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Abstract

Unisolvence of unsymmetric Kansa collocation is still a substantially
open problem. We prove that Kansa matrices with MultiQuadrics and
Inverse MultiQuadrics for the Dirichlet problem of the Poisson equation
are almost surely nonsingular, when the collocation points are chosen by
any continuous random distribution in the domain interior and arbitrarily
on its boundary.
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1 Introduction

Unsymmetric Kansa collocation has become over the years one of the most
adopted meshless methods by RBF (Radial Basis Functions) for the numerical
solution of PDEs (Partial Differential Equations) in a variety of engineering
and scientific problems; cf., e.g., [13, 14] and [2, 4, 17, 22] with the references
therein. On the other hand, in the popular textbook [9] one reads: “Since the
numerical experiments by Hon and Schaback show that Kansa’s method cannot
be well-posed for arbitrary center locations, it is now an open question to find
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sufficient conditions on the center locations that guarantee invertibility of the
Kansa matrix”. Indeed, Hon and Schaback [12] proved that there are “rare”
point configurations that make Kansa matrices singular. To overcome this prob-
lem, greedy as well as overtesting collocation techniques have been developed
and successfully applied, cf. e.g. [5, 17, 20, 21, 22]. Nevertheless, theoretical
invertibility of unsymmetric Kansa collocation matrices has remained a sub-
stantially open problem.

In a quite recent paper [7], unisolvence of random Kansa collocation by Thin-
Plate Splines (TPS) has been proved for the Poisson equation, on 2-dimensional
domains whose boundary curve has an analytic parametrization. The key prop-
erties in the proof are radiality of the Laplacian and the fact that the TPS
basis functions are analytic up to their center, the latter used also in other re-
cent papers on interpolation unisolvence of TPS without polynomial addition,
cf. [1, 6, 23]. Though this result represents a first step towards unisolvence, it
has a number of restrictions, besides the fact that the differential operator is
the pure Laplacian: the RBF kind (indeed, the most usual approach to Kansa
method is with MultiQuadrics), the dimension, the boundary regularity.

In the present paper, still resorting to the key property of analiticity of
the basis, but this time with the presence of complex singularities, we prove
that unsymmetric Kansa matrices with MultiQuadrics (MQ) and Inverse Mul-
tiQuadrics (IMQ) for the Dirichlet problem of the Poisson equation are almost
surely invertible (in any dimension), when the collocation points are chosen by
any continuous random distribution in the domain interior and arbitrarily on
its boundary. We stress that, differently from [7], we do not make here any re-
strictive assumption on the boundary, except for the usual ones that guarantee
well-posedness and regularity of the solution to the differential problem.

2 Unisolvence of random MQ and IMQ Kansa
collocation

In this paper we study unisolvence of Kansa collocation by (scaled) Multi-
Quadrics (MQ)

ϕ(r) = ϕε(r) =
√
1 + (εr)2 , (1)

and Inverse MultiQuadrics (IMQ)

ϕ(r) = ϕε(r) =
1√

1 + (εr)2
, (2)

which are both analytic in R. The scale ε > 0 represents the so-called shape
parameter associated with RBF [9, 16]. We consider the Poisson equation with
Dirichlet boundary conditions (cf. e.g. [8]){

∆u(P ) = f(P ) , P ∈ Ω ,
u(P ) = g(P ) , P ∈ ∂Ω ,

(3)
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where Ω ⊂ Rd is a bounded domain (connected open set), P = (x1, . . . , xd) and
∆ = ∂2/∂x21 + · · · + ∂2/∂x2d is the Laplacian. Differently from [7], where we
studied Kansa discretization by TPS in R2 and we assumed that the boundary
is a curve possessing an analytic parametrization, here we do not make any
restrictive assumption on ∂Ω, except for the usual ones that guarantee well-
posedness and regularity of the solution (like e.g. that the boundary is Lipschitz,
cf. e.g. [19] with the references therein). The main reason is that for the
discretization of the boundary conditions, with MQ we can resort to a classical
result by Micchelli [11] on interpolation unisolvence by any set of distinct points,
result achieved also with IMQ since they are strictly positive definite.

Unsymmetric Kansa collocation (see e.g. [3, 9, 12, 13, 17, 22, 24]) consists
in seeking a function

uN (P ) =

n∑
j=1

cj ϕj(P ) +

m∑
k=1

dk ψk(P ) , N = n+m , (4)

where
ϕj(P ) = ϕ(∥P − Pj∥2) , {P1, . . . , Pn} ⊂ Ω , (5)

ψk(P ) = ϕ(∥P −Qk∥2) , {Q1, . . . , Qm} ⊂ ∂Ω , (6)

such that {
∆uN (Pi) = f(Pi) , i = 1, . . . , n
uN (Qh) = g(Qh) , h = 1, . . . ,m .

(7)

The following properties will be used below. Defining ϕA(P ) = ϕ(∥P −A∥),
we have ϕA(A) = 1 and ϕA(B) = ϕB(A). Moreover ∆ϕA(B) = ∆ϕB(A) and
∆ϕA(A) = ±ε2d. Indeed, the Laplacian in d-dimensional spherical coordinates
centered at A (cf. e.g. [8, Ch.2], [9, App.D]) is the radial function

∆ϕA = ϕ′′(r) +
d− 1

r
ϕ′(r) (8)

and thus for ϕ(r) = (1 + (εr)2)s, s ∈ R \ {0}, we get

∆ϕA = 2ε2s (1 + (εr)2)s−2 p(r; d, ε, s) (9)

where
p(r; d, ε, s) = d+ (d+ 2(s− 1))(εr)2 , (10)

is a second-degree polynomial in r.
Kansa collocation can be rewritten in matrix form as ∆Φ ∆Ψ

Φ Ψ

 c

d

 =

 f

g

 (11)

where the block matrix is

Kn = Kn,m({Pi}, {Qh}) =

 ∆Φ ∆Ψ

Φ Ψ


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=



c · · · ∆ϕn(P1) ∆ψ1(P1) · · · ∆ψm(P1)

...
. . .

...
... · · ·

...

∆ϕ1(Pn) · · · c ∆ψ1(Pn) · · · ∆ψm(Pn)

ϕ1(Q1) · · · ϕn(Q1) 1 · · · ψm(Q1)

... · · ·
...

...
. . .

...

ϕ1(Qm) · · · ϕn(Qm) ψ1(Qm) · · · 1


with c = ε2d for MQ and c = −ε2d for IMQ, and f = {f(Pi)}i=1,...,n, g =
{g(Qh)}h=1,...,m. We are now ready to state and prove our main result.

Theorem 1 Let Kn be the MQ or IMQ Kansa collocation matrix defined above,
where {Qh} is any fixed set of m distinct points on ∂Ω, and {Pi} is a sequence of
i.i.d. (independent and identically distributed) random points in Ω with respect
to any probability density σ ∈ L1

+(Ω). Then for every m ≥ 1 and for every
n ≥ 0 the matrix Kn is a.s. (almost surely) nonsingular.

Before proving the theorem, we recall that the construction of i.i.d. random
sequences with respect to any probability density can be accomplished (via
the uniform distribution) by the well-known acceptance-rejection method, cf.
e.g. [10]. Though uniform random points could be the most natural choice for
collocation, the possibility of adopting other distributions could be interesting
whenever it is known that the solution has steep gradients, or other regions
where it is useful to increase the discretization density.

For the reader’s convenience, we begin by stating and proving a Lemma
which concerns the induction base.

Lemma 1 The assertion of Theorem 1 holds true for n = 0 and n = 1.

Proof. For n = 0 the collocation matrix coincides with the m ×m interpola-
tion matrix on the boundary discretization points, which is (deterministically)
nonsingular. For IMQ this is a consequence of their positive definiteness (cf.
e.g. [9, 24]), while for MQ this comes from a classical result by Micchelli on
conditionally positive definite RBF of order 1, cf. [11].
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For n = 1, consider the augmented matrix

K̃(P ) =



c ∆ψ1(P ) · · · ∆ψm(P )

ψ1(P ) 1 · · · ψm(Q1)

...
...

. . .
...

ψm(P ) ψ1(Qm) · · · 1


and first observe that K̃(P1) = K1 since ψk(P1) = ϕ1(Qk). For convenience,
let us denote by Ψ(Q1, . . . , Qm) the interpolation square block on the boundary
points. Developing the determinant of K̃(P ) by Laplace’s rule on the first row,
we can expand the determinant as a function of ψ1(P ) and ∆ψ1(P ) and char-
acterize the coefficient of each combination term, obtaining the representation

δ(P ) = det(K̃(P )) = λψ1(P )∆ψ1(P )+α(P )∆ψ1(P )+β(P )ψ1(P )+γ(P ) , (12)

where
α ∈ span{ψk , 2 ≤ k ≤ m} , β ∈ span{∆ψk , 2 ≤ k ≤ m} , (13)

γ ∈ span{1, ψh∆ψk , 2 ≤ h, k ≤ m} ,

with λ = −det(Ψ(Q2, . . . , Qm)) ̸= 0 (by the same interpolation results quoted
above in the case n = 0).

Notice that δ is a real analytic function in Rd, because such are all the func-
tions involved in its definition by linear combinations and products, and real
analytic functions form a function algebra [15]. We claim that δ(P ) is not iden-
tically zero in Ω. Indeed, if δ were identically zero in Ω, it would be identically
zero also in Rd, since the zero set of a not identically zero real analytic function
must have null Lebesgue measure (cf. [18] for an elementary proof) whereas
meas(Ω) > 0. Then taking the line P (t) = Q1 + tv where v = (v1, . . . , vd) is a
given unit vector, we obtain that the real univariate function δ(P (t)) would be
identically zero for t ∈ R. Consequently, its analytic extension to the complex
plane, say δ(P (z)), would also be identically zero for z ∈ C (technically, such an
extension is identically zero in the open set C \ {branch cuts} where the branch
cuts corresponding to (22) below are a finite number of vertical half-lines).

Observe now that the complex functions ψ1(P (z)) = (1 + (εz)2)s, and in
view of (9)-(10)

∆ψ1(P (z)) = 2ε2s (1 + (εz)2)s−2p(z; d, ε, s) , s = 1/2 or s = −1/2 , (14)

have two branching points in z = ±i/ε, since p(±i/ε; d, ε, s) = 2(1− s) ̸= 0 for
s ̸= 1 (we take in (1)-(2) the branch of the square root that is positive on the
positive reals). Moreover

ψ1(P (z))∆ψ1(P (z)) = 2ε2s (1 + (εz)2)2s−2p(z; d, ε, s) (15)
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has a pole there, of order 1 for MQ and of order 3 for IMQ. On the other
hand, the functions α(P (z)), β(P (z)) and γ(P (z)) are analytic at z = ±i/ε. In
fact, if A is one of the boundary collocation points different from Q1, that is
A ∈ {Qk, k ̸= 1} ⊂ ∂Ω, we first observe that ∥P (z)−A∥22 = ∥Q1+zv−A∥22 has
to be seen as the complex extension of the corresponding real function, hence
not the complex 2-norm but the sum of the squares of the complex components.
Then the complex numbers

1 + ε2∥P (±i/ε)−A∥22 = 1 + ε2
d∑

j=1

(Q1 ± iv/ε−A)2j

= 1 + ε2
d∑

j=1

[(Q1 −A)2j ± 2i(P −A)jvj/ε− v2j /ε
2] (16)

(recalling that ∥v∥2 = 1) have a.s. positive real part, namely ∥Q1 − A∥22 > 0,
since Q1 is a.s. distinct from A, and thus the complex functions corresponding
to the chosen branch of the complex square root1 + ε2

d∑
j=1

(Q1 + zv −A)2j

±1/2

(17)

A ∈ {Qk, k ̸= 1} ⊂ ∂Ω are both analytic at z = ±i/ε. This means that
ϕA(P (z)) and ∆ϕA(P (z)) are analytic at z = ±i/ε, and so are α(P (z)), β(P (z))
and γ(P (z)) in view of (13).

Since λ ̸= 0, by δ(P (z)) ≡ 0 in view of (12)-(15) we would get

[λψ1(P (z))∆ψ1(P (z)) + γ(P (z))](1 + (εz)2)2−2s

= 2ε2s λ p(z; d, ε, s) + γ(P (z))(1 + (εz)2)2−2s

≡ −[α(P (z))∆ψ1(P (z)) + β(P (z))ψ1(P (z))](1 + (εz)2)2−2s

= −2ε2s α(P (z))p(z; d, ε, s)(1 + (εz)2)−s − β(P (z))(1 + (εz)2)2−s

= [−2ε2s α(P (z))p(z; d, ε, s)− β(P (z))(1 + (εz)2)2](1 + (εz)2)−s (18)

which for both MQ (s = 1/2) and IMQ (s = −1/2) gives a contradiction,
because the first term in (18) is analytic at z = ±i/ε, and nonvanishing because
p(±i/ε; d, ε, s) = 2(1 − s) ̸= 0 for s ̸= 1, whereas the last term either vanishes
or has a branching point there.

Then, det(K1) = δ(P1) is a.s. nonzero, by the already quoted fundamental
result that the zero set of a not identically zero real analytic function on an
open connected set Ω ⊂ Rd is a null set for the Lebesgue measure (and thus
also for any probability measure with density σ ∈ L1

+(Ω)). □
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Proof of Theorem 1. The proof proceeds by (complete) induction on n. The
induction base is given by Lemma 1. For the inductive step, we define the
augmented matrix

K̃(P ) =



c · · · ∆ϕn(P1) ∆ϕ1(P ) ∆ψ1(P1) · · · ∆ψm(P1)

...
. . .

...
...

... · · ·
...

∆ϕ1(Pn) · · · c ∆ϕn(P ) ∆ψ1(Pn) · · · ∆ψm(Pn)

∆ϕ1(P ) · · · ∆ϕn(P ) c ∆ψ1(P ) · · · ∆ψm(P )

ϕ1(Q1) · · · ϕn(Q1) ψ1(P ) 1 · · · ψm(Q1)

... · · ·
...

...
...

. . .
...

ϕ1(Qm) · · · ϕn(Qm) ψm(P ) ψ1(Qm) · · · 1


Observe that in this case Kn+1 = K̃(Pn+1) since ψk(Pn+1) = ϕn+1(Qk) and

∆ϕj(Pi) = ∆ϕi(Pj).

Developing det(K̃(P )) by Laplace’s rule on the (n+ 1)-row, we can expand
the determinant as a function of ∆ϕn(P ) and (∆ϕn(P ))

2 and characterize the
coefficient of each combination term, obtaining

δ(P ) = det(K̃(P )) = −det(Kn−1)(∆ϕn(P ))
2 + α(P )∆ϕn(P ) + β(P ) (19)

where
α ∈ span{∆ϕj , ψk,∆ψk ; 1 ≤ j ≤ n− 1 , 1 ≤ k ≤ m} , (20)

β ∈ span{1,∆ϕi∆ϕj ,∆ϕi∆ψh, ψk∆ϕi, ψk∆ψh ; 1 ≤ i, j ≤ n−1 , 1 ≤ k, h ≤ m} .

Reasoning as in Lemma 1 with ϕn substituting ψ1, we can prove that δ(P )
is almost surely not identically zero in Ω. Observe that in view of (9)-(10)

∆ϕn(P (z)) = 2ε2s (1 + (εz)2)s−2p(z; d, ε, s) , s = 1/2 or s = −1/2 , (21)

has two branching points in z = ±i/ε (we take in (1)-(2) the branch of the
square root that is positive on the positive reals), and (∆ϕn(P (z)))

2 has a
pole there, of order 3 for MQ and of order 5 for IMQ. On the other hand, the
functions α(P (z)) and β(P (z)) are analytic at z = ±i/ε. In fact, by the same
considerations of (16), the complex functions1 + ε2

d∑
j=1

(Pn + zv −A)2j

±1/2

(22)
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for A ∈ {Qh} ⊂ ∂Ω or A ∈ {Pk, k ̸= n} ⊂ Ω are both analytic at z = ±i/ε.
This means that ϕA(P (z)) and ∆ϕA(P (z)) are analytic at z = ±i/ε, and so are
α(P (z)) and β(P (z)) in view of (20).

Since by inductive hypothesis a.s. det(Kn−1) ̸= 0, by δ(P (z)) ≡ 0 in view
of (19)-(21) we would get

[−det(Kn−1)(∆ϕn(P (z)))
2 + β(P (z))](1 + (εz)2)4−2s

= −4ε4s2det(Kn−1)p
2(z; d, ε, s) + β(P (z))(1 + (εz)2)4−2s

≡ −α(P (z))∆ϕn(P (z))(1 + (εz)2)4−2s

= −2ε2s α(P (z))p(z; d, ε, s)(1 + (εz)2)2−s , (23)

which for both MQ (s = 1/2) and IMQ (s = −1/2) gives a contradiction,
because the first term in (23) is analytic and nonvanishing at z = ±i/ε, whereas
the last term vanishes there (and has even a branching point if α(P (±i/ε)) ̸= 0).

Then, det(Kn+1) = δ(Pn+1) is a.s. nonzero, again by the basic fundamental
result on the zero sets of nonzero analytic functions. Indeed, denoting by Zδ the
zero set of δ in Ω and recalling that det(Kn−1) ̸= 0 (which a.s. holds) implies
δ ̸≡ 0, taking the probability of the corresponding events we get

prob{det(Kn+1) = 0} = prob{δ(Pn+1) = 0}

= prob{δ ≡ 0}+ prob{δ ̸≡ 0 & Pn+1 ∈ Zδ} = 0 + 0 = 0 ,

and the inductive step is completed. □

Conclusions

We have made a further step within the open unisolvence problem of unsymmet-
ric Kansa collocation by RBF. The case of MQ and IMQ is considered, proving
almost sure invertibility of collocation matrices by random interior nodes and
arbitrary boundary nodes, for the Laplace equation with Dirichlet boundary
conditions on general domains. Analiticity of the involved RBF, up to complex
singularities, plays a key role together with randomness.

On the other hand, random nodes are quite irregular, so the problem of
extending the result to collocation nodes with a better layout, for example
quasi-random such as low discrepancy points, is a research subject that will
deserve further attention.
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