, the order of the first
nonvanishing derivative at t = 0. Now, u2(t) ∼ 16ν4t4(ν−1) log2(|t|), whereas by
u2 ≡ cu + d we would have u2(t) ∼ 4ν2cst

s+2(ν−1) log(|t|) + dpt
p, where either

d(0) ̸= 0 and p = 0, or d(0) = 0 and p > 0 (the order of the first nonvanishing
derivative at t = 0). Then we get a contradiction, since u2 cannot have two
distinct limits or orders of infinitesimal at the same point.

Moreover, G is clearly continuous in Ω and analytic in Ω \ {P1, . . . , Pn},
since all the functions involved in its definition (10) are analytic up to their own
center. Consequently, if det(KN−1) ̸= 0 by continuity G is not identically zero
also in Ω \ {P1, . . . , Pn}.

Then, det(KN+1) = det(V (Pn+1)) = G(Pn+1) is a.s. nonzero, since the zero
set of a not identically zero real analytic function on an open connected set in
Rd is a null set (cf. [15] for an elementary proof). More precisely, denoting by
ZG the zero set of G in Ω, we have that

ZG = (ZG ∩ {P1, . . . , Pn}) ∪ (ZG ∩ (Ω \ {P1, . . . , Pn})) .

Hence ZG is a null set if G ̸≡ 0, because the first intersection is a finite set,
and the second is the zero set of a not identically zero real analytic func-
tion. Considering the probability of the corresponding events and recalling
that det(KN−1) ̸= 0 (which a.s. holds) implies G ̸≡ 0, we can then write

prob{det(KN+1) = 0} = prob{G(Pn+1) = 0}

= prob{G ≡ 0}+ prob{G ̸≡ 0 & Pn+1 ∈ ZG} = 0 + 0 = 0 ,

and this branch of the inductive step is completed.
We turn now to the branch of the inductive step where a boundary point is

added. In this case we consider the function F in (9) restricted to the boundary,
that is F (P (t)) with P (t) = γ(t), t ∈ (a, b), which for every fixed ℓ ∈ {1, . . . ,m}
has the representation

F (γ(t)) = det(U(γ(t))) = δN−1v
2(t) +A(γ(t))v(t) +B(γ(t))

where
v(t) = ψℓ(γ(t)) = r2νℓ (t) log(rℓ(t)) , rℓ(t) = ∥γ(t)−Qℓ∥2 (13)

with Qℓ = γ(tℓ), tℓ ∈ (a, b). We claim that if δN−1 ̸= 0 (which a.s. holds
by inductive hypothesis), F ◦ γ cannot be identically zero in any of the two
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connected components of (a, b)\{t1, . . . , tm} (i.e., the subintervals) having tℓ as
extremum. Otherwise, we would have in a left or in a right neighborhood of tℓ

v2(t) = α(t)v(t) + β(t) , (14)

where α(t) = A(γ(t))/δN−1 and β(t) = B(γ(t))/δN−1 are both analytic in a
full neighborhood of tℓ. Notice that, since γ′(tℓ) ̸= (0, 0) (the curve is regular),
rℓ(t) ∼ ∥γ′(tℓ)∥2|t− tℓ| which by (13) gives v(t) ∼ ∥γ′(tℓ)∥2ν2 (t− tℓ)2ν log(|t− tℓ|)
and v2(t) ∼ ∥γ′(tℓ)∥4ν2 (t − tℓ)

4ν log2(|t − tℓ|) as t → tℓ. Now α cannot be
identically zero in any left or right neighborhood, otherwise v2 ≡ β there and
would have an algebraic order of infinitesimal at tℓ. Hence taking the Taylor
expansion of α we get α(t) ∼ αs(t− tℓ)

s as t → tℓ for some s ≥ 0, the order of
the first nonvanishing derivative at t = tℓ. On the other hand, by v2 ≡ αv + β
locally, we would have v2(t) ∼ ∥γ′(tℓ)∥2ν2 αs(t− tℓ)

s+2ν log(|t− tℓ|)+βp(t− tℓ)
p,

where either β(tℓ) ̸= 0 and p = 0, or β(tℓ) = 0 and p > 0 (the order of the
first nonvanishing derivative at t = tℓ). Again we get a contradiction, since v2

cannot have two distinct limits or orders of infinitesimal at the same point.
The result is that F◦γ is a.s. not identically zero in any connected component

of (a, b) \ {t1, . . . , tm}. Then, det(KN+1) = det(U(Qm+1)) = F (γ(tm+1)) is a.s.
nonzero. In fact, observe that F ◦ γ is analytic in (a, b) \ {t1, . . . , tm}, since F
is analytic in R2 \ ({Q1, . . . , Qm} ∪ {P1, . . . , Pn}). Moreover, denoting by ZF◦γ
the zero set of F ◦ γ in (a, b), we have that

ZF◦γ = (ZF◦γ ∩ {t1, . . . , tm}) ∪ (ZF◦γ ∩ ((a, b) \ {t1, . . . , tm})) .

Hence ZF◦γ is a null set if F ◦ γ ̸≡ 0, because the first intersection is a finite set,
and the second is the componentwise finite union of the zero sets of a not iden-
tically zero real analytic function on each connected component. Considering
the probability of the corresponding events and recalling that det(KN−1) ̸= 0
(which a.s. holds) implies F ◦ γ ̸≡ 0, we can then write

prob{det(KN+1) = 0} = prob{F (Qm+1) = 0}

= prob{F ◦ γ ≡ 0}+ prob{F ◦ γ ̸≡ 0 & tm+1 ∈ ZF◦γ} = 0 + 0 = 0 ,

and also the boundary branch of the inductive step is completed. □

2.1 Remarks on possible extensions

The result of Theorem 1 is a first step towards a theory of Kansa collocation
unisolvence, and could be extended in several directions within the random
framework. The first extension comes immediately from the fact that a null
set has also measure zero for any continuous measure with density (that is,
absolutely continuous with respect to the Lebesgue measure). We can state
indeed the following

Theorem 2 The assertion of Theorem 1 holds true if the points {Pi} are inde-
pendent identically distributed with respect any continuous probability measure
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with density on Ω, say σ ∈ L1
+(Ω), and the abscissas {th} are independent iden-

tically distributed with respect any continuous probability measure with density
on (a, b), say w ∈ L1

+(a, b).

This extension could be interesting whenever it is known that the solu-
tion has steep gradients or other regions where it is useful to increase the dis-
cretization density. Concerning the implementation of random sampling with re-
spect to continuous probability densities, we recall the well-known “acceptance-
rejection method”, cf. e.g. [3, 9, 16] with the references therein.

More difficult but worth of further investigations are:

• extension to Ω ⊂ Rd, d ≥ 3;

• extension to other analitic RBF up to the center, e.g. Radial Powers;

• extension to piecewise analytic boundaries;

• extension to other differential operators and/or boundary conditions.

The latter in particular could be challenging, since the operators involved in the
equation and in the boundary conditions may not be radial.
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