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Abstract

We compute point sets on the triangle that have low Lebesgustant, with sixfold
symmetries and Gauss-Legendre-Lobatto distribution esithes, up to interpola-
tion degree 18. Such points have the best Lebesgue conatantyy the families
of symmetric points used so far in the framework of triangslaectral elements.
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1. Introduction

Spectral element variational methods are high-order falg@genent techniques
where the discrete space is constructed by introducingtiipaiof the domain into
elements, by using polynomial basis functions to repre@nsolution element-
wise and by stitching together local representations toagmate the global solu-
tion of a given diferential problem. They can improve the accuracy of the appro
imated solution by increasing the polynomial degree of th&isbfunctions as well
as the number of mesh elementsfiBiently tohp-finite elements which are based
on hierarchical non-nodal basis functions (see e.g. [2Rjxdrangle-based spec-
tral elements adopt tensorial nodal bases constructed aaaatbristic Lagrange
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bases with respect to the Gauss-Lobatto-Legendre (GLejpotatioriquadrature
nodes (see e.g. [1, 14, 17, 18, 23]). But using quadranteteahedral mesh ele-
ments may be quite a restriction to handle problems in coxgéemetries, thus
there have been a number of recent developments to definesdpeethods for tri-
anglegtetrahedra either conforming or non-conforming (see f@neple [26] and
[20], respectively, and the references therein).

The question of how to distribute nodes in a triangle or tetcaion which are
suitable for high-order polynomial interpolation is sélsomewhat open question.
Two factors figure out prominently in the quality of high-ercbolynomial interpo-
lation, namely, the smoothness of the function to be infetpd, and the location
of the interpolation points. Interpolations using unifdyrdistributed points yield
undesirable behavior (oscillations) even for smooth fiomst as soon as the inter-
polation degree increases (Runge-like phenomena).

Good distributions are thBekete pointg5, 33], that maximize the absolute
value of the Vandermonde determinant and thus ensure thaketesgue constant
is bounded (even if it's numerically much smaller) by the éimsion of the polyno-
mial space, and thieebesgue pointghat directly minimize the Lebesgue constant
[2, 10, 22]. Actually, the maximum and the minimum are reachp to the ma-
chine precision, we thus use the terminology.ebesgue-typ&esp.approximated
Feketé points for those points that minimize (resp. maximize)taghe machine
precision, the Lebesgue constant (resp. the absolute wedltlee Vandermonde
determinant).

Indeed, we recall that the Lebesgue constant of a unisolrrpolation array
& ={P1,...,Pn}inacompacK c RYis defined as

An(€) = maxin(Pi€) . An(Pié) = kZ; 6P, (1)

det(Vanch(Pl, e, Pii, P Pige, ..., Pm))
det(Vand,(¢)) ’
n+d

wherem = ( p ) is the dimension of the space divariate polynomials of degree
< ndefined onK, ¢;(P) the Lagrange polynomial associated to the p&infsuch
that £;(P;) = dij, with ¢_ the Kronecker symbol) and Vapdhe Vandermonde
matrix of the points built on a chosen basig}k-1.m of the space ofl-variate
polynomials of degree n defined onK (thus (Vand)i; = ¢i(Pj), i,j = L m).
The Lagrangian polynomial§ and the basis functiong; are linked through the
Vandermonde matrix by the relation (Vapglt; = ;.

Notice that, whereas the existence of Fekete points for engdompact set
K is trivial, since det(Vang(¢)) is a polynomial iné € K™, the problem is more
subtle concerning Lebesgue points. Indeed, the LebesgustacdAn(£) is not

4(P) = 2
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continuous on the wholK™, since the denominator of the Lagrange polynomials
vanishes on a subset &™ which is an algebraic variety. For completeness, it
is worth stating and proving a basic result concerning thstexce of Lebesgue
points.

Proposition 1. Let K be a polynomial determining compact subsékbfFor any
degree n> 0 the Lebesgue constant,(£), cf. (1), attains a global minimum in
at least one unisolvent interpolation arrgye K™ (such¢ is termed an array of
Lebesgue points).

Proof. SinceK is polynomial determining, that is polynomials vanishitgre
vanish everywhere (this is true for example whend¢dras internal points), such
is K™ and thus there are points K™ where det(Vang(-)), which is a nonzero
polynomial, does not vanish. Let us introduceo denote the algebraic variety
I' = {ze K™ : det(Vang\(2) = 0}. The Lebesgue constant,(¢) is continuous at
every pointé € K™\ I'. Indeed, since det(Vap()) # 0, there exists a compact
neighborhood of, sayU c K™\ I', such that the Lebesgue functidp(P; u) is
continuous and thus uniformly continuousknx U. Then, for anye > 0 there
existsd(e) such that for alb € U with || — ull2 < 6(g)

IAR(E) = An(W)] = [lIAn(, Ol = IAn(, Wk | < (- &) = (-, WIIk < &,

i.e., the maximum of the Lebesgue functiorKins continuous af (here and below
we use the notatioff|lx = su.x |f(y)l for a functionf bounded in the seX).

Moreover, for every fixeds = (Q1,...,Qm) € T, Ap(§) » +o0 asé =
(P1,...,Pm) = nin K™\ T. In fact, the Vandermonde matrix being singular at
n, there exists a nonzero polynomial, saystch thatp(Q;) = 0, j = 1,...,m.
Now, it is easy to prove that

IIpllk
A= sup —IPK__
p20,degp)<n [ Pll{Py....Pm)

and henceé\n(é) > [IPllk/IIPllip,....py — +o0 @sé — nin KM\T.

Now, definingAn(2) = + for z € T, the Lebesgue constant becomes lower
semicontinuous in the compakt™, and thus by the generalized extreme value
theorem it attains a global minimum (cf. e.g. [16]), in atdeane¢ that clearly
belongs taK™\I". O

We recall that Fekete and Lebesgue points are invariantrhdege of poly-
nomial basis, and their Lebesgue constant is invariantrnettiae mapping of the
domain.



These two families of points have to be computed numeridatiyhe triangle.
Indeed, Fekete points are known explicitly only in very femses (the interval,
the complex circle, and the cube for tensor-product polyiatsh[12, 9], whereas
Lebesgue points are not even known in one dimension. Tharggscific literature
on this numerical optimization problem, that becomes fggarge-scale increas-
ing the interpolation degree, and more generally on thechefar good nodal sets
for the triangle; cf., e.g., [15, 22, 33, 34] and referentesdin.

In the recent literature, as in [10, 22], twdidirent approaches have been in-
troduced to achieve Lebesgue-like point sets. In [22] #xsiit have been obtained
via unconstrained minimization according to a detailedudsealgorithm (but no
code is available). In [10] the authors consider a methoduwfignid nature, based
on Matlab optimization routines. For numerical routines gel].

In this paper we compute Lebesgue-like points for the etprahtriangle, that
we term LEBGLS points, by routines of the Matlab Optimizatifoolbox [25],
with the constraints that the set haigfold symmetrand theGLL distributionon
the sides (which is the most usual to obtain conforming tniger spectral ele-
ments). Though it is nhot known whether “true” Lebesgue ofior the triangle
are symmetric (and computational results seem to say tlepar cf. [11, 22]),
symmetry is a reasonable property: besides being a keyrezgent on the approx-
imation point distribution on the mesh edges (resp. edgésaaes) in 2D (resp. in
3D) if one adopts conforming variational methods (cf., .g2j7]), it would allow
to use the new nodal sets as constrained distributions dadhs of a tetrahedron,
in view of computing optimal nodal sets for tetrahedral $f@@lements.

In Section 2, we discuss the computational procedure addpt®btain the
LEBGLS points, and we compare them with other known intexfioh sets on the
triangle. In particular, they turn out to have the best Lgbhesconstants among the
families of symmetric points which are used nowadays inthméwork of triangu-
lar spectral elements. In Section 3 by presenting some ricaheesults obtained
by adopting the considered sets of points as interpolationtg for triangle-based
spectral element methodB$EM). Section 4 concludes with a few general remarks
and outlook toward future work.

2. Computational aspects

Let K = 7 be the equilateral triangle whose vertices ¥e= (-1,0), V, =
(1,0) andVs = (0, V3). The purpose of this section is to show how to compute,
for a fixed degrea@,

LEBGLS = argmin{An(g), £e T, £is 6-symmetric ¢|gige= GLL} (3)



i.e., asixfold symmetricset of pointsé = {Pi1,...,Pn} € 7 with a minimal
Lebesgue constant (1), and a fixed distribution on the selgs Gauss-Legendre-
Lobatto points). Lebesgue-like points with no symmetriesvith only the GLL
distribution constraint on the sides have been computed4n28] and more re-
cently in [11]; the families of [11] have been termed LEB (nonsnetry) and
LEBGL (GLL distribution on the sides).

The Lebesgue constant is defined only in terms of the Lagrpolyaomials;
which in turn are a function of the nodal positioRg, regardless of the choice for
the basis functiongy;}. If one wishes to limitA,, one has to optimize the place-
ment of theP; in the triangle, that's our concern. However, the choicehefliasis
{¥;} is numerically crucial, as it influences the conditioningtiod Vandermonde
matrix. A well-conditioned Vandermonde matrix is essdrftia the computation
of the Lagrange polynomials. A generally satisfying chagcthe adoption fofy )
of the Koornwinder-Dubiner polynomial bas[49] which is an orthonormal basis
in the L?(T)-scalar product.

It will be useful to determine each poiRte 7 via its barycentric coordinates
(A1, A2, A3), i.e.,P = A1P1+ P2+ 43P3 with 33, A4 = 1. We require that if a point
P = (11, 12, 13) belongs to the point-sétthen all the point€) whose barycentric
coordinates are permutations adf (1,, 13) (sometimes called therbits of P) also
belong toé. This property is equivalent to say that the Sgtossesses all the six
symmetries of the equilateral triangie

Depending on the barycentric coordinates, we distinguistet cases:

1. All the barycentric coordinates are equal. This fandllyis usually hamed
of orbit 1 type Since} Ak = 1, it includes only the barycenter of the
equilateral triangle™, C = (1/3,1/3,1/3).

2. Only two of the barycentric coordinates are equal. ThisifaO3 is usually
named oforbit 3 type since ifP; € £ also its 2 diferent orbitsP, and P3
belong to¢.

3. All barycentric coordinates areffirent. This familyOg is usually named of
orbit 6 type since ifP; € £ also its 5 dfferent orbitsP,, . . ., Pg belong tof.

A general sixfold symmetric point-sétwill consist ofn; < 1 points of orbit 1
type, 3z points of orbit 3 type andr§ points of orbit 6 type so thah = (n+1)(n+
2)/2 = n1+3n3+6ng (it is not too dificult to prove that for anyn = (n+1)(n+2)/2
such a problem has at least one solutignnz, ng).

From the point of view of spectral elements approximatibig important that
if (”:E) = {X1,..., X1} are the Gauss-Legendre-Lobatto points of degreel
scaled in the interval [A] (cf. [21]), then all the & points whose barycentric
coordinates are permutations of,({l — X, 0) also belong t&. A straightforward
investigation shows that all these points lie on the sides sfnce they are of the
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Figure 1: Orbit 3 type pointso§ and orbit 6 type points.

form xVj + (1 - X))V (with j # k, j,k = 1,2,3) and that 01 € X'1, implies that
the verticed/1, Vo andVs are iné. Moreover the distribution of points on each side
is obviously symmetric w.r.t. its midpoint being this oneragerty ofxg”l) The
symmetry of points on the triangle sides is a fundamentgbgnty to build up a
conforming Galerkin approach to the solution of a given P&t thus reconstruct
a continuous function over a simplicial triangulation oé ttomputational domain
from local polynomial interpolants defined on the mesh sioagl If the points
were not symmetrically disposed on the triangle sides, acomfiorming Galerkin
method, such as the well-known Discontinuous Galerkin @ggr, would be nec-
essarily adopted to approximate the PDE solution. Finaleyobserve that ifi is
even, then 12 € Xg‘:Ll) that easily implies that all the midpoints of a sidgVy are
also iné.

We discuss now in detail the minimization procedure. Letbe n; + 3n3 +
6 ng for some nonnegative integeg, n3, ng. It is straightforward to see that the
barycenter is an element ¢gfif and only if remfn, 3)= 1, that isn is a multiple
of 3. A more careful analysis must be done for the oints of O3 and the 6
points of Og. Since ifP € ¢ also its orbits are i and one of them must be in
the triangle7” ¢ 7~ whose vertices arkl = (0,0), V, = (1,0) andC = (0, V3/2),
we decided to computes points of O3 andng of Og in 7 and then determine all



their orbits in7” by permutation of their barycentric coordinates. Since waeeh
already assigned some points on the sides (i.e., thosevfotica Gauss-Legendre-
Lobatto distribution), some points @3 andOg are already given and one has
only to provide, sayns points of O3 andrig of Og. It is easy to see thatz =

Az + 1+ rem(n + 1,2) and thang = fig + {=1eM0+L2)

We observe now that, with the exception of the baryce@tethe O3 points
of 7~ are all the points that lie in the segmédH or CV, while all the other ones
are inOg. We parameterized the segméd as (1- 7)C + tH for = € [0, 1],
andCV; as (1+ 7)C — 7H for r € [-1, 0] so thatCH U CV, can be described by
only one real variable, while all the other poifRof Og can be determined by the
first two barycentric coordinates;, 1, of the representativ® in the triangle‘f~ ,
i.e. P = AH + 2V + A3C with 23,12, 43 > 0 andY2 ; A = 1. If some of the
elements of do not belong td, then we set the target function valuedmrqual
to 10°°.

This discussion shows that we have reduced the problem tamianimation in
fiz variables in the intervaH1, 1] and 2ig variables that correspond to the barycen-
tric coordinatesly, 1, of points of~ (the third coordinatéls is not involved since
YAk = 1). Any feasible combination of thesg F 2fg variables determines
fi3 + fg points off" and by permutation of the respective barycentric coordmat
3Az points of O3 and 615 of Og, that added to the assigned points on the sides hav-
ing GLL distribution and possibly the barycenter, detemnihe set of symmetric
pointsé to be analyzed.

Consequently, setting = Az + 2fg, one can define in Matlab a target func-
tion that from a feasibles-array first determines a sétof symmetric points of
7, and then computes an approximation of its Lebesgue cdnstéf), defined as
maxees )., 16i(P)l, by testing the Lebesgue functidti”, |¢;(P)| on a large control
setY c 7 and then taking its maximum.

Once a good initial set is at hand, we used the same approdtB]ofWe fix
a sequence of positive integary < My < ... < mg = 250, and start the mini-
mization process by evaluating the Lebesgue constant oaraemesh, namely
a Weakly Admissible MeslY, of degreemy [8, 6, 13], with a fixed number of
iterations, say 50. When the approximate solution is at hand multigrid fash-
ion, we restart the process evaluating the Lebesgue carmtaa finer mesh, in
our caseYn, with m; > mj_1, j = 0,...,k. After this first stage, we restart the
algorithm from the initialmy and the point set, sas?), just obtained, computing
more stages. We repeat the process until there is no redsaedhction between
two subsequent stage®, £(5+1),

Concerning the Matlab routines, we noticed the good perdnica of theactive-
setalgorithm, that is called bymincon when the preferencéAlgorithm’ is put
as ‘active-set’ in the optimizer variableption. As for the post-processing,
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Figure 2:N = 66 (quasi-)Lebesgue points)(for n = 10.

some improvements have been obtained performing addisteges with the Mat-
lab built-in functionfminsearch. Also in the case of symmetric points with as-
signed distribution on the sides, as one can expect, damgpfidim the degrea
the CPU time ranges from some minutes to several hours. Sarus\are needed
about the routines that we have used. The funcfigimcon relies on a method
that solves a Quadratic Programming subproblem at eacttider Furthermore, it
updates an estimate of the Hessian of the Lagrangian atteaatidn by the BFGS
formula (see themincon function reference in [25]). The routinBminsearch
uses the simplex search method of [24], a direct searchitiigothat does not
resort to numerical or analytic gradients (see thénsearch function reference
in [25]).

We have improved the numerical results by the optimizatigorahm known
asDijfferential Evolutionthat has the property to overcome local minima to reach
lower values of the target function [29]. Its usage has be@inally suggested
in [28, p.56], using the factoF equal to ¥2 and the crossover parametéer=
9/10, performing 100 iterations. The Matlab software that weghused is a minor
modification of the codes provided in [30], adapted to outanses. All the tests
were run in Matlab 7.6.0, on a 2.13 GHz Intel Core 2 Duo with 4 &@RAM.

At this point some issues must still be discussed. We mustméte between



all then; € {0, 1}, n3, ng such thatm = (n + 1)(n + 2)/2 = n; + 3n3 + 6ng What

is the choicepreferredby the Lebesgue points. To this purpose we observe that
there is numerical evidence that Lebesgue points have higblate values of the
Vandermonde matrix Vapd¢) determinant (w.r.t. the orthonormal Dubiner basis).
So we compute, via numerical optimization, for all the comaltions ofny, nz, ng

for whichm = ny + 3n3 +6ng, several seté havingn; points inO1, 3n3 points inO3

and 6 points inOg with GLL distribution on the sides and that are providingthig
values of| det (Vandg(£))|. The computation of the aforementioned determinants
is less time consuming than the approximation of the Lebesgmstant and the
convergence of the optimization algorithm rather fast. dgegreen = 18, high
values ofnz were providing setg nearly singular, and in general only few were
giving high | det (Vang(¢))|, always with only one choice afi, nz andng with
much greater magnitude w.r.t. the remaining competitors.

We observe that in [28, p.14] the author asserts that i the degree and
m= (n+ 1)(n + 2)/2 = ny + 3n3 + 6ng, there is numerical evidence that+ n3 =
ceil((n+1)/2), and since, is known for anyn, so arenz andng = (mM—n; —3n3)/6.
Our tests confirm this statement up to degnee 18. Once the righti, n3, ng and
a set¢ with particularly high|det (Vang(£))| are at hand, we start the numerical
process for computing the (quasi-)Lebesgue points.

In [10], we have computed some hon-symmetric point-setsertrtangle7,
with low Lebesgue constants, i.e. LEB and LEBGL, the first arnthout any
constraint and the latter with assigned GLL distributiontioa sides.

In Table 1 we compare these new sets LEBGLS with LEB and LEBG&,
Taylor-Wingate-Vincent sets hamed TWYV [33] that approxieha maximize the
Vandermonde determinant, and the Warburton sets shorten@éB [34], that for
low degrees have good Lebesgue constant and are availatb®masis a one vari-
able optimization process is performed. We point out thattiho latter sets are
symmetric with Gauss-Legendre distribution on the sidesthiermore, since not
all the sets of TWV are available we follow the results okedif28] about the
Lebesgue constants, while the conditioning and the maxirabsolute value of
the cardinal functions; are computed only for the sets provided in [33]. In [28],
the author computes sets that we will cite as ROTH, improtiregLebesgue con-
stant of [33] and still preserving side distribution and #ivdold symmetries. The
sets are not available, but for completeness sake we rdggoréesults.

Since LEBGLS has more constraints, it is natural to expedt We obtain a
worst Lebesgue constant w.r.t. LEB and LEBGL, nonethelesgdsults are still
good, not too far from those of LEBGL faor < 15. Furthermore, it improves the
Lebesgue constants of the previous known sixfold symmegts with assigned
Gauss-Legendre-Lobatto distribution on the sides.

In [27] and [28] it has been considered the maximum of the aage poly-
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Table 1: Lebesgue constamts of some sets in the triangig.

deg 1 2 3 4 5 6 7 8 9
LEB 100 149 197 242 290 339 394 455 528
LEBGL 100 167 211 259 308 359 414 521 551
LEBGLS 100 166 211 259 308 359 414 477 549
ROTH 100 166 211 272 361 417 492 590 680
TWV 100 166 211 272 361 417 492 590 680
WB 100 166 211 266 312 370 427 496 573

deg 10 11 12 13 14 15 16 17 18
LEB 563 645 690 759 831 907 858 912 988
LEBGL 593 656 713 774 831 907 858 912 988
LEBGLS 629 700 726 858 883 891 1066 1141 1269
ROTH 785 791 847 928 996 1002 1069 1153 1313
TWV  7.88 791 847 928 996 1002 1219 1388 1474
wB 6.67 790 936 1146 1397 1764 2222 2876 3676

Table 2: Conditioning of the Vandermonde matrix w.r.t. ththonormal Koornwinder-Dubiner
basis.

deg 1 2 3 4 5 6 7 8 9
LEBGLS 37 10 20 40 52 69 94 102 148
TWV - - 15 - - 70 - - 141

WB 37 10 14 39 53 69 76 119 143

deg 10 11 12 13 14 15 16 17 18
LEBGLS 156 277 228 332 480 397 422 569 370
TWV - - 235 - - 328 - - 425
WB 172 190 209 272 246 349 553 796 1150
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Table 3: Maximal values of the cardinal functiolison the reference triangi® computed on a fine
grid.

deg 1 2 3 4 5 6 7 8 9
LEBGLS 100 100 100 103 105 103 103 104 104
TWV 100 100 100 100 100 100 2100 12100 100
WB 100 100 100 2100 101 101 101 101 101

deg 10 11 12 13 14 15 16 17 18
LEBGLS 108 118 104 110 119 110 119 109 107

TWV 1.00 100 100 100 100 100 100 100 100

wB 101 102 102 102 102 102 107 128 181

Table 4: Orbitsy, fs, s of the Lebesgue set LEBGLS.

deg 1 2 3 4 5 6 7 8 9
m 0O O 1 0O O 1 0 o0 1
sz 0 0O O 1 2 1 3 3 3
e O O O O O 1 1 2 3

deg 10 11 12 13 14 15 16 17 18
0o 0 1 0O O 1 O 0 1
s 4 5 4 6 6 6 7 8 7
4 5 7 8 10 12 14 16 19
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nomials as one of the measures of the influence of the nodée imterpolation
process. Itis pointed out that these values must not be tge, laetter if close to
1. In Table 3 we show that all the sixfold symmetric sets LEEBGTWM and WB
enjoy this property, though faor > 17 the values of WB tend to increase too much.
Finally, in Table 4 we list the orbits;; fi3, fig of the set LEBGLS, from which
one can derive also the number of varialbies 2fig involved in the optimization
process.

3. An application to solve a PDE

To further compare the LEBGLS with the LEBGL, we have carrmed two
convergence tests for the triangle-based spectral elemetitod TSEM) defined
in [27] applied to the equationdiv(Dgradi) + eu = f in Q, with mixed Dirichlet-
Neumann boundary conditions 6, whereD is a suitable 22 symmetric matrix
anda > 0 a given real. We recall that the rate of convergence oftB&EM
solutionu, to the real onalgxact With respect tm is virtually bounded only bys,
the smoothness degree of the real solutigfct Thus forugxact € H5(Q2), one can
expect the optimal error estimate

llUexact — UnllL2¢q) = o(n"®). (4)

HereuexactisS chosen to be analytical, we then expect to obtain the bedcspectral
accuracyj.e., an exponentially decreasing error as a function.of

3.1. Results on one triangle

We firstly consider the reference triandgle= {(X,y); X,y = -1, Xx+y > 0} as
computational domai. Concerning the equation dat,(«) we set

[ Y+ed —(1-exy B
D= —-(L-e)xy X+ey@ |’ @=0,

with € € {1,10°%,1072,10%}. The right-hand sidef of the equation and the
Dirichlet boundary condition 0d@Q are compatible with the analytical solution
Uexact = Singr X)sin(r y). The discretization of the flusive term with highly
anisotropic difusion can lead to numerical instabilities. In Table 5, weaili¢he
L*-norm of the approximation errou{ — Uexac) COmputed by thel SEM with
different sets of interpolation points in the triangleand by varying the value of
e. We can remark that the method’s spectral precision is miaied despite the
ratio of anisotropy between the twoandy directions varies from 1 to fGand the
number of degrees of freedamdo fis only (n+1)(n+2)/2, withn € {9,12, 15, 18}.
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Table 5:L*-norm of the approximation error with some sets in the triamg

\deg e=1 e=101 €=102 €e=10"
TWV ‘ 9 5.855le-2 1.6146e-2 6.8236e-2 7.198le-2
‘ 12 6.1157e-4 7.2309e-5 1.9696e-4 2.6727e-4
‘ 15 6.3740e-6 3.1264e-6 4.5819e-6 5.3509e-6
‘ 18 6.2835e-8 2.0731e-8 5.5160e-8 1.9918e-7
wB ‘ 9 55463e-2 1.7371e-2 7.1970e-2 1.4273e-2
‘ 12 3.2353e-4 1.4579e-4 1.4536e-4 1.9091e-4
‘ 15 5.0802e-6 3.5157e-6 3.5585e-6 3.5743e-6
‘ 18 1.8770e-7 6.6611le-8 6.8238e-8 1.7519e-8
LEBGL ‘ 9 8.9436e-2 1.183%-2 1.0375e-1 1.5888e-1
‘ 12 3.9209e-4 7.7523e-5 3.3503e-4 3.9538e-4
‘ 15 4.4529e-6 6.1957e-6 8.1674e-6 1.2272e-5
‘ 18 7.9921e-8 2.4293e-8 5.1246e-8 9.8565e-8
LEBGLS ‘ 9 5.2980e-2 1.9349e-2 7.8346e-2 1.5080e-1
‘ 12 7.3061le-4 9.6412e-5 2.8924e-4 3.7571e-4
‘ 15 5.1188e-6 3.3400e-6 4.6035e-6 5.2235e-6
‘ 18 1.2909e-7 2.0160e-7 2.6482e-7 2.3948e-7

Figure 3: Unstructured simplicial mesh (created by Triangl free-charge 2D mesh generator) for
the TSEM convergence tests. Despite the weak number of elemEs} ¢f the mesh, the number
of degree of freedom (ndof) may be important, namely 12048 Wi= 12 and 26865 witiN = 18.
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Figure 4: Semi-logarithmic plot of the?-error versus the polynomial orderfor different distribu-
tions of interpolation points in the mesh triangles.

3.2. Results on a mesh

We now consideQQ = (-10, 10)2 \ H, whereH is a square hole, an@ is
discretized with the unstructured mesh presented in FigoBthe problem equa-
tion, we setD = I, (the 2x 2 identity matrix) andr = 1. The analytical solution
is chosen to b@exact = SiN(2X + y) sin(x + 1) sin(1- y) and thus the source term
f and the values for the Dirichlet conditions on the outer lzum and Neumann
conditions on the (interior) hole boundary are set accatglin

By looking at Fig. 4 (Table 6) we can remark that the spectcalueacy is
achieved in thé SEM with the considered nodal sets. Moreover, concernieg th
L2-norm of the approximation error, we remark that the LEBGlosfs show a
better behavior than the LEBGL ones, and an equally goodvimhas the TWV
ones. We note that this ranking is in the opposite order of thebesgue constants.

4, Conclusions

We have presented an optimization algorithm to distribsteymetrically in the
triangle, nodes that minimize the Lebesgue constant. thdee LEBGLS nodes
were shown to have Lebesgue constants which are better tlanmparable with
all existing node sets up to at least interpolation degre&\&3showed test interpo-
lation results that give further confidence on the qualityhef generated nodes in
the frame of high-order triangle-based spectral elemenhods. LEBGLS points
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Table 6:L2-norm of the approximation error forffierent nodal sets.
deg ndof TWV WB LEBGL LEBGLS

3 810 3.5267e-0 3.5267e-0 3.9673e-0 3.9673e-0
6 3087 0.1297e-0 0.1457e-0 0.1447e-0 0.1621e-0
9 6831 5.9582e-3 6.3634e-3 6.7333e-3 6.5863e-3
12 12042 5.1437e-5 9.0467e-5 8.4629e-5 5.2218e-5
15 18720 3.6078e-7 7.3335e-7 5.7335e-7 3.9009e-7
18 26865 1.5364e-9 3.9966e-8 3.9897e-8 1.6872e-9

could be next used to constrain the construction (and thien@attion process) of
symmetric distributions in the tetrahedron. Other thrememsional shapes could
be analyzed (prisms and pyramids) in order to rely on seddilybrid meshes for
performing approximations of PDE solutions by thR8EM in three-dimensions.
In [35], the reader can download Matlab files containing tiEBGLS points on
the unit simplex of vertices (@), (1, 0), (0 1) and the other set of points that have
been used to make comparative tests. For the WB points, gj@reMatlab files
are given in [34].
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