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Abstract

We construct symmetric polar WAMs (Weakly Admissible Meshes)
with low cardinality for least-squares polynomial approximation on the
disk. These are then mapped to an arbitrary triangle. Numerical tests
show that the growth of the least-squares projection uniform norm is
much slower than the theoretical bound, and even slower than that of the
Lebesgue constant of the best known interpolation points for the triangle.
As opposed to good interpolation points, such meshes are straightforward
to compute for any degree. The construction can be extended to polygons
by triangulation.
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1 Introduction.

Locating good points for multivariate polynomial approximation, in particular
polynomial interpolation, is an open challenging problem, even in standard do-
mains like disks and triangles. The geometry of a discrete model of a compact
set has a strong influence on the quality of interpolation and approximation
based on it, even in one dimension, see e.g. [6, §7]. A new insight has been
recently given by the theory of “admissible meshes” of Calvi and Levenberg
[5], which are nearly optimal for least-squares approximation, and contain in-
terpolation sets that distribute asymptotically as Fekete points of the domain
[2].

In this note, we construct low-cardinality weakly admissible meshes on the
disk and the simplex, improving the results of [2]. These meshes, that are

∗Supported by the project “Interpolation and Extrapolation: new algorithms and applica-

tions” of the University of Padova, and by the INdAM GNCS.
1Dept. of Computer Science, University of Verona, Italy

e-mail: leonardpeter.bos@univr.it
2Dept. of Pure and Applied Mathematics, University of Padova, Italy

e-mail: alvise, marcov@math.unipd.it

1



essentially transformations of Chebyshev-Lobatto grids, have about n2 points
for least-squares approximation of degree n, to be compared with the approx-
imately n2/2 points used in polynomial interpolation. The theoretical bound
for the uniform norm of the corresponding least-squares projection operator is
O(n log2 n), but numerical tests show a much slower growth, even slower than
that of the Lebesgue constant of the best known interpolation points for the
triangle. Moreover, as opposed to good interpolation points, such weakly ad-
missible meshes are straightforward to compute for any degree. By standard
triangulation algorithms, we can compute WAMs for least-squares approxima-
tion over general polygons.

2 Weakly Admissible Meshes (WAMs).

Consider a compact set K ⊂ Rd (or K ⊂ Cd) which is polynomial determining,
i.e. polynomials vanishing on K vanish everywhere. We adopt the following
notation:

‖f‖X := sup
x∈X

|f(x)|

where f is any bounded function on the set X . Moreover we shall denote by Pd
n

the space of polynomials of degree not larger than n, and by N its dimension

N := dim
(

P
d
n

)

=

(

n+ d

d

)

∼ nd

d!

We define a Weakly Admissible Mesh (WAM) to be a sequence of discrete
subsets An ⊂ K such that

‖p‖K ≤ C(An)‖p‖An
, ∀p ∈ P

d
n (1)

where both card(An) ≥ N and C(An) grow at most polynomially in n. When
C(An) is bounded we speak of an Admissible Mesh (AM). We sketch below the
main features of WAMs in terms of ten properties (cf. [2, 5]):

P1: if α is an affine mapping and An a WAM for K, then α(An) is a WAM
for α(K) with the same constant C(An)

P2: any sequence of unisolvent interpolation sets whose Lebesgue constant
grows at most polynomially with n is a WAM, C(An) being the Lebesgue
constant itself

P3: any sequence of supersets of a WAM whose cardinalities grow polynomially
with n is a WAM with the same constant C(An)

P4: a finite union of WAMs is a WAM for the corresponding union of compacts,
C(An) being the maximum of the corresponding constants

P5: a finite cartesian product of WAMs is a WAM for the corresponding prod-
uct of compacts, C(An) being the product of the corresponding constants

P6: in Cd a WAM for the boundary ∂K is a WAM for K (by the maximum
principle)
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P7: given a polynomial mapping πs of degree s, then πs(Ans) is a WAM for
πs(K) with constant C(Ans) (cf. [2, Prop.2])

P8: any K satisfying a Markov polynomial inequality of the form ‖∇p‖K ≤
Mnr‖p‖K has an AM with O(nrd) points (cf. [5, Thm.5])

P9: least-squares polynomial approximation of f ∈ C(K) (cf. [5, Thm.1]): the
least-squares polynomial LAn

f on a WAM is such that

‖f − LAn
f‖K / C(An)

√

card(An) min {‖f − p‖K , p ∈ P
d
n}

P10: Fekete points: the Lebesgue constant of Fekete points extracted from a
WAM can be bounded like Λn ≤ NC(An) (that is the elementary classical
bound of the continuum Fekete points times a factor C(An))

The properties above give the basic tools for the construction and application
of WAMs in the framework of polynomial interpolation and approximation. We
focus now on the real bivariate case, i.e. K ⊂ R2. Property P8, applied to
convex compacts like the disk or the triangle where a Markov inequality with
exponent r = 2 holds, says that it is always possible to obtain an Admissible
Mesh with O(n4) points. In order to avoid such a large cardinality, which has
severe computational drawbacks for example in least-squares approximation, we
can turn to WAMs, which can have a much lower cardinality, typically O(n2)
points.

In [2] a WAM on the disk with about 2n2 points and C(An) = O(log2 n) has
been constructed with standard polar coordinates, using essentially property
P2 for univariate Chebyshev and trigonometric interpolation. Moreover, using
property P2 and P7, WAMs for the triangle and for linear trapezoids, again
with about 2n2 points and C(An) = O(log2 n), have been obtained simply by
mapping the so-called Padua points of degree 2n from the square with standard
quadratic transformations. We recall that the Padua points are the first known
optimal points for bivariate polynomial interpolation, with a Lebesgue constant
growing like log-squared of the degree (cf. [1, 4]).

In the following section, improving the result of [2], we construct a symmetric
polar WAM on the unit disk with about n2 points. In Table 1 below (§2.3), we
compare using the old WAM for the disk of [2] with the new WAM constructed
in this paper. We will see that the norms of the corresponding least-squares
projection operators are very similar, but with the new WAM requiring about
half the number of points.

Then, property P7 allows to obtain a WAM with about n2 points on the unit
simplex, via the standard quadratic mapping (u, v) 7→ (u2, v2), and thus to have
a WAM on any triangle by property P1. In Table 2, we show that the growth of
the norm of the corresponding least-squares projection operator is slower than
that of the Lebesgue constant of the best known interpolation points for the
triangle.

2.1 WAMs on the disk.

A symmetric WAM with about n2 points on the unit disk, K = {x = (x1, x2) :
x2

1 +x2
2 ≤ 1}, can be obtained by working with symmetric polar coordinates, i.e.

(x1, x2) = (r cos θ, r sin θ) , −1 ≤ r ≤ 1 , 0 ≤ θ < π (2)
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as is stated in the following

Proposition 1 The sequence of symmetric polar grids

An = {(rj cos θk, rj sin θk)} (3)

{(rj , θk)}j,k =

{

cos
jπ

n
, 0 ≤ j ≤ n

}

×
{

kπ

n+ 1
, 0 ≤ k ≤ n

}

is a WAM of the unit disk with C(An) = O(log2 n), card(An) = n2 + n+ 1 for
n even, and card(An) = n2 + 2n+ 1 for n odd.

Proof. The restriction of a polynomial p ∈ P
2
n to the disk in the symmetric

polar coordinates (2), q(r, θ) = p(r cos θ, r sin θ), becomes a polynomial of degree
n in r for any fixed value of θ, and a trigonometric polynomial of degree n
in θ for any fixed value of r. Observe that we can take θ ∈ [0, 2π] for such
trigonometric polynomials, since the range of coordinates remains exactly the
same (the whole disk). Similarly, the symmetric polar grid does not change
taking θk ∈ {2kπ/(2n+2), 0 ≤ k ≤ 2n+1} in (3), namely 2n+2 equally spaced

points on the circle. Now, for every p ∈ P
2
n we can write

|p(x1, x2)| = |q(r, θ)| = |p(r cos θ, r sin θ)| ≤ c1 logn max
j

|q(rj , θ)|

where c1 is independent of θ, since the {rj} are n+1 Chebyshev-Lobatto points
in [−1, 1]; cf. [3]. Further

|q(rj , θ)| ≤ c2 logn max
k

|q(rj , θk)|

where c2 is independent of j, since the {θk} correspond to 2n+2 equally spaced
points in [0, 2π]; cf. [10]. Thus

|p(x1, x2)| ≤ c1c2 log2 n max
j,k

|q(rj , θk)| = c1c2 log2 n ‖p‖An

for every point (x1, x2) of the disk, i.e., An is a WAM of the disk with C(An) =
O(log2 n). We conclude by observing that the number of distinct points of the
symmetric polar grid is (n+1)×(n+1) for n odd, whereas for n even subtracting
the repetitions of the center, it is (n+ 1) × (n+ 1) − n = n2 + n+ 1. �

Remark 1 The WAM (3) is symmetric with respect to rotations by an angle
π/(n + 1), and hence, in particular a rotation by an angle π. Observe that we
have to fix at least n + 2 equally spaced points on the upper semicircle, since
to determine and bound a trigonometric polynomial of degree n we need at
least 2n + 1 equally spaced points on the whole circle. In any case we get an
improvement with respect to the nonsymmetric polar WAMs given in [2], since
here we have constants of the same order but roughly half the number of points.

Remark 2 Observe that the WAM of Proposition 1 contains the Chebyshev-
Lobatto points of the vertical diameter θ = π/2 only for n odd (whereas it always
contains the Chebyshev-Lobatto points of the horizontal diameter θ = 0), and
thus is not invariant under rotations by an angle π/2.

4



In order to always have in general the Chebyshev-Lobatto points of the
diameter θ = π/2 in the mesh, we should take

{(rj , θk)}j,k =

{

cos
jπ

n
, 0 ≤ j ≤ n

}

×
{

kπ

n+ 2
, 0 ≤ k ≤ n+ 1

}

, n even (4)

i.e., 2n + 4 equally spaced points on the circle. The cardinalities of this new
WAM is then, subtracting the repetitions of the center, card(An) = (n + 1) ×
(n+2)−(n+1) = n2+2n+1 also for n even. This WAM is now invariant under
rotations by an angle π/2 (since, for n = 2s, and k = s+ 1, kπ/(n+ 2) = π/2;
see Figure 1).

Figure 1: the symmetric polar WAMs of the disk for degree n = 10 (left) and
n = 11 (right).

Proposition 2 Consider the subspace of even polynomials, i.e. polynomials of

even degree m = 2n, n = 0, 1, 2, . . . , of the form p(x2, y2), p ∈ P
2
n. The sequence

of polar grids on the first quadrant of the unit disk

Bm = {(rj cos θk, rj sin θk)} (5)

{(rj , θk)}j,k =

{

cos
jπ

m
, 0 ≤ j ≤ n

}

×
{

kπ

m
, 0 ≤ k ≤ n

}

is a WAM for even polynomials on (the first quadrant of) the disk, with C(Bm) =
O(log2m), card(Bm) = n2 + n+ 1.

Proof. The restriction of an even polynomial p of degree m = 2n to the disk in
the symmetric polar coordinates becomes a polynomial of degree n in r2 for any
fixed value of θ, and a polynomial of degree n in cos2 θ for any fixed value of r, say
g(r2, cos2 θ) = p(r cos θ, r sin θ). Now, the range of g is completely determined
by its values for r ∈ [0, 1], θ ∈ [0, π/2] (the first quadrant of the disk). Recalling
that cos2 t = (1+cos 2t)/2, we see that {r2j} are exactly the Chebyshev-Lobatto

points of degree n for [0, 1], as are {cos2 θk}. Then, given any even polynomial
p of degree m = 2n, proceeding as in the proof of Proposition 1 we can write

|p(x1, x2)| = |g(r2, cos2 θ)| = O(log2m) max
j,k

|g(r2j , cos2 θk)| = O(log2m) ‖p‖Bm

5



for every point (x1, x2) of the disk, with a constant of the O(·) symbol indepen-
dent of (x1, x2). We conclude by observing that the number of distinct points of
Bm, subtracting the repetitions of the center, is (n+1)×(n+1)−n = n2+n+1.
�

Figure 2: the WAM (5) of the quadrant for even polynomials of degree n = 16
(left), and the corresponding WAM (6) of the simplex for degree n = 8 (right).

2.2 Mapping to the simplex.

Using the results of the previous section, we now show how to construct a WAM
with approximately n2 points in the unit simplex. The basic tool is the standard
quadratic transformation

{u2 + v2 ≤ 1, u ≥ 0, v ≥ 0} = Q→ K = {x1 + x2 ≤ 1, x1 ≥ 0, x2 ≥ 0}

(u, v) 7→ (u2, v2)

of the first quadrant of the disk into the unit simplex.

Proposition 3 The sequence of trapezoidal Chebyshev-Lobatto grids

An = {(r2j cos2 θk, r
2
j sin2 θk)} (6)

where

{(rj , θk)}j,k =

{

cos
jπ

2n
, 0 ≤ j ≤ n

}

×
{

kπ

2n
, 0 ≤ k ≤ n

}

is a WAM of the unit simplex with C(An) = O(log2 n), card(An) = n2+n+1. In
particular, the mesh points on the sides are the corresponding n+ 1 Chebyshev-
Lobatto points of degree n.

Proof. By Proposition 2, the polar grid B2n = {(rj cos θk, rj sin θk)}, with
{(rj , θk)} as in (5), is a WAM for even polynomials on the first quadrant
of the unit disk. Now, the quadratic transformation π2 : (u, v) 7→ (u2, v2)
from the first quadrant onto the unit simplex is invertible, and by a slight
extension of property P7 of WAMs (actually we need to identify only WAMs
for polynomials of the form p ◦ π2) we have that An = π2(B2n) is a WAM
of the unit simplex. Moreover, card(An) = card(B2n) = n2 + n + 1, and
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C(An) = C(B2n) = O(log2 2n) = O(log2 n). Observing as in the proof of
Proposition 2 that {r2j} are the Chebyshev-Lobatto points of degree n for
[0, 1], we see that the mesh points on the legs of the simplex are exactly their
Chebyshev-Lobatto points. On the other hand, observing that also {cos2 θk} are
the Chebyshev-Lobatto points of degree n for [0, 1], we see that the mesh points
on the hypothenuse, namely {(cos2 θk, 1− cos2 θk)}, are exactly its Chebyshev-
Lobatto points. Moreover, the points of the WAM lie on a grid of intersecting
straight lines, namely a pencil from the origin cut by a pencil parallel to the hy-
pothenuse, obtained by the quadratic transformation from a grid of intersecting
rays and circular arcs of the quadrant; see Figure 2. Indeed, any ray v = ku,
k > 0, is mapped onto the ray y = k2x (and u = 0 onto x = 0), while any arc
u2 + v2 = c, 0 < c ≤ 1, is mapped onto the segment x + y = c, x, y ≥ 0. Such
a grid splits the simplex into the union of small trapezoids, degenerating into
triangles at the origin. The fact that the grid points on each segment of the pen-
cils are exactly its Chebyshev-Lobatto points, is an immediate consequence of
elementary geometry, namely of the “intercept theorem” by Thales of Miletus.
�

Remark 3 Once we have a WAM of the unit simplex, we have also a WAM of
any triangle with the same constants and cardinalities, by property P1 of WAMs.
Indeed, it is sufficient to map the points by the standard affine transformation
between triangles.

2.3 Discrete least-squares approximation.

Consider a WAM {An} of a polynomial determining compact set K ⊂ R
d (or

K ⊂ Cd)
An = {a1, . . . , aM} , M ≥ N = dim(Pd

n) (7)

and the associated rectangular Vandermonde-like matrix

V (a; p) := [pj(ai)] , 1 ≤ i ≤M , 1 ≤ j ≤ N (8)

where a = (ai), and p = (pj) is a given basis of P
d
n. For convenience, we shall

consider p as a column vector

p = (p1, . . . , pN )t

The least-squares projection operator at the WAM can be constructed by
the following algorithm

iterated orthogonalization:

(i) compute the QR factorization V (a; p) = Q1R1

(ii) compute a second QR factorization Q1 = Q2R2

(iii) set Q = Q2 and T = R−1
1 R−1

2

which amounts to a change of basis from p to the discrete orthonormal basis

ϕ = (ϕ1, . . . , ϕN )t = T t
p (9)
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with respect to the inner product

〈f, g〉 =

M
∑

i=1

f(ai)g(ai) (10)

(we use here the QR factorization with Q rectangular M × N and R upper
triangular N ×N). Observe that the Vandermonde matrix in the new basis

V (a; ϕ) = V (a; p)T = Q

is a numerically orthogonal (unitary) matrix, i.e. QtQ = I. The reason for
iterating the QR factorization is to cope with ill-conditioning which is typical of
Vandermonde-like matrices. Two orthogonalization iterations generally suffice,
unless the original matrix V (a; p) is so severely ill-conditioned (rule of thumb:
condition number greater than the reciprocal of machine precision) that the
algorithm fails. This well-known phenomenon of “twice is enough” in numerical
Gram-Schmidt orthogonalization, has been deeply studied and explained in [11].

Denoting by LAn
the discrete least-squares projection operator, we can write

LAn
f(x) =

N
∑

j=1

(

M
∑

i=1

f(ai)ϕj(ai)

)

ϕj(x) =

M
∑

i=1

f(ai) gi(x) (11)

where

gi(x) = Kn(x, ai) , i = 1, . . . ,M ; Kn(x, y) :=
N
∑

j=1

ϕj(x)ϕj(y) (12)

Kn(x, y) being the reproducing kernel (cf. [9]) corresponding to the discrete
inner product. In matrix terms, the relevant set of generators of Pd

n (which is
not a basis when M > N), becomes simply

g = (g1, . . . , gM )t = QT t
p (13)

where the transformation matrix T and the orthogonal (unitary) matrix Q are
computed once and for all for a fixed mesh. Moreover, the norm of the least-
squares operator as an operator on C(K) is given by

‖LAn
‖ = max

x∈K

M
∑

i=1

|gi(x)| = max
x∈K

‖QT t
p(x)‖1 (14)

Property P9 ensures that the WAMs described in the previous sections can
be directly used for least-squares approximation of continuous functions with
an error which is near-optimal, up to a factor O(n log2 n). The latter, however,
turns out to be a rough overestimate.

Below we report some numerical tests, all done using basic linear algebra
functions of Matlab [14]. In Figure 3 we report the norms (14) for the WAMs
of the disk and of the simplex, numerically evaluated by discrete maximization
of ‖QT t

p(x)‖1 using as control sets a sequence of WAMs Akn, k = 2, 3, . . . ,
until we see a stabilization (a further discrete maximization on 5000 random
points has then confirmed the results). We have used as {pj} the Koornwinder
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basis for the disk [13], and the Dubiner basis for the simplex [8]. Such bases,
which are both orthogonal with respect to the so-called equilibrium measure of
complex pluripotential theory for the relevant compact (for more details see e.g.
[12]), give a not too ill-conditioned initial Vandermonde matrix; their compu-
tation, however, is not straightforward, see Remark 6. Recalling that, for any
continuous function f we have

‖f − LAn
f‖K ≤ (1 + ‖LAn

‖) min {‖f − p‖K , p ∈ P
d
n} (15)

since LAn
is a projection on Pd

n, we see that the factor O(n log2 n) given by
property P9 here heavily overestimates the actual operator norm given by (14).
Notice that, as for Lebesgue constants for interpolation, the norms of polynomial
least-squares operators are invariant under affine mapping, so Figure 3 gives an
estimate of what happens in any disk and triangle.

In Table 1 we compare the uniform norms of least-squares projection opera-
tors on the old WAM in [2] with the new WAM (3)-(4) for the disk. Such norms
are slightly smaller with the new WAM, that requires about half the number of
points. The growth of the norms, at least in the range of degrees considered,
is not far from the optimal one for polynomial projection in the disk, that is
O(

√
n) (cf. [15]).

A similar lower bound for the triangle does not seem to be theoretically
known. It is also interesting to compare our results with the Lebesgue constant
of the best known points for polynomial interpolation in the triangle, which
have been obtained by various authors with different techniques in view of the
relevance to spectral and high-order methods for PDEs. Such near-optimal
points, however, have been computed only numerically up to degree n = 19, cf.
[16, 17] and references therein, whereas the WAM (6) can be explicitly computed
at any degree and used via the iterated orthogonalization process, provided that
the Vandermonde conditioning is not too severe. The comparison with the best
Lebesgue constants collected in [17] is reported in Table 2.

Remark 4 It is worth noticing that, if the compact K belongs to a family
which is invariant under affine transformations, like disks or triangles, we can
compute the matrices Q and T for a given degree once and for all, with a given
basis p and a reference WAM, say An, on a reference set (e.g., the unit disk and
the unit simplex). Then, the least-squares polynomial approximation of degree
n for a given function f in K can be computed as

Lnf(x) =

M
∑

i=1

f(α(ai)) gi(x) , g(x) = QT t
p(α−1(x))

where x = α(t) = At+b is the affine transformation from the reference compact
of the family to K.

Remark 5 In view of property P4, it is immediate to construct, by finite union,
a WAM for a polygon from the WAM (6), as soon as we have at hand a tri-
angulation of the polygon. The latter can be obtained by one of the polygon
triangulation algorithms widely used in the framework of computational ge-
ometry (see e.g. [7]). The constant of such a WAM can be bounded by the
maximum of the constants corresponding to the triangular elements, and thus
is O(log2 n), irrespectively of the number of sides of the polygon, or of the fact

9



that it is convex or concave. On the other hand, the cardinality of the WAM is
approximately n2 times the number of triangles. Hence, the theoretical bound
for the norm of the corresponding least-squares projection operators given by
property P9 is still ‖LAn

‖ = O(n log2 n), where the constant of the O-symbol is
now proportional to the square root of the number of triangles. Observe that,
by construction, the mesh points on each side of the polygon are exactly its
Chebyshev-Lobatto points.

In Figure 4, we show two examples of WAM of a non regular convex hexagon
for degree n = 8. The triangulation is that trivially generated by the barycen-
ter of the hexagon. In the mesh on the left the point (0, 0) of the simplex is
mapped in the barycenter for each triangle, whereas in the mesh on the right
it is mapped in a boundary vertex. Since the mesh on each triangle has been
selected independently of the other triangles that make up the hexagon, we see
some obvious over-accumulation of points along the internal edges. In Figure
5 we report the norms of the least-squares projection operators for the given
hexagon up to degree 20. We have used here as polynomial basis p the product
Chebyshev basis of the minimal rectangle containing the hexagon. The values
of the norm are slightly higher than those for the triangle, but still much below
the theoretical bound.

Remark 6 We recall that the Koornwinder polynomials for the unit disk, or-
thogonal with respect to the equilibrium measure dµ = dx1 dx2/

√

1 − x2
1 − x2

2,
are given by

φh,k(x1, x2) = (1 − x2
1)

k/2 P
(−1/2,−1/2)
k

(

x2
√

1 − x2
1

)

P
(k,k)
h−k (x1) , 0 ≤ h+ k ≤ n

(16)

where P
(a,b)
j (t), t ∈ [−1, 1], is the Jacobi polynomial of degree j with parameters

(a, b) (cf., e.g., [9]). The Dubiner polynomials for the unit simplex, orthogonal
with respect to the equilibrium measure dµ = dx1 dx2/

√

x1x2(1 − x1 − x2), are

ψh,k(x1, x2) = (1 − x2)
h P̂

(−1/2,−1/2)
h

(

x1

1 − x2

)

P̂
(2h,−1/2)
k (x2) , 0 ≤ h+ k ≤ n

(17)

where P̂
(a,b)
j (u) = P

(a,b)
j (2u− 1), u ∈ [0, 1].

Observe that both (16) and (17) require computing scaled polynomials of
the form

qj(t) = cjπj(t/c)

in a stable manner for t ∈ [−1, 1], where {πj , j ≥ 0} is a set of orthogonal
polynomials (on [−1, 1]) satisfying the three-term recurrence relation

πj+1(s) = (s− αj)πj(s) − βjπj−1(s), j = 0, 1, 2, . . . , (18)

π−1 := 0, π0 := 1

for some scalars αj , βj ∈ R. Each πj is of degree j and is monic.
If |c| ≥ 1 then t/c ∈ [−1, 1] for t ∈ [−1, 1] and the polynomial qj(t) can

be computed by the recurrence relation without any difficulty. However, if
|c| < 1 then t/c may be large (in absolute value) and the recurrence relation
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may become unstable. It is this case our approach is to just note that qj(t) also
satisfies a stable three term recurrence. In fact

qj+1(t) = cj+1πj+1(t/c)

= cj+1 {(t/c− αj)πj(t/c) − βjπj−1(t/c)}
= (t− cαj)c

jπj(t/c) − (c2βj)c
j−1πj−1(t/c)

= (t− cαj)qj(t) − (c2βj)qj−1(t)

= (t− α′
j)qj(t) − β′

jqj−1(t)

where
α′

j := cαj and β′
j := c2βj .

5 10 15 20 25 30 35 40
2

3

4

5

6

7

8

9

Figure 3: numerically evaluated norms of the discrete least-squares operators
for the WAMs of the disk (◦) and of the simplex (△), for n = 5, 10 . . . , 40.

Table 1: Comparison of the uniform norms of least-squares projection operators
at the old WAM in [2] with the new WAM (3)-(4) for the disk.

degree 5 10 15 20 25 30 35 40
old WAM 3.7 4.9 5.9 6.8 7.6 8.4 9.0 9.5
new WAM 2.8 4.1 5.1 6.0 6.7 7.3 8.0 8.5
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