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Abstract

Existence of sufficient conditions for unisolvence of Kansa unsymmet-
ric collocation for PDEs is still an open problem. In this paper we make
a first step in this direction, proving that unsymmetric collocation ma-
trices with Thin-Plate Splines for the 2D Poisson equation are almost
surely nonsingular, when the discretization points are chosen randomly
on domains whose boundary has an analytic parametrization.

1 Introduction

Kansa unsymmetric collocation, originally proposed in the mid ’80s [17], has be-
come over the years a popular meshless method for the discretization of bound-
ary value problems for PDEs. Despite its wide and successful adoption for the
numerical solution of a variety of physical and engineering problems (cf. e.g. [8]
with the references therein), a sound theoretical foundation concerning unisol-
vence of the corresponding linear systems is still missing. Indeed, it was initially
thought that known unisolvence results for interpolation, e.g. the basic theorem
by Micchelli for Conditionally Positive Definite RBF of order 1 like e.g. Multi-
Quadrics [21], would also be valid for Kansa collocation. But later it was shown
by Hon and Schaback [16] that there exist point configurations leading to singu-
larity of the collocation matrices, though these are very special and “rare”cases.
For this reason greedy and other approaches have been developed to overcome
the theoretical problem and ensure invertibility, cf. e.g. [20, 26]. More recently,
some meaningful advances have been made concerning overtesting collocation
techniques, that are implemented by least-ℓ∞ or least squares methods; cf., e.g.,
[6, 7, 9, 25] with the references therein.

On the other hand, in the textbook [14] one can read : “Since the numerical
experiments by Hon and Schaback show that Kansa’s method cannot be well-
posed for arbitrary center locations, it is now an open question to find sufficient
conditions on the center locations that guarantee invertibility of the Kansa ma-
trix”, and the situation does not seem to have changed so far.
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In this paper we make a first step in this direction, proving that unsymmet-
ric collocation matrices with Thin-Plate Splines (without polynomial addition)
for the 2D Poisson equation are almost surely nonsingular, when the discretiza-
tion points are chosen randomly on domains with analytic boundary. Though
TPS are not the most adopted option for Kansa collocation, they have been
often used in the meshless literature, cf. e.g. [8, 10, 29] with the references
therein. One of their most relevant features is that they are scale invariant,
thus avoiding the delicate matter of the scaling choice with scale dependent
RBF, which is still an active research topic, cf. e.g. [3, 19]. On the other hand,
the fact that TPS without polynomial addition can guarantee unisolvence in the
interpolation framework has been recently recognized experimentally in [24] and
theoretically in [2, 12] by random sampling. Still in the framework of almost
sure unisolvence, it is also worth quoting a recent result concerning interpola-
tion by Gaussian RBF [11], where randomness is however relevant to the choice
of shape parameters.

As we shall see, one of the key aspects is that Thin-Plate Splines ϕ(∥P−A∥2),
which correspond to the radial functions

ϕ(r) = r2ν log(r) , ν ∈ N , (1)

are real analytic functions off their center A, due to analyticity of the univariate
functions log(·) and

√
· in R+. Analiticity together with the presence of a

singularity at the center will be the key ingredients of our unisolvence result by
random collocation.

2 Unisolvence of random Kansa collocation

Consider the Poisson equation with Dirichlet boundary conditions (cf. e.g. [13]){
∆u(P ) = f(P ) , P ∈ Ω
u(P ) = g(P ) , P ∈ ∂Ω = γ([a, b]) ,

(2)

where we assume that Ω ⊂ R2 is a domain (an open connected set) whose
boundary curve has an analytic parametrization, namely a curve γ : [a, b] →
R2 , γ(a) = γ(b), that is analytic and regular, i.e. γ′(t) ̸= (0, 0) for every
t ∈ (a, b).

In Kansa collocation (see e.g. [14, 16, 17, 20, 26, 28]) one seeks a function

uN (P ) =

NI∑
j=1

cj ϕj(P ) +

NB∑
k=1

dk ψk(P ) , N = NI +NB , (3)

where NI denotes the number of internal collocation points and NB the number
of boundary collocation points, namely

ϕj(P ) = ϕ(∥P − Pj∥2) , {P1, . . . , PNI
} ⊂ Ω , (4)

ψk(P ) = ϕ(∥P −Qk∥2) , {Q1, . . . , QNB
} ⊂ ∂Ω , (5)
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by solving the discrete problem{
∆uN (Pi) = f(Pi) , i = 1, . . . , NI

uN (Qh) = g(Qh) , h = 1, . . . , NB .
(6)

The following facts will be used below. Defining ϕA(P ) = ϕ(∥P − A∥), we
have ϕA(B) = ϕB(A) and ∆ϕA(B) = ∆ϕB(A). In fact, the Laplacian in polar
coordinates centered at A (cf. e.g. [13, Ch.2]) is the radial function

∆ϕA =
∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
= 4νr2(ν−1)(ν log(r) + 1) . (7)

Moreover, ϕA(A) = 0 and ∆ϕA(A) = 0 for ν ≥ 2, since ∆ϕ→ 0 as r → 0.
Kansa collocation can be rewritten in matrix form as ∆Φ ∆Ψ

Φ Ψ

 c

d

 =

 f

g

 (8)

where the N ×N block matrix is

KN = KN ({Pi}, {Qh}) =

 ∆Φ ∆Ψ

Φ Ψ

 =

 (∆ϕj(Pi)) (∆ψk(Pi))

(ϕj(Qh)) (ψk(Qh))


and f = {f(Pi)}, g = {g(Qh)}, 1 ≤ i, j ≤ NI , 1 ≤ h, k ≤ NB . Observe that the
square matrices ∆Φ and Ψ both have null main diagonal.

We can now state and prove our main result.

Theorem 1 Let KN be the TPS Kansa collocation matrix defined above, with
N = NI + NB ≥ 2 with NI ≥ 1 and NB ≥ 1, where {Pj} is a sequence of
independent uniformly distributed random points in Ω, and {Qh} a sequence
of independent uniformly distributed points on ∂Ω. Namely, {Qh} = {γ(th)}
with {th} sequence of independent identically distributed random abscissas in
(a, b) with respect to the arclength density ∥γ′(t)∥2/L, L = length(γ([a, b])).
Moreover, let Ω satisfy a weak segment condition, i.e. for every x ∈ ∂Ω there
exist a segment with an extremum in x completely contained in Ω (a property
that is implied by standard conditions for PDE domains, like e.g. the weak cone
condition and the segment condition, cf. [1]).

Then for every N ≥ 3 the matrix KN is a.s. (almost surely) nonsingular.

Before proving Theorem 1 by induction, it is worth proving a Lemma con-
cerning the induction base.

Lemma 1 The assertion of Theorem 1 holds true for N = 2 and N = 3.

Proof. For N = 2, we have NI = 1 and NB = 1. Assume that Q1 is chosen on
the boundary (randomly or not) and that P1 is chosen randomly in the interior.
Since

det(K2) = −ϕ1(Q1)∆ψ1(P1)
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= −4ν∥P1 −Q1∥2ν2 log(∥P1 −Q1∥2)∥P1 −Q1∥2ν−2
2 (ν log(∥P1 −Q1∥2) + 1) ,

being P1 ̸= Q1 the determinant vanishes if and only if P1 falls on (the intersec-
tion with Ω of) the curves log(∥P −Q1∥2) = 0 or ν log(∥P −Q1∥2)+1 = 0, that
is on one of the circles

∥P −Q1∥22 = 1 or ∥P −Q1∥22 = exp(−2/ν)

and this event has null probability, since any algebraic curve is a null set in R2.
For N = 3 we have NI = 1 and NB = 2 or NI = 2 and NB = 1. For

NI = 1, NB = 2, developing the determinant along the first row

det(K3(P1, Q1, Q2)) = ∆ψ1(P1)ψ2(P1)ψ2(Q1) + ∆ψ2(P1)ψ1(P1)ψ1(Q2)

= ψ1(Q2)(∆ψ1(P1)ψ2(P1) + ∆ψ2(P1)ψ1(P1)) .

Now, ψ1(Q2) is a.s. nonzero. In fact, given Q1 = γ(t1), the function λ(t) =
ψ2
1(γ(t)) is analytic in (a, t1) and in (t1, b). Then ψ2

1(γ(t2)) is zero iff t2 = t1
(an event that has null probability), or t2 falls on the zero set of λ in (a, t1)
or (t1, b). Again this event has null probability since the zero set of a nonzero
univariate analytic function in an open interval is a null set (cf. [18, 22]).

On the other hand, also ∆ψ1(P1)ψ2(P1) + ∆ψ2(P1)ψ1(P1) is a.s. nonzero.
In fact, consider the function H(P ) = ∆ψ1(P )ψ2(P ) + ∆ψ2(P )ψ1(P ) which is
analytic in Rd \ {Q1, Q2}. We claim that H(P ) is a.s. not identically zero in Ω.
Indeed, by the weak segment condition there exists a segment with an extremum
in Q1, say P (t) = Q1 + tv, t ∈ (0, δ) and ∥v∥2 = 1, completely contained in Ω.
Observe that the functions ψ2(P (t)) and ∆ψ2(P (t)) are a.s. analytic at t = 0
and a.s. ψ2(P (0)) = ψ2(Q1) ̸= 0 and ∆ψ2(P (0)) = ∆ψ2(Q1) ̸= 0. By H(P ) ≡ 0
we would get

u(t) = ∆ψ1(P (t))ψ2(P (t)) = 4νt2(ν−1)(ν log(t) + 1)ψ2(P (t))

= −∆ψ2(P (t))ψ1(P (t)) = −t2ν log(t)∆ψ2(P (t)) , t ∈ (0, δ) .

But then as t → 0+ we would get u(t) ∼ ct2(ν−1) log(t) with c ̸= 0 and u(t) ∼
dt2ν log(t) with d ̸= 0, which is a contradiction since a function cannot have
two distinct orders of infinitesimal at the same point. Finally, we get that a.s.
H(P1) ̸= 0 and thus det(K3(P1, Q1, Q2)) ̸= 0, because the zero set in Ω of the
nonzero analytic function H(P ) is a null set (cf. [22] for an elementary proof).

For NI = 2, NB = 1, we have that by symmetry properties

det(K3(P1, P2, Q1)) = ∆ϕ2(P1)∆ψ1(P2)ϕ1(Q1) + ∆ψ1(P1)∆ϕ1(P2)ϕ2(Q1)

= ∆ϕ1(P2)(∆ψ1(P2)ϕ1(Q1) + ∆ψ1(P1))ψ1(P2)) .

Now, by similar considerations to those developed above based on centers and
circles, we have that a.s. ∆ϕ1(P2), ϕ1(Q1),∆ψ1(P1)) ̸= 0. Then, also the factor
∆ψ1(P2)ϕ1(Q1)+∆ψ1(P1)ψ1(P2)) is a.s. nonzero. Indeed, the analytic function
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Λ(P ) = ϕ1(Q1)∆ψ1(P ) + ∆ψ1(P1)ψ1(P ) is not identically zero in Ω, otherwise
reasoning as above on a segment entering Ω from Q1

v(t) = ϕ1(Q1)∆ψ1(P (t)) = 4νϕ1(Q1)t
2(ν−1)(ν log(t) + 1)

= −∆ψ1(P1)ψ1(P (t)) = −∆ψ1(P1)t
2ν log(t)

and v(t) would have two distinct orders of infinitesimal as t → 0+. Finally, we
get that a.s. Λ(P2) ̸= 0 and thus det(K3(P1, P2, Q1)) ̸= 0, because the zero set
in Ω of the nonzero analytic function Λ(P ) is a null set. □

Proof of Theorem 1. The proof proceeds by complete induction on N . For
the induction base, by Lemma 1 we have that det(KN ) is a.s. nonzero for
N = 2, 3.

For the inductive step, we consider separately the case where a boundary
point is added, for which we define the (N + 1) × (N + 1) matrix by adding a
new last row and column

U(P ) =


∆Φ ∆Ψ (∆ϕ⃗(P ))t

Φ Ψ (ψ⃗(P ))t

ϕ⃗(P ) ψ⃗(P ) 0


where ϕ⃗(P ) = (ϕ1(P ), . . . , ϕNI

(P )) and ψ⃗(P ) = (ψ1(P ), . . . , ψNB
(P )). In

this case KN+1 = U(QNB+1), since ψk(Qh) = ψh(Qk) and ∆ϕj(QNB+1) =
∆ψNB+1(Pj).

Differently, if an interior point is added, we define the (N + 1) × (N + 1)
matrix by adding an intermediate row and column

V (P ) =


∆Φ (∆ϕ⃗(P ))t ∆Ψ

∆ϕ⃗(P ) 0 ∆ψ⃗(P )

Φ (ψ⃗(P ))t Ψ


Observe that in this case KN+1 = V (PNI+1), since ψk(PNI+1) = ϕNI+1(Qk)
and ∆ϕj(Pi) = ∆ϕi(Pj).

Concerning the determinants, applying Laplace determinantal rule on the
last row of U(P ) we see that for every ℓ, 1 ≤ ℓ ≤ NB , we get the representation

F (P ) = det(U(P )) = δN−1ψ
2
ℓ (P ) +A(P )ψℓ(P ) +B(P ) (9)

where
|δN−1| = |det(KN−1({Pi}, {Qh}h̸=ℓ))|

A ∈ span{ϕj ,∆ϕj , ψk ; 1 ≤ j ≤ NI , 1 ≤ k ≤ NB , k ̸= ℓ}

B ∈ span{ϕi∆ϕj , ψkϕi, ψk∆ϕi, ψkψh ; 1 ≤ i, j ≤ NI , 1 ≤ k, h ≤ NB , k, h ̸= ℓ} .
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Similarly, developing det(V (P )) by the (NI + 1)-row we have

G(P ) = det(V (P )) = −det(KN−1)(∆ϕNI
(P ))2 + C(P )∆ϕNI

(P ) +D(P ) (10)

where
C ∈ span{∆ϕj , ψk,∆ψk ; 1 ≤ j ≤ NI − 1 , 1 ≤ k ≤ NB}

D ∈ span{∆ϕi∆ϕj ,∆ϕi∆ψh, ψk∆ϕi, ψk∆ψh ; 1 ≤ i, j ≤ NI−1 , 1 ≤ k, h ≤ NB} .

First, we prove that G is not identically zero in Ω if det(KN−1) ̸= 0 (the
latter a.s. holds by inductive hypothesis). Let P (t) = PNI

+ t(1, 0), t ∈ R, and
r(t) = ∥P (t) − PNI

∥2 = |t|. If G ≡ 0 then G(P (t)) ≡ 0 in neighborhood of
t = 0. Then, we would locally have

u2(t) = c(t)u(t) + d(t) , u(t) = ∆ϕNI
(P (t)) , (11)

where c(t) = C(P (t))/det(KN−1) and d(t) = D(P (t))/det(KN−1). Notice that
both c and d are analytic in a neighborhood of t = 0, since C and D are analytic
in a neighborhood of PNI

. By (11) and (7) we get

u(t) = 4νt2(ν−1) (ν log(|t|) + 1) . (12)

Clearly c cannot be identically zero there, otherwise u2 would be analytic at
t = 0 and thus would have an algebraic order of infinitesimal as t→ 0, whereas
by (12) we have u2(t) ∼ 16ν4t4(ν−1) log2(|t|). Hence taking the Maclaurin ex-
pansion of c we get c(t) ∼ cst

s as t → 0 for some s ≥ 0, the order of the first
nonvanishing derivative at t = 0. Now, u2(t) ∼ 16ν4t4(ν−1) log2(|t|), whereas by
u2 ≡ cu + d we would have u2(t) ∼ 4ν2cst

s+2(ν−1) log(|t|) + dpt
p, where either

d(0) ̸= 0 and p = 0, or d(0) = 0 and p > 0 (the order of the first nonvanishing
derivative at t = 0). Then we get a contradiction, since u2 cannot have two
distinct limits or orders of infinitesimal at the same point.

Moreover, G is clearly continuous in Ω and analytic in Ω \ {P1, . . . , PNI
},

since all the functions involved in its definition (10) are analytic up to their own
center. Consequently, if det(KN−1) ̸= 0 by continuity G is not identically zero
also in Ω \ {P1, . . . , PNI

}.
Then, det(KN+1) = det(V (PNI+1)) = G(PNI+1) is a.s. nonzero, since the

zero set of a not identically zero real analytic function on an open connected set
in Rd is a null set (cf. [22] for an elementary proof). More precisely, denoting
by ZG the zero set of G in Ω, we have that

ZG = (ZG ∩ {P1, . . . , PNI
}) ∪ (ZG ∩ (Ω \ {P1, . . . , PNI

})) .

Hence ZG is a null set if G ̸≡ 0, because the first intersection is a finite set,
and the second is the zero set of a not identically zero real analytic func-
tion. Considering the probability of the corresponding events and recalling
that det(KN−1) ̸= 0 (which a.s. holds) implies G ̸≡ 0, we can then write

prob{det(KN+1) = 0} = prob{G(PNI+1) = 0}
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= prob{G ≡ 0}+ prob{G ̸≡ 0 & PNI+1 ∈ ZG} = 0 + 0 = 0 ,

and this branch of the inductive step is completed.
We turn now to the branch of the inductive step where a boundary point is

added. In this case we consider the function F in (9) restricted to the boundary,
that is F (P (t)) with P (t) = γ(t), t ∈ (a, b), which for every fixed ℓ ∈ {1, . . . , NB}
has the representation

F (γ(t)) = det(U(γ(t))) = δN−1v
2(t) +A(γ(t))v(t) +B(γ(t))

where
v(t) = ψℓ(γ(t)) = r2νℓ (t) log(rℓ(t)) , rℓ(t) = ∥γ(t)−Qℓ∥2 (13)

with Qℓ = γ(tℓ), tℓ ∈ (a, b). We claim that if δN−1 ̸= 0 (which a.s. holds
by inductive hypothesis), F ◦ γ cannot be identically zero in any of the two
connected components of (a, b) \ {t1, . . . , tNB

} (i.e., the subintervals) having tℓ
as extremum. Otherwise, we would have in a left or right neighborhood of tℓ

v2(t) = α(t)v(t) + β(t) , (14)

where α(t) = A(γ(t))/δN−1 and β(t) = B(γ(t))/δN−1 are both analytic in a
full neighborhood of tℓ. Notice that, since γ′(tℓ) ̸= (0, 0) (the curve is regular),
rℓ(t) ∼ ∥γ′(tℓ)∥2|t− tℓ| which by (13) gives v(t) ∼ ∥γ′(tℓ)∥2ν2 (t− tℓ)2ν log(|t− tℓ|)
and v2(t) ∼ ∥γ′(tℓ)∥4ν2 (t − tℓ)

4ν log2(|t − tℓ|) as t → tℓ. Now α cannot be
identically zero in any left or right neighborhood, otherwise v2 ≡ β there and
would have an algebraic order of infinitesimal at tℓ. Hence taking the Taylor
expansion of α we get α(t) ∼ αs(t− tℓ)

s as t → tℓ for some s ≥ 0, the order of
the first nonvanishing derivative at t = tℓ. On the other hand, by v2 ≡ αv + β
locally, we would have v2(t) ∼ ∥γ′(tℓ)∥2ν2 αs(t− tℓ)

s+2ν log(|t− tℓ|)+βp(t− tℓ)
p,

where either β(tℓ) ̸= 0 and p = 0, or β(tℓ) = 0 and p > 0 (the order of the
first nonvanishing derivative at t = tℓ). Again we get a contradiction, since v2

cannot have two distinct limits or orders of infinitesimal at the same point.
The result is that F◦γ is a.s. not identically zero in any connected component

of (a, b) \ {t1, . . . , tNB
}. Then, det(KN+1) = det(U(QNB+1)) = F (γ(tNB+1)) is

a.s. nonzero. In fact, observe that F ◦γ is analytic in (a, b)\{t1, . . . , tNB
}, since

F is analytic in R2 \ ({Q1, . . . , QNB
} ∪ {P1, . . . , PNI

}). Moreover, denoting by
ZF◦γ the zero set of F ◦ γ in (a, b), we have that

ZF◦γ = (ZF◦γ ∩ {t1, . . . , tNB
}) ∪ (ZF◦γ ∩ ((a, b) \ {t1, . . . , tNB

})) .

Hence ZF◦γ is a null set if F ◦ γ ̸≡ 0, because the first intersection is a finite set,
and the second is the componentwise finite union of the zero sets of a not iden-
tically zero real analytic function on each connected component. Considering
the probability of the corresponding events and recalling that det(KN−1) ̸= 0
(which a.s. holds) implies F ◦ γ ̸≡ 0, we can then write

prob{det(KN+1) = 0} = prob{F (QNB+1) = 0}

= prob{F ◦ γ ≡ 0}+ prob{F ◦ γ ̸≡ 0 & tNB+1 ∈ ZF◦γ} = 0 + 0 = 0 ,

and also the boundary branch of the inductive step is completed. □
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2.1 Conclusion and remarks

The result of Theorem 1 is a first step towards a theory of Kansa collocation
unisolvence, and could be extended in several directions within the random
framework. The first extension comes immediately from the fact that a null
set has also measure zero for any continuous measure with density (that is,
absolutely continuous with respect to the Lebesgue measure). We can state
indeed the following

Theorem 2 The assertion of Theorem 1 holds true if the points {Pj} are inde-
pendent identically distributed with respect any continuous probability measure
with density on Ω, say σ ∈ L1

+(Ω), and the abscissas {th} are independent iden-
tically distributed with respect any continuous probability measure with density
on (a, b), say w ∈ L1

+(a, b).

This extension could be interesting whenever it is known that the solu-
tion has steep gradients or other regions where it is useful to increase the dis-
cretization density. Concerning the implementation of random sampling with re-
spect to continuous probability densities, we recall the well-known “acceptance-
rejection method”, cf. e.g. [5, 15, 23] with the references therein.

More difficult but worth of further investigations are:

• extension to Ω ⊂ Rd, d ≥ 3;

• extension to other analitic RBF up to the center, e.g. Radial Powers;

• extension to piecewise analytic or more general boundaries;

• extension to other differential operators and/or boundary conditions.

The latter in particular could be challenging, since the operators involved in
the equation and in the boundary conditions may not be radial. Moreover, one
might see as final goal a complete classification of RBF that admit an almost
surely nonsingular Kansa collocation matrix. Also this task appears challeng-
ing. In the present case, we have exploited the peculiar structure of TPS, which
are analytic apart from their center, and exactly this real singularity has given
a key tool to carry out the proof of Kansa unisolvence by random collocation. A
similar approach has been used for the mere interpolation problem by random
sampling, where in the inductive step each different RBF has required a special
technique to prove that the determinant is a not everywhere null analytic func-
tion of the new random point; cf. [2, 27]. For other RBF, in particular those
everywhere real analytic, different tools should be adopted, based again on the
peculiar structure of the underlying radial functions, for example the presence
of complex singularities as with MultiQuadrics (a first attempt in this direction
appears in the draft [4]).

Acknowledgements.
Work partially supported by the DOR funds of the University of Padova,

and by the INdAM-GNCS 2024 Projects “Kernel and polynomial methods for

8



approximation and integration: theory and application software”. This research
has been accomplished within the RITA “Research ITalian network on Approx-
imation” and the SIMAI Activity Group ANA&A, and the UMI Group TAA
“Approximation Theory and Applications”.

References

[1] R.A. Adams, J.J. Fournier, Sobolev Spaces, Academic Press, 2005.

[2] L.P. Bos, A. Sommariva, M. Vianello, A note on polynomial-free unisol-
vence of polyharmonic splines at random points, arXiv:2312.13710.

[3] R. Cavoretto, A. De Rossi, Adaptive procedures for meshfree RBF un-
symmetric and symmetric collocation methods, Appl. Math. Comput. 382
(2020), 125354.

[4] R. Cavoretto, A. De Rossi, F. Dell’Accio, A. Sommariva, M. Vianello, Non-
singularity of unsymmetric Kansa matrices: random collocation by Multi-
Quadrics and Inverse MultiQuadrics, draft, April 2024, arXiv: 2403.18017.

[5] A. Chalkis, C. Katsamaki, J. Tonelli-Cueto, On the Error of Random Sam-
pling: Uniformly Distributed Random Points on Parametric Curves, ISSAC
’22: Proceedings of the 2022 Intern. Symp. on Symb. and Alg. Comput.,
July 2022, pp. 273–282, arXiv:2203.02832.

[6] M. Chen, K.C. Cheung, L. Ling, A Kernel-Based Least-Squares Collocation
Method for Surface Diffusion, SIAM J. Numer. Anal. 61 (2023), 1386–1404.

[7] M. Chen, L. Ling, Extrinsic Meshless Collocation Methods for PDEs on
Manifolds, SIAM J. Numer. Anal. 58 (2020), 988–1007.

[8] W. Chen, Z.-J. Fu, C.S. Chen, Different Formulations of the Kansa Method:
Domain Discretization, in W. Chen et al., Recent Advances in Radial Ba-
sis Function Collocation Methods, SpringerBriefs in Applied Sciences and
Technology, 2014.

[9] K.C. Cheung, L. Ling, R. Schaback, H2-Convergence of Least-Squares Ker-
nel Collocation Methods, SIAM J. Numer. Anal. 56 (2018), 614–633.

[10] P.P. Chinchapatnam, K. Djidjeli, P.B. Nair, Unsymmetric and symmetric
meshless schemes for the unsteady convection–diffusion equation, Comput.
Methods Appl. Mech. Engrg. 195 (2006), 2432—2453.

[11] S,N. Chiu, L. Ling, M. McCourt, On variable and random shape Gaussian
interpolations, 377 (2020), 125159.

[12] F. Dell’Accio, A. Sommariva, M. Vianello, Random sampling and unisol-
vent interpolation by almost everywhere analytic functions, Appl. Math.
Lett. 145 (2023).

9



[13] L.C. Evans, Partial Differential Equations, Graduate Studies in Mathemat-
ics 19, AMS, 1998.

[14] G.E. Fasshauer, Meshfree Approximation Methods with Matlab, Interdis-
ciplinary Mathematical Sciences, Vol. 6, World Scientific, 2007.

[15] B.D. Flury, Acceptance-Rejection Sampling Made Easy, SIAM Rev. 32
(1990), 474–476.

[16] Y.C. Hon, R. Schaback, On unsymmetric collocation by radial basis func-
tions, Appl. Math. Comput. 119 (2001), 177—186.

[17] E.J. Kansa, Application of Hardy’s multiquadric interpolation to hydrody-
namics, in Proc. 1986 Simul. Conf., Vol. 4, pp. 111—117.

[18] S.G. Krantz, H.R. Parks, A Primer of Real Analytic Functions, Second
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