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Abstract

We study cubature formulas on relatively small scattered samples
in the unit square, obtained by integrating radial basis function (RBF)
interpolants. Numerical tests show that, due to the small size of the
corresponding weights (which are not all positive in general), thin-plate
splines and Wendland’s compactly supported radial functions give the
most reliable RBF cubature methods.
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1 Introduction.

In this paper we explore the use of the potentialities and the drawbacks
of numerical cubature by radial basis functions (RBF). The idea of using
RBF to construct cubature formulas on scattered samples is certainly not
new (see, e.g., [6]), but to our knowledge does not seem to have received a
systematic treatment in the numerical literature.

The problem itself of cubature on scattered points has received very
limited attention with respect to the construction of cubature formulas on
nodes with a predefined distribution [10].

On the other hand, integration of radial kernels in presence of boundaries
is an important issue for the solution of PDE by meshless methods [11]. We
mention in particular the works by Atluri and collaborators on the “meshless
local Petrov Galerkin” (cf., e.g. [2]) and the “volume integral formulation”
of the time dependent conservation equations proposed in [19].

Indeed, during the last two decades radial basis function interpolation
has been developed as a powerful and popular tool for the recovery of multi-
variate functions from scattered data, with a vast body of literature on both
the theoretical and the computational features; see, e.g., the survey papers
[7, 26], and the recent monographs [8, 18, 29]. We will now briefly sketch
the cubature method which can be generated by RBF interpolation, which
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of course strictly follows the well-known approach for deriving quadrature
formulas from polynomial interpolation.

Suppose that we are given a scattered sample of size n

f = {f(Pi)} at X = {Pi} = {(xi, yi)} ⊂ Ω , i = 1, . . . , n , (1)

of a given continuous function f on a multivariate compact set Ω ⊂ RN

(the closure of an open and bounded set), and that we need to compute an
approximate value of the integral

I(f) =

∫

Ω
f(P ) dP . (2)

Once we have fixed a suitable radial function φ : [0,+∞) → R, we can
construct the RBF interpolant at the points {Pi}

n
∑

j=1

cj φj(P ) = s(P ) ≈ f(P ) , P = (x, y) ∈ Ω , (3)

where s(Pi) = f(Pi), i = 1, . . . , n, as a linear combination of (scaled) trans-
lates of φ

φj(P ) = φj(P ; δ) := φ(|P − Pj |/δ) , (4)

|P − Pj | denoting the euclidean distance, and δ a scaling parameter, which
can be related to the data density. The coefficients c = {cj} are computed
by solving the linear system

Ac = f (interpolation equations) , (5)

where
A = AX,φ = {φj(Pi)}1≤i,j≤n (6)

is a symmetric matrix, usually termed collocation matrix of the RBF. Clearly,
a key point is the non-singularity of A, which depends on the choice of φ.
In this paper, we consider some of the most popular choices, like

• Gaussians (G): φ(r) = exp (−r2)

• Duchon’s Thin-Plate Splines (TPS): φ(r) = r2 log (r)

• Hardy’s MultiQuadrics (MQ): φ(r) = (1 + r2)1/2

• Inverse MultiQuadrics (IMQ): φ(r) = (1 + r2)−1/2

• Wendland’s compactly supported (W2): φ(r) = (1 − r)4
+(4r + 1)
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We recall that G, IMQ and W2 are positive definite (PD), i.e. the corre-
sponding collocation matrix A is positive definite for every choice of the
(distinct) interpolation nodes, while TPS and MQ are conditionally positive
definite (CPD). In the latter cases, as is well-known [8], the RBF interpolant
is sought in the form

s(P ) =

n
∑

j=1

cj φj(P ) + pm(P ) , (7)

where pm(P ) =
∑M

k=1 bkπk(P ) is a suitable polynomial of degree ≤ m,
M being the dimension and {πk} a basis of the corresponding bivariate
polynomial space (m = 1, M = 3 for TPS and m = 0, M = 1 for MQ).
The system (5) is then substituted by the augmented system of dimension
n + M , Ac + Pb = f , P Tb = 0, where Pkj = πk(Pj).

Now, it is natural to approximate the integral I(f) in (2) as

I(f) ≈ I(s) =

n
∑

j=1

cj I(φj) + I(pm) ,

I(pm) =

∫

Ω
pm(P ) dP , I(φj) =

∫

Ω
φj(P ) dP , j = 1, . . . , n , (8)

where pm ≡ 0 in positive definite instances. It is immediately seen that the
cubature formula (8) can be rewritten in the usual form of a weighted sum
of the sample values. In fact, confining for simplicity to the positive definite
case, we have by symmetry of A

I(f) ≈ I(s) = 〈c, I〉 = 〈A−1f , I〉 = 〈f ,w〉 =

n
∑

j=1

wj fj , (9)

Aw = I , with I = {I(φj)}1≤j≤n (cubature equations) (10)

where 〈·, ·〉 denotes the scalar product in RN , and I the vector of integrals
on Ω of the radial basis functions.

As for the convergence of the method, using the Hölder inequality we
can write

|I(f) − I(s)| ≤ ‖f − s‖L1(Ω) ≤
√

meas(Ω) ‖f − s‖L2(Ω)

≤ meas(Ω) ‖f − s‖∞ , (11)

and thus using known estimates for L2 or for uniform convergence of RBF
interpolation [8, 29, 30], we get

I(f) = I(s) + O(α(h)) , α(h) → 0 as h → 0 ,

h = max
P∈Ω

min
1≤j≤n

|P − Pj | , (12)
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where h is the so-called fill distance of the interpolation points, that is the
radius of the largest inner empty disk. The convergence rate depends on the
regularity degree of both the chosen radial basis function and the sampled
function f : for f sufficiently regular (technically, belonging to the “native
space” of the given RBF) the bound α(h) may decrease exponentially (C∞

RBF like G, MQ, IMQ), or algebraically (less smooth RBF like TPS, W2), as
h → 0. We recall that another technical assumption is used in the literature
to get the quoted convergence result, i.e. the requirement that the set Ω
satisfies an interior cone condition, cf., e.g., [8, 18, 25].

The convergence analysis above seems promising, but is too rough to
give useful information for the implementation. First, any serious analysis
of a cubature formula has to do with the quantity

∑ |wj |, which plays a
central role both in the study of the cubature error, and in the effect of
perturbations (e.g. noise) in the sample values. Moreover, as is usual in
the RBF framework, big trouble can arise from the computational point of
view in evaluating the relevant coefficients. In fact, in any implementation
the integrals I = {I(φj)}1≤j≤n have to be approximated, and such errors
are transmitted to the computed weights via the numerical solution of the
linear system (5). Unfortunately, such a system can be (even extremely)
ill-conditioned (depending on the data density and the chosen RBF), and
a sort of dichotomy appears, termed “uncertainty principle” in Schaback’s
basic papers on RBF interpolation, which can be briefly summarized using
directly Schaback’s words [25]: “There is no case known where the errors
and the sensitivity are both reasonably small”.

In the next Section, we try to give a more refined error analysis of RBF
cubature, which tries to take into account the role of important parameters,
like

∑ |wj | and ‖A−1‖2. Such parameters will be estimated a posteriori
during the computation, and will appear in the tables of the numerical
results (Section 4). In Section 3, we give details on the implementation
of RBF cubature, in particular concerning the evaluation of the integrals
I = {I(φj)}1≤j≤n via polar coordinates on the unit square, by exploiting
the radial symmetry.

2 Error analysis.

In this Section we deepen the error analysis in RBF cubature formulas like
(9)-(10); for simplicity, we restrict again the analysis to the positive definite
case. In particular, we take into account the unavoidable errors in the
evaluation of the integrals of the radial basis functions, i.e. the fact that we
have at hand in practice a vector of approximate integrals

{Ĩ(φj)} = Ĩ ≈ I , (13)
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which generates a vector of approximate weights and a perturbed cubature
formula (cf. (10))

〈c, Ĩ〉 = 〈w̃, f〉 =

n
∑

j=1

w̃j fj ≈ 〈w, f〉 = I(s) ≈ I(f) , where w̃ = A−1Ĩ .

(14)
A first error estimate is given in the following

Proposition 1 The error of the RBF cubature formula (9)-(10), in the
presence of approximate values of the basis functions integrals (see (13)-
(14)), can be estimated as

|I(f) − 〈w̃, f〉| ≤ meas(Ω) ‖f − s‖∞ + ‖A−1‖2 ‖f‖2 ‖I− Ĩ‖2 (15)

= O(α(h)) + O(β(q)) ‖I − Ĩ‖2 ,

where α(h) → 0 as h → 0, and β(q) → +∞ as q → 0, h denoting the fill
distance in (12) and q the separation distance

q = min
i6=j

{|Pi − Pj |} ≤ 2h . (16)

Before proving Proposition 1, it is worth making a remark on the role of
‖A−1‖2 and the meaning of (15).

Remark 2.1 The parameter ‖A−1‖2 is a measure of the sensitivity to per-
turbations of the RBF approximation process. Starting from some basic
papers at the beginning of the ’90s (see, e.g., [22, 3, 4]), lower bounds for
the smallest eigenvalue of the collocation matrix A (augmented in CPD
instances) have been extensively studied in the RBF literature (see, e.g.,
[8, 18, 25, 28, 29] and references therein), providing upper bounds for ‖A−1‖2

like
‖A−1‖2 = O(β(q)) , β(q) → +∞ as q → 0 . (17)

The fact that ‖A−1‖2 diverges as q → 0 is natural, since A tends to be-
come singular when two rows collapse. We recall that the growing rate of
β depends, as the convergence rate α in (11), on the smoothness degree of
the chosen RBF: the bound β(q) may increase algebraically (TPS, W2), or
exponentially (G, MQ, IMQ), as q → 0. Estimate (15) expresses, in the cu-
bature context, just the uncertainty principle of RBF approximation quoted
above. Observe that the rates of α and β are both algebraic, or both ex-
ponential. The situation seems hopeless concerning the use of smooth RBF
like Gaussians for numerical cubature, in view of the expected exponential
magnification of the integration errors, but the numerical results show that
(15) is a quite pessimistic bound.
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Proof of Proposition 1. Starting from (9)-(11), we obtain a first estimate

|I(f) − 〈w̃, f〉| ≤ |I(f) − 〈w, f〉| + |〈w − w̃, f 〉|
= |I(f) − I(s)| + |〈A−1(I − Ĩ, f)〉|

≤ ‖f − s‖L1(Ω) + ‖A−1(I− Ĩ)‖2 ‖f‖2 ≤ E1 + E2 , (18)

where we have set

E1 = meas(Ω) ‖f − s‖∞ , E2 = ‖A−1‖2 ‖f‖2 ‖I− Ĩ‖2 . (19)

From (17) and the convergence results recalled in writing (12), we get (15).
�

We derive now a second error estimate, where is clarified the role of the
crucial parameter ‖w‖1 =

∑n
j=1 |wj |, that is the norm of the RBF cubature

functional C(Ω) → R, f 7→ 〈w, f〉. Here, we take also into account the
effect of perturbations (e.g. noise) on the sample values, i.e. the fact that
we work in practice with a perturbed sample

{f̃(xj)} = f̃ ≈ f . (20)

Proposition 2 The error of the perturbed RBF cubature formula 〈w̃, f̃〉 (cf.
(14), (20)) can be estimated as

|I(f) − 〈w̃, f̃ 〉| ≤ (meas(Ω) + ‖w‖1) EX,φ(f) + ‖w‖1 ‖f − f̃‖∞
+‖A−1‖2 ‖f‖2 ‖I − Ĩ‖2 , where EX,φ(f) = inf

z∈span{φj}
{‖f − z‖∞} . (21)

Proof. Starting from

|I(f) − 〈w̃, f̃〉| ≤ |I(f) − 〈w, f 〉| + |〈w, f〉 − 〈w̃, f̃〉|
≤ |I(f) − 〈w, f〉| + |〈w, f − f̃〉| + |〈w − w̃, f̃〉| , (22)

and observing that the RBF cubature formula is trivially exact for every
function z(P ) in the RBF space associated to X = {Pj}, i.e.

I(z) = 〈w, z〉 , z ∈ span{φj}1≤j≤n , z = {z(Pj)}1≤j≤n , (23)

we can write

|I(f) − 〈w̃, f̃〉| ≤ |I(f) − I(z)| + |〈w, z − f〉|
+‖w‖1 ‖f − f̃‖∞ + ‖f‖2 ‖A−1(I− Ĩ)‖2 . (24)

Then, we have immediately the estimate

|I(f) − I(z)| + |〈w, z − f〉| ≤ meas(Ω) ‖z − f‖∞ + ‖w‖1 ‖z − f‖∞
≤ (meas(Ω) + ‖w‖1) ‖z − f‖∞ . (25)

Taking the infimum on z in the RBF space, from (24)-(25) we get (21). �
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2.1 Optimal recovery and numerical integration.

It is important to mention that the cubature formulae that we have used
are optimal in the sense of Golomb-Weinberger [15]. To this purpose, it can
be proved that the native space H = Nφ relative to the RBF φ is indeed a
reproducing kernel Hilbert space (often abbreviated as RKHS) [1, 27], that
in some cases is even norm-equivalent to a Sobolev or a Beppo-Levi space
(respectively for the Wendland functions and the Thin-Plate splines).

One can exploit such a property to show that integration by RBF min-
imizes the norm of the error functional in the dual space H∗ = N ∗

φ . We
sketch for simplicity the outline of the proof for RBF with positive definite
kernels, but one can easily achieve similar results for conditionally positive
radial basis functions and even for more general kernels.

Denoting by δP the point evaluation in P and by I the integral functional
in (2), it is possible to prove (cf., e.g, [30]) that the minimum of the worst
case errors in H at a given set of centers {Pj}j=1,...,n, i. e. the minimum of

∥

∥

∥

∥

∥

∥

I −
n

∑

j=1

wjδPj

∥

∥

∥

∥

∥

∥

H∗

= sup
f∈H, ‖f‖=1

∣

∣

∣

∣

∣

∣

I(f) −
n

∑

j=1

wj f(Pj)

∣

∣

∣

∣

∣

∣

(26)

is attained when the coefficients wj solve

(I, δPk
)H∗ =

n
∑

j=1

wj(δPj
, δPk

)H∗ , k = 1, . . . , n. (27)

It is not difficult to show that the Riesz representers of I and δP are re-
spectively vI :=

∫

Ω φ(| · −Q|)dQ and vδP
:= φ(|P − ·|) from which it easily

follows by the definition of the inner product in H∗

(I, δP )H∗ = (vI , vδP
)H =

∫

Ω
φ(|P − Q|)dQ . (28)

Since φ(|P − Q|) = (δP , δQ)H∗ (see Theorem 1 in [27]), from (27) we get

∫

Ω
φ(|Q − Pk|) dQ =

n
∑

j=1

wjφ(|Pj − Pk|) . (29)

As one can immediatly observe, the weights in (29) coincide with those in
(10), directly implying that the previous rules are optimal and that they are
independent of the function f to integrate.

3 Implementation of RBF cubature.

The error analysis performed in the previous Section is valid for any compact
integration domain, which is the closure of an open bounded set satisfying
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an interior cone condition. When one turns to the implementation of RBF
cubature, a key point is the accurate and efficient evaluation of the integrals
of the radial basis functions, and possibly of the polynomial part, in (8).

In the present paper we make a first step towards RBF cubature, consid-
ering integration on the unit square Ω = [0, 1]2, where it is possible to exploit
conveniently the features of radial basis functions, like radial symmetry, or
separation of variables for the Gaussians. This choice is not strongly re-
strictive, since integration on several bivariate domains and surfaces can be
easily reformulated as integration on the unit square by well-known smooth
transformations (such as polar coordinates for sectors and generalized sec-
tors, spherical coordinates for the sphere, . . . ). Moreover, on the square
integration of the possible polynomial part in (8) becomes trivial.

3.1 Integrating the Gaussian basis.

Integration of the (scaled) Gaussian basis on the unit square (see (3)-(8)) can
be accomplished very effectively, by product splitting and fast computation
of the special function

erf(x) =
2√
π

∫ x

0
e−t2 dt . (30)

In fact, we can write by separation of variables
∫

[0,1]2
e−|P−Pj |2/δ2

dP =

∫ 1

0
e−(x−xj)2/δ2

dx

∫ 1

0
e−(y−yj)2/δ2

dy

=
πδ2

4

(

erf

(

1 − xj

δ

)

− erf

(−xj

δ

)) (

erf

(

1 − yj

δ

)

− erf

(−yj

δ

))

,

(31)
and thus we have reduced the problem to computing the special function erf ,
which is efficiently evaluated (up to machine precision) by specific routines
available in the most common scientific computing environments [9].

3.2 Integrating other bases by radial symmetry.

In order to integrate the other selected radial bases (TPS, MQ, IMQ, W2,
see (3)-(8)) in the Introduction), we can exploit directly the inherent radial
symmetry . Fixing the interpolation point Pj , we split the unit square with
vertices A = (0, 0), B = (1, 0), C = (1, 1), D = (0, 1), into four triangles
T 1 = PjAB, T 2 = PjBC, T 3 = PjCD, T 4 = PjDA, and split further

for convenience each T k into two right triangles T (1)
k , T (2)

k , each one with
a vertex in Pj . By the additivity of the integral we get the integral of the
radial basis functions as sum of eight integrals

∫

[0,1]2
φj(P ) dP =

4
∑

k=1

2
∑

l=1

∫

T
(l)
k

φj(P ) dP . (32)
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At this point, we have only to compute integrals of the form
∫

T φj(P ) dP
where T is a certain right triangle, say T = PjHM , with the right angle
at H (H being the orthogonal projection of Pj on a side of the unit square,
and M one of the two vertices of the square on that side); see Fig. 1. Set
r0 = |Pj−H|, r1 = |Pj−M |, and denote by θ∗ the angle ˆHPjM : integrating
in polar coordinates,

∫

T
φj(P ) dP =

∫ θ∗

0

∫ r0/ cos θ

0
φj(r cos θ, r sin θ)r dr dθ

=

∫ θ∗

0

∫ r0/ cos θ

0
φ(r/δ)r dr dθ = δ2

∫ θ∗

0
Ψ

( r0

δ cos θ

)

dθ , θ∗ = arccos (r0/r1)

(33)
where Ψ is the following primitive

Ψ(ρ) =

∫ ρ

0
φ(r)r dr , (34)

and r0/δ ≤ r0/(δ cos θ) ≤ r0/(δ cos θ∗) = r1/δ ≤
√

2/δ. The primitive Ψ is
immediately derived analytically

• Duchon’s Thin-Plate Splines (TPS): Ψ(ρ) = ΨTPS(ρ) = ρ4

4

(

log ρ − 1
4

)

• Hardy’s MultiQuadrics (MQ): Ψ(ρ) = ΨMQ(ρ) = 1
3

(

(1 + ρ2)3/2 − 1
)

• Inverse MultiQuadrics (IMQ): Ψ(ρ) = ΨIMQ(ρ) = (1 + ρ2)−1/2 − 1

• Wendland’s compactly supported (W2):
Ψ(ρ) = ΨW2(ρ) = −1

7 (1 − ρ)5+(4ρ2 + 5
2ρ + 1

2) + 1
14

In the case of Wendland’s W2 radial basis functions, we can derive a for-
mula more suitable for numerical purposes, which takes into account that
the support is compact (a disk with radius δ, the scaling parameter). Ob-
serve that there are three possible instances, i.e. T ∩ supp(φj) is either a
sector centered at Pj , or the triangle T itself, or the union of a triangle and
a sector having a side in common.

We start considering the last, obtaining the other two as particular cases.
Let T = PjHM be the right triangle above, and denote by K and J the
points where the boundary of the support intersects the sides HM and PjM ,
respectively. Since T is the union of the sector S = PjKJ (having as radius
the scaling parameter δ) with the triangle Υ = PjHK, we have

∫

T
φj(r/δ)r dr dθ =

∫

S
φj(r/δ)r dr dθ +

∫

Υ
φj(r/δ)r dr dθ

= (θ∗ − θδ)

∫ δ

0
φj(r/δ)r dr +

∫ θδ

0

∫ r0/ cos θ

0
φj(r/δ)r dr dθ
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P
j 

H 

M 

Figure 1: Splitting the square into triangles, for integration of the RBF
centered at Pj in polar coordinates.

= δ2(θ∗ − θδ) + δ2

∫ θδ

0
ΨW2

( r0

δ cos θ

)

dθ , θδ = arccos (r0/δ) , (35)

where ΨW2 is the restriction to [r0/δ, 1], and thus the following polynomial
of degree 7

ΨW2(ρ) =
7

∑

k=2

αk ρk =
4

7
ρ7 − 5

2
ρ6 + 4ρ5 − 5

2
ρ4 +

1

2
ρ2 , ρ ∈ [0, 1] . (36)

The other two instances are simple consequences of the previous analysis.
In fact, it is immediately seen that when T ∩ supp(φj) = T then formula
(33) directly applies, while if T ∩ supp(φj) is a sector (necessarily with angle
θ∗)

∫

T
φj(r/δ)r dr dθ = δ2θ∗ . (37)

With Ψ at hand, the computational problem is now reduced to the eval-
uation of the last integral in (33) and (35). Due to the ill-conditioning of the
collocation matrix (see Section 2), such an integral has to be computed with
high accuracy, even up to machine precision for smooth radial functions like
MQ and IMQ; see Table 7 below, where we used the quadl function of Mat-
lab [14, 21] with different tolerances. Now, since TPS and W2 give the most
reliable numerical results (see the next Section), and using an adaptive high-
precision integrator like quadl hundreds of times creates a bottleneck in the
implementation, it is worth deriving compact formulas for the corresponding
primitives of Ψ(r0/(δ cos θ)).
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As for TPS, we have to compute

FTPS(θ) =

∫

ΨTPS(a/ cos θ) dθ =

∫

a4

4 cos4 θ

(

log
( a

cos θ

)

− 1

4

)

dθ , (38)

where a = r0/δ; we recall that, by geometric construction r0/δ ≤ a/ cos θ ≤
a/ cos θ∗ = r1/δ ≤

√
2/δ. The popular computer algebra system Maple

[17] is not able to integrate directly the function of θ above, but after the
standard substitution t = tan θ/2 (cf., e.g., [23]) it succeeds and we finally
get

FTPS(θ) =
1

6

a4

(1 − t2)3

{

t(3 − 2t2 + 3t4) log

(

a(1 + t2)

1 − t2

)

− t

12
(33 − 38t2 + 33t4) − 2 (1 − 3t2 + 3t4 − t6) arctan

(

1

t

)}

+
π

6
a4 ,

where t = tan θ/2 , a = r0/δ , (39)

with FTPS(0) = 0. Observe that by the representation cos θ = (1 − t2)/(1 +
t2), (39) can be rewritten as

FTPS(θ) =
1

6

( a

cos θ

)3 a

(1 + t2)3

{

t(3 − 2t2 + 3t4) log
( a

cos θ

)

− t

12
(33 − 38t2 + 33t4) − 2 (1 − 3t2 + 3t4 − t6) arctan

(

1

t

)}

+
π

6
a4 , (40)

which shows that by the geometric constraints F TPS(θ
∗) → 0 as θ∗ → π/2

(t → 1). Recall indeed that the last integral in (33) is exactly F TPS(θ
∗), and

θ∗ → π/2 as r0/r1 → 0.
In the case of Wendland’s W2 radial basis functions we have by (36) that

FW2(θ) =

∫

ΨW2(a/ cos θ) dθ =

7
∑

k=2

αka
kFk(θ) ,

where Fk(θ) =

∫

1

cosk θ
dθ , a = r0/δ , (41)

and the primitives Fk can be computed by the recursive formula (cf. [16])

Fk(θ) =
sin θ

(k − 1) cosk−1 θ
+

k − 2

k − 1
Fk−2(θ) , k > 1 , F1(θ) = log

∣

∣

∣

∣

tan

(

θ

2
+

π

4

)∣

∣

∣

∣

.

(42)
Notice that with the choice F0(θ) = θ we have again FW2(0) = 0. An explicit
expression of FW2(θ) can be obtained by integrating directly ΨW2(a/ cos θ)
with Matlab/Symbolic

FW2(θ) =
a2

84c6

{

8a5s + 10a5sc2 + 15a5sc4 + 15a5c6 log ((1 + s)/c) − 42a4sc
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−56a4sc3 − 112a4sc5 + 84a3sc2 + 126a3sc4 + 126a3c6 log ((1 + s)/c)

−70a2sc3 − 140a2sc5 + 42sc5
}

, where s = sin θ , c = cos θ . (43)

Now, in view of the geometric constraints a/ cos θ∗ ≤
√

2/δ, a/ cos θδ = 1,
it is easy to show by (43) that FW2(θ

∗) → 0 and FW2(θδ) → 0 as θ∗ → π/2
(r0/r1 → 0) and θδ → π/2 (r0 → 0), respectively; cf. (33) and (35).

Remark 3.1 The integration procedure for radial basis functions based
on radial symmetry is easily adaptable to any convex polygon, via domain
splitting into triangles; the compact formulas obtained for TPS and W2
remain clearly valid.

4 Numerical results.

In this Section we report a set of numerical results, obtained with Matlab
[21], corresponding to the application of five RBF cubature formulas using
random points generated with a uniform probability distribution. The RBF
are: MultiQuadrics (MQ), Inverse MultiQuadrics (IMQ), Gaussians (G),
Wendland’s compactly supported (W2), Thin-Plate Splines (TPS).

Table 1. As discussed in Section 2, two important parameters for the anal-
ysis of RBF cubature are the spectral norm of the inverse of the (augmented
for CPD) collocation matrix, which measures the absolute conditioning of
the interpolation and cubature equations, and the 1-norm of the vector of the
(computed) weights, i.e. the norm of the RBF cubature functional, which
enters the approximation analysis and measures the conditioning of the cu-
bature formula. For each RBF we have considered three values of the scaling
parameter δ, corresponding to a variation of three orders of magnitude, due
to the fact that the quality of approximation may strongly depend on such
a parameter. In particular, decreasing δ has the effect of better condition-
ing (the separation distance of the scaled points increases), at the price of
worsening the error (the fill distance also increases).

We have computed the parameters ‖A−1‖2 and ‖w̃‖1 on sets of n =
50 and n = 100 uniform random points in the unit square. Since they
strongly depend on the particular distribution of the points, we have taken
the average values of 50 independent trials (rounded to the first significant
digit). In particular, ‖A−1‖2 has been computed by the function norm of
Matlab [21], which approximates the largest singular value of the matrix.

At first glance we see that the best conditioning is exhibited by the
less regular RBF like W2 and TPS, as predicted by the theory concerning
‖A−1‖2. It is important to notice that the cubature weights of W2 and TPS
are not all positive, but their size is small and the corresponding vector 1-
norm is not equal to but still on the order of the measure of the integration
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domain. On the other hand, smooth RBF can be (even extremely) ill-
conditioned, and can exhibit large values of the 1-norm of the cubature
weights. The experience with Matlab and stability analysis suggest that the
quantities computed by the built-in function norm tend to be underestimates
for values bigger than 1017. For this reason, we have used in the next tables
the notation “> E + 17” for such entries.

Table 1: RBF cubature with sets of n = 50 and n = 100 random points
generated with a uniform probability distribution in [0, 1]2: Spectral norm of
the inverses of the collocation matrices and 1-norm of the computed weights
vectors (average values on 50 independent trials).

(n = 50) scaling MQ(δ) IMQ(δ) G(δ) W2(δ) TPS(δ)

δ = 0.1 4E+03 1E+03 1E+03 2E+01 9E+02
‖A−1‖2 δ = 1 2E+12 3E+11 5E+15 5E+03 6E+03

δ = 10 >E+17 >E+17 >E+17 7E+06 6E+05

δ = 0.1 2E+00 1E+00 1E+00 2E-01 2E+00
‖w̃‖1 δ = 1 7E+01 9E+01 3E+02 2E+00 1E+00

δ = 10 6E+05 6E+04 3E+02 2E+00 1E+00

(n = 100) scaling MQ(δ) IMQ(δ) G(δ) W2(δ) TPS(δ)

δ = 0.1 1E+04 5E+03 1E+04 2E+02 9E+02
‖A−1‖2 δ = 1 2E+16 6E+15 >E+17 5E+04 8E+03

δ = 10 >E+17 >E+17 >E+17 3E+07 1E+06

δ = 0.1 2E+00 2E+00 2E+00 3E-01 1E+00
‖w̃‖1 δ = 1 8E+02 5E+02 1E+03 2E+00 1E+00

δ = 10 4E+06 1E+05 6E+02 2E+00 1E+00

Tables 2-3. We report both the RBF interpolation and cubature absolute
errors (the former in ‖ · ‖∞ on a suitable control grid) of two test functions,
namely f(x, y) = exp (x − y) (used also in [20]), and the well-known Franke’s
test function [13]. As in Table 1, we have taken the average values on 50
independent sets of n = 50 and n = 100 random points generated with a
uniform probability distribution. The integrals of the radial basis functions
have been computed as described in the previous section: in particular, for
the Gaussians, TPS and W2 we have used the compact formulas derived
there, while for MQ and IMQ the one-dimensional integral in (33) has been
evaluated to machine precision by the quadl function of Matlab [14, 21].
Moreover, for the system of cubature equations (10) we have used the stan-
dard direct solver of Matlab (which is based on Gaussian elimination).

A wide set of numerical experiments on the two functions above, as well as
on several other test functions (not reported for brevity), revealed that:

• As expected, the quality of the interpolation and of the integration
depends strongly on the scaling parameter δ (except for the TPS, cf.
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Table 2: Errors of RBF interpolation (E intp
n ) and cubature (Ecub

n ) for the
test function f(x, y) = ex−y, with n = 50 and n = 100 random points
generated with a uniform probability distribution in [0, 1]2 (average values
on 50 samples of size n).

scaling MQ(δ) IMQ(δ) G(δ) W2(δ) TPS(δ)

δ = 0.1 8E-02 3E-01 8E-01 9E-01 5E-02

E
intp
50 δ = 1 4E-03 8E-03 3E-04 2E-01 6E-02

δ = 10 1E-03 5E-04 1E-03 3E-02 7E-02

δ = 0.1 2E-03 3E-02 3E-01 8E-01 9E-04

Ecub
50 δ = 1 6E-05 1E-04 6E-06 1E-02 2E-03

δ = 10 7E-01 3E-02 7E-04 4E-04 2E-03

δ = 0.1 6E-02 3E-01 5E-01 9E-01 4E-02

E
intp
100 δ = 1 3E-04 8E-04 8E-04 1E-01 2E-02

δ = 10 2E-03 7E-04 2E-03 2E-02 3E-02

δ = 0.1 6E-04 1E-02 8E-02 7E-01 5E-04

Ecub
100 δ = 1 2E-06 5E-06 1E-05 4E-03 2E-04

δ = 10 4E+00 6E-02 1E-03 1E-04 5E-04

Table 3: As in Table 1, for the Franke’s test function.

scaling MQ(δ) IMQ(δ) G(δ) W2(δ) TPS(δ)

δ = 0.1 1E-01 2E-01 7E-01 9E-01 1E-01

E
intp
50 δ = 1 1E+00 1E+00 2E+01 9E-02 1E-01

δ = 10 6E+00 2E+01 1E+01 1E-01 1E-01

δ = 0.1 1E-02 2E-02 3E-01 8E-01 1E-02

Ecub
50 δ = 1 4E-02 8E-02 7E-01 7E-03 1E-02

δ = 10 2E+03 6E+02 7E+00 1E-02 1E-02

δ = 0.1 5E-02 1E-01 5E-01 9E-01 6E-02

E
intp
100 δ = 1 1E+01 6E+00 3E+01 7E-02 7E-02

δ = 10 2E+01 8E+01 2E+01 7E-02 5E-02

δ = 0.1 2E-03 8E-03 1E-01 7E-01 3E-03

Ecub
100 δ = 1 2E-01 1E-01 4E-01 2E-03 5E-03

δ = 10 1E+04 3E+03 2E+01 2E-03 3E-03

[5, p. 1720]); see [24] for a numerical optimization method.

• The cubature error is always smaller than the interpolation error, as
is natural.

• In some instances with smooth RBF, good results can be achieved even
in presence of high condition numbers (namely with smooth integrands
and accurate data).

• TPS and W2 generate the most reliable and robust RBF cubature for-
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mulas, which give acceptable results even on moderately large and/or
noisy data sets.

Remark 4.1 It is worth trying to explain why, as one observes in Table 1,
the cubature weights are still within reasonable limits even when the matrix
is extremely ill-conditioned. The main reason is that worst-case bounds
like ‖w‖2 ≤ ‖A−1‖2 ‖I‖2 (cf. (10)) are very pessimistic, being attained if
I is an eigenvector corresponding to the smallest eigenvalue of A. In fact,
numerical experiments with spectra of RBF collocation matrices show that
small eigenvalues have eigenvectors with many sign changes. On the other
hand, in most cases the vector I will have only positive components, and
thus it maps well into the eigenspaces of the large eigenvalues of A, yielding
weights w = A−1I with small or moderate size.

5 Conclusions and perspectives.

This paper represents a first step toward a systematic and computationally
efficient treatment of RBF numerical cubature on scattered data. Our nu-
merical experiments with some of the most popular RBF on relatively small
scattered samples (size up to the hundreds), partially supported by some
theoretical considerations and estimates, show that the cubature formulas
generated by thin-plate splines and by (suitably scaled) compactly supported
radial functions are the most reliable and robust. This is mainly due to the
fact that, besides an “acceptable” approximation error, the conditioning of
their collocation matrix and of the cubature method have a “reasonable”
magnitude (even if the computed cubature weights are not all positive, they
are of small size); see Table 1. Moreover, we have eliminated a possible
bottleneck of the implementation, by producing compact formulas for the
accurate evaluation of their integrals.

A number of computational problems should however be faced. On larger
samples (size of the thousands or more), all the computational machinery
of RBF should become useful. We try to list some possibilities. On the
one hand, the construction of the cubature formulas, which requires solving
numerically a linear system with the collocation matrix (the “interpolation
equations” for the coefficients or equivalently the “cubature equations” for
the weights), has to be accelerated. Within our set of numerical experiments,
it has been possible using a standard direct solver, but on large samples con-
ditioning and computational cost can become prohibitive. In such cases one
can resort to well-known fast methods for computing the RBF interpolation
coefficients like, e.g., preconditioned Krylov subspace methods [8], or domain
decomposition strategies [5]. We stress that one could even get trivially a
complexity reduction via nonoverlapping domain decomposition, due to the
additivity of the integral, but the effect on the quality of cubature should
be studied thoroughly.
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Another interesting perspective, supported by the good approximation
performance shown in our tests, is the use of compactly supported RBF,
which leads to sparse collocation matrices and to efficient multilevel solvers
[18]. A multilevel approach could also give the possibility of estimating a
posteriori the cubature error. Moreover, a multilevel strategy can be useful
also to reduce the conditioning on a given sample, without deteriorating too
much the approximation. In fact, while the approximation error of RBF
interpolation and cubature is related to the smallness of the fill distance
(the radius of the inner empty disk), the conditioning suffers from a small
separation distance between the nodes. Thinning techniques, as those de-
scribed in [18], could allow eliminating “redundant” points, i.e. enlarging
the separation distance as long as the fill distance remains of the same size.
Recall that we ultimately compute a single number (an approximate value
of the integral), so a loss of information unacceptable for recovery and/or
visualization might be tolerable in the cubature context.

Finally, extension of the cubature method to a larger set of radial basis
functions (other compactly supported RBF, polyharmonic splines, . . . ), and
to higher dimension, should be tried. In the latter case, apart from the
straightforward case of the Gaussians on multidimensional cubes, evaluating
efficiently the integrals of the radial basis functions appears a much more
challenging computational problem, compared to the two-dimensional one.
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