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Abstract

We give a short proof of almost sure invertibility of unsymmetric ran-
dom Kansa collocation matrices by a class of analytic RBF vanishing at in-
finity, for the Poisson equation with Dirichlet boundary conditions. Such
a class includes popular Positive Definite instances such as Gaussians,
Generalized Inverse MultiQuadrics and Matérn RBF. The proof works
on general domains in any dimension, with any distribution of bound-
ary collocation points and any continuous random distribution of internal
collocation points.
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1 Introduction

The unsymmetric Kansa method for meshless discretization of PDEs, in both
the square (standard collocation) and rectangular (overtesting) formulations,
has a long and successful history in applications; see, with no pretence of ex-
haustivity, [4, 5, 6, 10, 12, 14, 19, 22] with the references therein. Nevertheless,
existence of sufficient conditions ensuring invertibility of unsymmetric Kansa
collocation matrices is still a substantially open problem, as it has been for
more than 20 years after the breakthrough paper by Hon and Schaback [11],
who showed that there exist point configurations leading to singularity of the
collocation matrices (though these are very special and “rare”cases). The lack of
clear well-posedness conditions for the discrete problem has been considered one
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of the main drawbacks of unsymmetric Kansa collocation, despite its manifest
effectiveness in many applications.

In two recent papers, a new approach to prove unisolvence in the case of
random collocation has been proposed, for Thin-Plate Splines, MultiQuadrics
and Inverse MultiQuadrics. The key property is that each basis function is ana-
lytic but presents some singularity either in the real (TPS,[8]) or in the complex
domain (MQ and IMQ, [3]), which is not a singularity for the other basis el-
ements. A similar approach has been used also for polynomial-free random
interpolation by general Polyharmonic Splines [1, 20] and Generalized Multi-
quadrics [21]. However, it does not work for example in the case of Gaussians,
which are entire functions.

In this paper we study unisolvence of unsymmetric random Kansa collocation
for the Poisson equation by a class of analytic RBF with scaled radial function

ϕε(r) = ϕ(εr)

which is C2 in [0,+∞) and analytic in (0,+∞), such that each RBF and its
Laplacian vanish at ∞ but the Laplacian does not vanish at the RBF center.
As we shall see, such a class includes popular Positive Definite instances such
as Gaussians, Generalized Inverse MultiQuadrics and Matérn RBF. The scale
ε > 0 represents the so-called shape parameter associated with RBF and as
known is relevant in order to control the trade-off between conditioning and
accuracy; cf. e.g. [10, 13].

We consider in particular the Poisson equation with Dirichlet boundary con-
ditions (cf. e.g. [9]) {

∆u(P ) = f(P ) , P ∈ Ω ,
u(P ) = g(P ) , P ∈ ∂Ω ,

(1)

where Ω ⊂ Rd is a bounded domain (connected open set), P = (x1, . . . , xd)
and ∆ = ∂2/∂x21 + · · · + ∂2/∂x2d is the Laplacian. In [8], where we studied
Kansa discretization by Thin-Plate Splines in R2, we assumed that the boundary
is a curve possessing an analytic parametrization. Differently here, as in [3]
(which concerns MultiQuadrics and Inverse MultiQuadrics), we do not make
any restrictive assumption on ∂Ω, except for the usual ones that guarantee
well-posedness and regularity of the solution (cf. e.g. [9]).

We recall that unsymmetric Kansa collocation consists in seeking a function

uN (P ) =

n∑
j=1

cj ϕj(P ) +

m∑
k=1

dk ψk(P ) , N = n+m , (2)

where
ϕj(P ) = ϕε(∥P − Pj∥2) , {P1, . . . , Pn} ⊂ Ω , (3)

ψk(P ) = ϕε(∥P −Qk∥2) , {Q1, . . . , Qm} ⊂ ∂Ω , (4)

such that {
∆uN (Pi) = f(Pi) , i = 1, . . . , n
uN (Qh) = g(Qh) , h = 1, . . . ,m .

(5)
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Kansa collocation can be rewritten in matrix form as ∆Φ ∆Ψ

Φ Ψ

 c

d

 =

 f

g

 (6)

where the N ×N block matrix is

KN = KN ({Pi}, {Qh}) =

 ∆Φ ∆Ψ

Φ Ψ

 =

 (∆ϕj(Pi)) (∆ψk(Pi))

(ϕj(Qh)) (ψk(Qh))


and f = {f(Pi)}, g = {g(Qh)}, 1 ≤ i, j ≤ n, 1 ≤ h, k ≤ m.

2 Unisolvence of random Kansa collocation

We can now state and prove our main result on unisolvence of random Kansa
collocation by a class of analytic RBF vanishing at infinity. Thus will be followed
by a Corollary on the application to Gaussians and other Positive Definite RBF.
In the sequel we shall denote by H(D) the space of analytic functions in the
open connected set D ⊂ Rd.

Theorem 1 Let ϕ : [0,+∞) → R be a radial function such that:

(i) ϕ ∈ C2([0,+∞)) ∩H((0,+∞)), limr→∞ ϕ(r) = 0;

(ii) ℓ(r) = ϕ′′(r) + ϕ′(r)/r is continuous at r = 0, ℓ(0) ̸= 0, limr→∞ ℓ(r) = 0;

(iii) the RBF interpolation matrix Vm = ϕε(∥Qh − Qk∥), 1 ≤ h, k ≤ m, is
nonsingular for every set of distinct points {Q1, . . . , Qm} ⊂ Rd.

Moreover, Kn be the Kansa collocation matrix by ϕε(r) = ϕ(εr) defined above for
equation (1) in Ω ⊂ Rd, d ≥ 2, where {Qh} is any fixed set of m distinct points
on ∂Ω, and {Pi} is a sequence of i.i.d. (independent and identically distributed)
random points in Ω with respect to any probability density σ ∈ L1

+(Ω).
Then for every m ≥ 1 and for every n ≥ 0 the matrix Kn is a.s. (almost

surely) nonsingular.

Proof. Let us fix ε > 0 and define ϕA(P ) = ϕε(∥P − A∥2). Then we have
ϕA(B) = ϕB(A) and ϕA(A) = ϕ(0). Moreover (cf. [10, Appendix D])

∆ϕA(P ) = ε2(ϕ′′(ε∥P −A∥2) + ϕ′(ε∥P −A∥2)/(ε∥P −A∥2)) = ε2ℓ(ε∥P −A∥2)

so that ∆ϕA(B) = ∆ϕB(A) and ∆ϕA(A) = ε2ℓ(0). Observe in addition that
ϕA(·),∆ϕA(·) ∈ H(Rd \ {A}) by analiticity of ϕ and

√
· in R+, and by (i), (ii)

lim
P→∞

ϕA(P ) = 0 = lim
P→∞

∆ϕA(P ) . (7)
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The proof proceeds by induction on n. The assertion is certainly true for
n = 0 by (iii), since K0 = Vm. Let us assume that the assertion is true for a
fixed n ≥ 0 and define the matrix

K(P ) =


∆Φ ∆Ψ (∆ϕ⃗(P ))t

Φ Ψ (ψ⃗(P ))t

∆ϕ⃗(P ) ∆ψ⃗(P ) ε2ℓ(0)


where ϕ⃗(P ) = (ϕ1(P ), . . . , ϕn(P )) and ψ⃗(P ) = (ψ1(P ), . . . , ψm(P )). Observe
that |det(Kn+1)| = |det(K(Pn+1))|, since ψk(Pn+1) = ϕn+1(Qk), ∆ϕj(Pi) =
∆ϕi(Pj), and thus K(Pn+1) corresponds to a permutation of rows and columns
of Kn+1. Now in view of (7) we have that

lim
P→∞

K(P ) = L =

 Kn 0⃗ t

0⃗ ε2ℓ(0)


where the limit matrix L is a.s. invertible, since det(L) = ε2ℓ(0)det(Kn) and
a.s. det(Kn) ̸= 0 by inductive hypothesis while ℓ(0) ̸= 0 by (ii).

This means that the function

F (P ) = det(K(P ))

which is in H(Rd\{P1, . . . , Pn}), a.s. does not vanish in a neighborhood of ∞ in
Rd, and hence is not identically zero in the open connected set Rd\{P1, . . . , Pn}.

In view of basic result in the theory of analytic functions, the zero set of F
in the open connected set Rd \ {P1, . . . , Pn}, say Z(F ), is then a null set, i.e.
it has zero Lebesgue measure (cf. [15] for an elementary proof). Consequently,
the zero set of F in Ω, say ZΩ(F ) is also a null set since

ZΩ(F ) = (ZΩ(F ) ∩ {P1, . . . , Pn}) ∪ (Z(F ) ∩ Ω)

where the first is a finite set and the second a subset of a null set, and hence is
a null set also for σ(x)dx, i.e. the probability that Pn+1 falls in ZΩ(F ) is zero.

To conclude, considering the probability of the corresponding events

prob{det(Kn+1) = 0} = prob{F (Pn+1) = 0}

= prob{F ≡ 0}+ prob{F ̸≡ 0 & Pn+1 ∈ ZΩ(F )} = 0 + 0 = 0 ,

and the inductive step is completed. □

Corollary 1 Under the assumptions of Theorem 1 on the boundary and the
internal collocation points, the Kansa collocation matrix for equation (1) by
Gaussian, Generalized Inverse MultiQuadric and Matérn RBF is almost surely
nonsingular.
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Proof. It is sufficient to check properties (i) − (iii) of Theorem 1. For all
instances (iii) holds since ϕ(∥x∥2) is a strictly Positive Definite RBF and Vm is
a positive definite matrix (cf. e.g. [10]).

• Gaussians: ϕ(r) = e−r2 and ℓ(r) = 4e−r2(r2 − 1) are entire functions
which vanish at +∞, ℓ(0) = 4;

• Generalized Inverse MultiQuadrics: ϕ(r) = (1 + r2)β , β < 0, and ℓ(r) =
4β(1 + r2)β−2(1 + βr2) are analytic in R and vanish at ±∞, ℓ(0) = 4β;
this class includes the standard IMQ (β = −1/2) and the IQ (Inverse
Quadratic, β = −1);

• Matérn: ϕ(r) = 21−ν

Γ(ν) r
νKν(r), where Kν is the modified Bessel function

of the second kind or Macdonald function of order ν > 0 (cf. e.g. [17]).
These radial functions has been used for Kansa collocation e.g. in [16]
with half-integer parameter ν = k + 1/2 with k ∈ N. Now, let us take in
general ν ∈ R, ν > 1. It is known that Kν is analytic in C \ (−∞, 0], and
Kν(r) ∼

√
π/(2r) e−r as r → +∞ while rνKν(r) ∼ 2ν−1Γ(ν) as r → 0+.

Moreover (rνKν(r))
′ = −rνKν−1(r) so that ϕ′(r) = − 21−ν

Γ(ν) r
νKν−1(r) and

ϕ′′(r) = − 21−ν

Γ(ν) (r · r
ν−1Kν−1(r))

′ = − 21−ν

Γ(ν) (r
ν−1Kν−1(r) − rνKν−2(r)),

from which one easily gets

ℓ(r) = −21−ν

Γ(ν)
(2rν−1Kν−1(r)− rνKν−2(r)) .

From the relations above we can finally compute limr→+∞ ϕ(r) = 0 =

limr→+∞ ℓ(r) and limr→0+ ℓ(r) = −Γ(ν−1)
Γ(ν) = 1

1−ν ̸= 0 . □

To our knowledge, this is the first set of sufficient conditions for unisolvence
of unsymmetric Kansa collocation by Gaussian and Matérn RBF. In the case of
classical Inverse MultiQuadrics (β = −1/2) an alternative but more complicated
unisolvence proof for random collocation has been recently provided in [3].
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