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Abstract

We compute point sets on the triangle that have low Lebesgue constant, with sixfold
symmetries and Gauss-Legendre-Lobatto distribution on the sides, up to interpola-
tion degree 18. Such points have the best Lebesgue constantsamong the families
of symmetric points used so far in the framework of triangular spectral elements.
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1. Introduction

Spectral element variational methods are high-order finiteelement techniques
where the discrete space is constructed by introducing a partition of the domain into
elements, by using polynomial basis functions to representthe solution element-
wise and by stitching together local representations to approximate the global solu-
tion of a given differential problem. They can improve the accuracy of the approx-
imated solution by increasing the polynomial degree of the basis functions as well
as the number of mesh elements. Differently tohp-finite elements which are based
on hierarchical non-nodal basis functions (see e.g. [32]),quadrangle-based spec-
tral elements adopt tensorial nodal bases constructed as characteristic Lagrange
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bases with respect to the Gauss-Lobatto-Legendre (GLL) interpolation/quadrature
nodes (see e.g. [1, 14, 17, 18, 23]). But using quadrangular/hexahedral mesh ele-
ments may be quite a restriction to handle problems in complex geometries, thus
there have been a number of recent developments to define spectral methods for tri-
angles/tetrahedra either conforming or non-conforming (see for example [26] and
[20], respectively, and the references therein).

The question of how to distribute nodes in a triangle or tetrahedron which are
suitable for high-order polynomial interpolation is stilla somewhat open question.
Two factors figure out prominently in the quality of high-order polynomial interpo-
lation, namely, the smoothness of the function to be interpolated, and the location
of the interpolation points. Interpolations using uniformly distributed points yield
undesirable behavior (oscillations) even for smooth functions as soon as the inter-
polation degree increases (Runge-like phenomena).

Good distributions are theFekete points[5, 33], that maximize the absolute
value of the Vandermonde determinant and thus ensure that the Lebesgue constant
is bounded (even if it’s numerically much smaller) by the dimension of the polyno-
mial space, and theLebesgue points, that directly minimize the Lebesgue constant
[2, 10, 22]. Actually, the maximum and the minimum are reached up to the ma-
chine precision, we thus use the terminology ofLebesgue-type(resp.approximated
Fekete) points for those points that minimize (resp. maximize), upto the machine
precision, the Lebesgue constant (resp. the absolute valueof the Vandermonde
determinant).

Indeed, we recall that the Lebesgue constant of a unisolventinterpolation array
ξ = {P1, . . . ,Pm} in a compactK ⊂ R

d is defined as

Λn(ξ) = max
P∈K

λn(P; ξ) , λn(P; ξ) =
m

∑

k=1

|ℓi(P)| , (1)

ℓi(P) =
det(Vandn(P1, . . . ,Pi−1,P,Pi+1, . . . ,Pm))

det(Vandn(ξ))
, (2)

wherem =
(

n+d
d

)

is the dimension of the space ofd-variate polynomials of degree
≤ n defined onK, ℓi(P) the Lagrange polynomial associated to the pointPi (such
that ℓi(P j) = δi j , with δ.. the Kronecker symbol) and Vandn the Vandermonde
matrix of the points built on a chosen basis{ψk}k=1,m of the space ofd-variate
polynomials of degree≤ n defined onK (thus (Vandn)i j = ψi(P j), i, j = 1,m).
The Lagrangian polynomialsℓi and the basis functionsψ j are linked through the
Vandermonde matrix by the relation (Vandn)i j ℓ j = ψi.

Notice that, whereas the existence of Fekete points for a given compact set
K is trivial, since det(Vandn(ξ)) is a polynomial inξ ∈ Km, the problem is more
subtle concerning Lebesgue points. Indeed, the Lebesgue constantΛn(ξ) is not
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continuous on the wholeKm, since the denominator of the Lagrange polynomials
vanishes on a subset ofKm which is an algebraic variety. For completeness, it
is worth stating and proving a basic result concerning the existence of Lebesgue
points.

Proposition 1. Let K be a polynomial determining compact subset ofR
d. For any

degree n> 0 the Lebesgue constantΛn(ξ), cf. (1), attains a global minimum in
at least one unisolvent interpolation arrayξ ∈ Km (suchξ is termed an array of
Lebesgue points).

Proof. SinceK is polynomial determining, that is polynomials vanishing there
vanish everywhere (this is true for example wheneverK has internal points), such
is Km and thus there are points inKm where det(Vandn(·)), which is a nonzero
polynomial, does not vanish. Let us introduceΓ to denote the algebraic variety
Γ = {z ∈ Km : det(Vandn(z)) = 0}. The Lebesgue constantΛn(ξ) is continuous at
every pointξ ∈ Km \ Γ. Indeed, since det(Vandn(ξ)) , 0, there exists a compact
neighborhood ofξ, sayU ⊂ Km \ Γ, such that the Lebesgue functionλn(P; u) is
continuous and thus uniformly continuous inK × U. Then, for anyε > 0 there
existsδ(ε) such that for allu ∈ U with ‖ξ − u‖2 < δ(ε)

|Λn(ξ) − Λn(u)| = | ‖λn(·, ξ)‖K − ‖λn(·, u)‖K | ≤ ‖λn(·, ξ) − λn(·, u)‖K < ε ,

i.e., the maximum of the Lebesgue function inK is continuous atξ (here and below
we use the notation‖ f ‖X = supy∈X | f (y)| for a function f bounded in the setX).

Moreover, for every fixedη = (Q1, . . . ,Qm) ∈ Γ, Λn(ξ) → +∞ as ξ =
(P1, . . . ,Pm) → η in Km \ Γ. In fact, the Vandermonde matrix being singular at
η, there exists a nonzero polynomial, say ˆp, such that ˆp(Q j) = 0, j = 1, . . . ,m.
Now, it is easy to prove that

Λn(ξ) = sup
p,0, deg(p)≤n

‖p‖K
‖p‖{P1,...,Pm}

,

and henceΛn(ξ) ≥ ‖p̂‖K/‖p̂‖{P1,...,Pm} → +∞ asξ → η in Km \ Γ.
Now, definingΛn(z) = +∞ for z ∈ Γ, the Lebesgue constant becomes lower

semicontinuous in the compactKm, and thus by the generalized extreme value
theorem it attains a global minimum (cf. e.g. [16]), in at least oneξ that clearly
belongs toKm \ Γ. �

We recall that Fekete and Lebesgue points are invariant under change of poly-
nomial basis, and their Lebesgue constant is invariant under affine mapping of the
domain.
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These two families of points have to be computed numericallyfor the triangle.
Indeed, Fekete points are known explicitly only in very few cases (the interval,
the complex circle, and the cube for tensor-product polynomials) [12, 9], whereas
Lebesgue points are not even known in one dimension. There isa specific literature
on this numerical optimization problem, that becomes rapidly large-scale increas-
ing the interpolation degree, and more generally on the search for good nodal sets
for the triangle; cf., e.g., [15, 22, 33, 34] and references therein.

In the recent literature, as in [10, 22], two different approaches have been in-
troduced to achieve Lebesgue-like point sets. In [22] this result have been obtained
via unconstrained minimization according to a detailed pseudo-algorithm (but no
code is available). In [10] the authors consider a method of multigrid nature, based
on Matlab optimization routines. For numerical routines see [11].

In this paper we compute Lebesgue-like points for the equilateral triangle, that
we term LEBGLS points, by routines of the Matlab Optimization Toolbox [25],
with the constraints that the set hassixfold symmetryand theGLL distributionon
the sides (which is the most usual to obtain conforming triangular spectral ele-
ments). Though it is not known whether “true” Lebesgue points for the triangle
are symmetric (and computational results seem to say they are not, cf. [11, 22]),
symmetry is a reasonable property: besides being a key requirement on the approx-
imation point distribution on the mesh edges (resp. edges and faces) in 2D (resp. in
3D) if one adopts conforming variational methods (cf., e.g., [27]), it would allow
to use the new nodal sets as constrained distributions on thefaces of a tetrahedron,
in view of computing optimal nodal sets for tetrahedral spectral elements.

In Section 2, we discuss the computational procedure adopted to obtain the
LEBGLS points, and we compare them with other known interpolation sets on the
triangle. In particular, they turn out to have the best Lebesgue constants among the
families of symmetric points which are used nowadays in the framework of triangu-
lar spectral elements. In Section 3 by presenting some numerical results obtained
by adopting the considered sets of points as interpolation points for triangle-based
spectral element methods (TSEM). Section 4 concludes with a few general remarks
and outlook toward future work.

2. Computational aspects

Let K = T be the equilateral triangle whose vertices areV1 = (−1, 0), V2 =

(1, 0) andV3 = (0,
√

3). The purpose of this section is to show how to compute,
for a fixed degreen,

LEBGLS= argmin
{

Λn(ξ) , ξ ∈ T , ξ is 6-symmetric, ξ
∣

∣

∣side= GLL
}

(3)
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i.e., a sixfold symmetricset of pointsξ = {P1, . . . ,Pm} ⊂ T with a minimal
Lebesgue constant (1), and a fixed distribution on the sides (e.g. Gauss-Legendre-
Lobatto points). Lebesgue-like points with no symmetries or with only the GLL
distribution constraint on the sides have been computed in [22, 28] and more re-
cently in [11]; the families of [11] have been termed LEB (no symmetry) and
LEBGL (GLL distribution on the sides).

The Lebesgue constant is defined only in terms of the Lagrangepolynomialsℓi

which in turn are a function of the nodal positionsP j , regardless of the choice for
the basis functions{ψ j}. If one wishes to limitΛn, one has to optimize the place-
ment of theP j in the triangle, that’s our concern. However, the choice of the basis
{ψ j} is numerically crucial, as it influences the conditioning ofthe Vandermonde
matrix. A well-conditioned Vandermonde matrix is essential for the computation
of the Lagrange polynomials. A generally satisfying choiceis the adoption for{ψ j}
of theKoornwinder-Dubiner polynomial basis[19] which is an orthonormal basis
in theL2(T)-scalar product.

It will be useful to determine each pointP ∈ T via its barycentric coordinates
(λ1, λ2, λ3), i.e.,P = λ1P1+λ2P2+λ3P3 with

∑3
i=1 λi = 1. We require that if a point

P = (λ1, λ2, λ3) belongs to the point-setξ then all the pointsQ whose barycentric
coordinates are permutations of (λ1, λ2, λ3) (sometimes called theorbits of P) also
belong toξ. This property is equivalent to say that the setξ possesses all the six
symmetries of the equilateral triangleT .

Depending on the barycentric coordinates, we distinguish three cases:

1. All the barycentric coordinates are equal. This familyO1 is usually named
of orbit 1 type. Since

∑

k λk = 1, it includes only the barycenter of the
equilateral triangleT , C = (1/3, 1/3, 1/3).

2. Only two of the barycentric coordinates are equal. This family O3 is usually
named oforbit 3 type, since if P1 ∈ ξ also its 2 different orbitsP2 andP3

belong toξ.
3. All barycentric coordinates are different. This familyO6 is usually named of

orbit 6 type, since ifP1 ∈ ξ also its 5 different orbitsP2, . . . ,P6 belong toξ.

A general sixfold symmetric point-setξ will consist ofn1 ≤ 1 points of orbit 1
type, 3n3 points of orbit 3 type and 6n6 points of orbit 6 type so thatm= (n+1)(n+
2)/2 = n1+3n3+6n6 (it is not too difficult to prove that for anym= (n+1)(n+2)/2
such a problem has at least one solutionn1, n3, n6).

From the point of view of spectral elements approximation, it is important that
if X(n+1)

GLL = {x1, . . . , xn+1} are the Gauss-Legendre-Lobatto points of degreen + 1
scaled in the interval [0, 1] (cf. [21]), then all the 3n points whose barycentric
coordinates are permutations of (xi , 1 − xi , 0) also belong toξ. A straightforward
investigation shows that all these points lie on the sides ofT since they are of the
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Figure 1: Orbit 3 type points (◦) and orbit 6 type points (∗).

form xiV j + (1− xi)Vk (with j , k, j, k = 1, 2, 3) and that 0, 1 ∈ X(n+1)
GLL , implies that

the verticesV1, V2 andV3 are inξ. Moreover the distribution of points on each side
is obviously symmetric w.r.t. its midpoint being this one a property ofX(n+1)

GLL . The
symmetry of points on the triangle sides is a fundamental property to build up a
conforming Galerkin approach to the solution of a given PDE,and thus reconstruct
a continuous function over a simplicial triangulation of the computational domain
from local polynomial interpolants defined on the mesh simplices. If the points
were not symmetrically disposed on the triangle sides, a non-conforming Galerkin
method, such as the well-known Discontinuous Galerkin approach, would be nec-
essarily adopted to approximate the PDE solution. Finally,we observe that ifn is
even, then 1/2 ∈ X(n+1)

GLL that easily implies that all the midpoints of a sideV jVk are
also inξ.

We discuss now in detail the minimization procedure. Let bem = n1 + 3n3 +

6n6 for some nonnegative integern1, n3, n6. It is straightforward to see that the
barycenter is an element ofξ if and only if rem(m, 3)= 1, that isn is a multiple
of 3. A more careful analysis must be done for the 3n3 points ofO3 and the 6n6

points ofO6. Since if P ∈ ξ also its orbits are inξ and one of them must be in
the triangleT̂ ⊂ T whose vertices areH = (0, 0), V2 = (1, 0) andC = (0,

√
3/2),

we decided to computen3 points ofO3 andn6 of O6 in T̂ and then determine all
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their orbits inT by permutation of their barycentric coordinates. Since we have
already assigned some points on the sides (i.e., those following a Gauss-Legendre-
Lobatto distribution), some points ofO3 andO6 are already given and one has
only to provide, say, ˆn3 points ofO3 and n̂6 of O6. It is easy to see thatn3 =

n̂3 + 1+ rem(n+ 1, 2) and thatn6 = n̂6 +
(n−1−rem(n+1,2))

2 .
We observe now that, with the exception of the barycenterC, theO3 points

of T̂ are all the points that lie in the segmentCH or CV2 while all the other ones
are inO6. We parameterized the segmentCH as (1− τ)C + τH for τ ∈ [0, 1],
andCV2 as (1+ τ)C − τH for τ ∈ [−1, 0] so thatCH ∪ CV2 can be described by
only one real variable, while all the other pointsP of O6 can be determined by the
first two barycentric coordinateŝλ1, λ̂2 of the representativeP in the triangleT̂ ,
i.e. P = λ̂1H + λ̂2V2 + λ̂3C with λ̂1, λ̂2, λ̂3 ≥ 0 and

∑3
k=1 λ̂k = 1. If some of the

elements ofξ do not belong toT̂ , then we set the target function value inξ equal
to 1020.

This discussion shows that we have reduced the problem to a minimization in
n̂3 variables in the interval [−1, 1] and 2n̂6 variables that correspond to the barycen-
tric coordinateŝλ1, λ̂2 of points ofT̂ (the third coordinatêλ3 is not involved since
∑

k λ̂k = 1). Any feasible combination of these ˆn3 + 2n̂6 variables determines
n̂3 + n̂6 points ofT̂ and by permutation of the respective barycentric coordinates,
3n̂3 points ofO3 and 6n̂6 of O6, that added to the assigned points on the sides hav-
ing GLL distribution and possibly the barycenter, determine the set of symmetric
pointsξ to be analyzed.

Consequently, settings = n̂3 + 2n̂6, one can define in Matlab a target func-
tion that from a feasibles-array first determines a setξ of symmetric points of
T , and then computes an approximation of its Lebesgue constant Λn(ξ), defined as
maxP∈T

∑m
i=1 |ℓi(P)|, by testing the Lebesgue function

∑m
i=1 |ℓi(P)| on a large control

setY ⊂ T and then taking its maximum.
Once a good initial set is at hand, we used the same approach of[10]. We fix

a sequence of positive integersm0 < m1 < . . . < mk = 250, and start the mini-
mization process by evaluating the Lebesgue constant on a coarse mesh, namely
a Weakly Admissible MeshYm0 of degreem0 [8, 6, 13], with a fixed number of
iterations, say 50. When the approximate solution is at hand, in a multigrid fash-
ion, we restart the process evaluating the Lebesgue constant on a finer mesh, in
our caseYmj with mj > mj−1, j = 0, . . . , k. After this first stage, we restart the
algorithm from the initialm0 and the point set, sayξ(1), just obtained, computing
more stages. We repeat the process until there is no reasonable reduction between
two subsequent stagesξ(s), ξ(s+1).

Concerning the Matlab routines, we noticed the good performance of theactive-
setalgorithm, that is called byfmincon when the preference‘Algorithm’ is put
as‘active-set’ in the optimizer variableoption. As for the post-processing,

7



Figure 2:N = 66 (quasi-)Lebesgue points (◦) for n = 10.

some improvements have been obtained performing additional stages with the Mat-
lab built-in functionfminsearch. Also in the case of symmetric points with as-
signed distribution on the sides, as one can expect, depending from the degreen
the CPU time ranges from some minutes to several hours. Some words are needed
about the routines that we have used. The functionfmincon relies on a method
that solves a Quadratic Programming subproblem at each iteration. Furthermore, it
updates an estimate of the Hessian of the Lagrangian at each iteration by the BFGS
formula (see thefmincon function reference in [25]). The routinefminsearch
uses the simplex search method of [24], a direct search algorithm that does not
resort to numerical or analytic gradients (see thefminsearch function reference
in [25]).

We have improved the numerical results by the optimization algorithm known
asDifferential Evolutionthat has the property to overcome local minima to reach
lower values of the target function [29]. Its usage has been originally suggested
in [28, p.56], using the factorF equal to 1/2 and the crossover parameterC =
9/10, performing 100 iterations. The Matlab software that we have used is a minor
modification of the codes provided in [30], adapted to our instances. All the tests
were run in Matlab 7.6.0, on a 2.13 GHz Intel Core 2 Duo with 4 GBof RAM.

At this point some issues must still be discussed. We must determine between
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all the n1 ∈ {0, 1}, n3, n6 such thatm = (n + 1)(n + 2)/2 = n1 + 3n3 + 6n6 what
is the choicepreferredby the Lebesgue points. To this purpose we observe that
there is numerical evidence that Lebesgue points have high absolute values of the
Vandermonde matrix Vandn(ξ) determinant (w.r.t. the orthonormal Dubiner basis).
So we compute, via numerical optimization, for all the combinations ofn1, n3, n6

for whichm= n1+3n3+6n6, several setsξ havingn1 points inO1, 3n3 points inO3

and 6n6 points inO6 with GLL distribution on the sides and that are providing high
values of|det (Vandn(ξ))|. The computation of the aforementioned determinants
is less time consuming than the approximation of the Lebesgue constant and the
convergence of the optimization algorithm rather fast. Up to degreen = 18, high
values ofn3 were providing setsξ nearly singular, and in general only few were
giving high |det (Vandn(ξ))|, always with only one choice ofn1, n3 andn6 with
much greater magnitude w.r.t. the remaining competitors.

We observe that in [28, p.14] the author asserts that ifn is the degree and
m= (n+ 1)(n+ 2)/2 = n1 + 3n3 + 6n6, there is numerical evidence thatn1 + n3 =

ceil((n+1)/2), and sincen1 is known for anyn, so aren3 andn6 = (m−n1−3n3)/6.
Our tests confirm this statement up to degreen = 18. Once the rightn1, n3, n6 and
a setξ with particularly high|det (Vandn(ξ))| are at hand, we start the numerical
process for computing the (quasi-)Lebesgue points.

In [10], we have computed some non-symmetric point-sets on the triangleT ,
with low Lebesgue constants, i.e. LEB and LEBGL, the first onewithout any
constraint and the latter with assigned GLL distribution onthe sides.

In Table 1 we compare these new sets LEBGLS with LEB and LEBGL,the
Taylor-Wingate-Vincent sets named TWV [33] that approximately maximize the
Vandermonde determinant, and the Warburton sets shortenedas WB [34], that for
low degrees have good Lebesgue constant and are available assoon as a one vari-
able optimization process is performed. We point out that the two latter sets are
symmetric with Gauss-Legendre distribution on the sides. Furthermore, since not
all the sets of TWV are available we follow the results obtained [28] about the
Lebesgue constants, while the conditioning and the maximumabsolute value of
the cardinal functionsLi are computed only for the sets provided in [33]. In [28],
the author computes sets that we will cite as ROTH, improvingthe Lebesgue con-
stant of [33] and still preserving side distribution and thesixfold symmetries. The
sets are not available, but for completeness sake we report the results.

Since LEBGLS has more constraints, it is natural to expect that we obtain a
worst Lebesgue constant w.r.t. LEB and LEBGL, nonetheless the results are still
good, not too far from those of LEBGL forn ≤ 15. Furthermore, it improves the
Lebesgue constants of the previous known sixfold symmetricsets with assigned
Gauss-Legendre-Lobatto distribution on the sides.

In [27] and [28] it has been considered the maximum of the Lagrange poly-
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Table 1: Lebesgue constantsΛn of some sets in the triangleT .

deg 1 2 3 4 5 6 7 8 9
LEB 1.00 1.49 1.97 2.42 2.90 3.39 3.94 4.55 5.28

LEBGL 1.00 1.67 2.11 2.59 3.08 3.59 4.14 5.21 5.51
LEBGLS 1.00 1.66 2.11 2.59 3.08 3.59 4.14 4.77 5.49

ROTH 1.00 1.66 2.11 2.72 3.61 4.17 4.92 5.90 6.80
TWV 1.00 1.66 2.11 2.72 3.61 4.17 4.92 5.90 6.80
WB 1.00 1.66 2.11 2.66 3.12 3.70 4.27 4.96 5.73

deg 10 11 12 13 14 15 16 17 18
LEB 5.63 6.45 6.90 7.59 8.31 9.07 8.58 9.12 9.88

LEBGL 5.93 6.56 7.13 7.74 8.31 9.07 8.58 9.12 9.88
LEBGLS 6.29 7.00 7.26 8.58 8.83 8.91 10.66 11.41 12.69

ROTH 7.85 7.91 8.47 9.28 9.96 10.02 10.69 11.53 13.13
TWV 7.88 7.91 8.47 9.28 9.96 10.02 12.19 13.88 14.74
WB 6.67 7.90 9.36 11.46 13.97 17.64 22.22 28.76 36.76

Table 2: Conditioning of the Vandermonde matrix w.r.t. the orthonormal Koornwinder-Dubiner
basis.

deg 1 2 3 4 5 6 7 8 9
LEBGLS 3.7 10 20 40 52 69 94 102 148

TWV − − 15 − − 70 − − 141
WB 3.7 10 14 39 53 69 76 119 143

deg 10 11 12 13 14 15 16 17 18
LEBGLS 156 277 228 332 480 397 422 569 370

TWV − − 235 − − 328 − − 425
WB 172 190 209 272 246 349 553 796 1150
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Table 3: Maximal values of the cardinal functionsLi on the reference triangleT computed on a fine
grid.

deg 1 2 3 4 5 6 7 8 9
LEBGLS 1.00 1.00 1.00 1.03 1.05 1.03 1.03 1.04 1.04

TWV 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
WB 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.01

deg 10 11 12 13 14 15 16 17 18
LEBGLS 1.08 1.18 1.04 1.10 1.19 1.10 1.19 1.09 1.07

TWV 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
WB 1.01 1.02 1.02 1.02 1.02 1.02 1.07 1.28 1.81

Table 4: Orbits ˆn1, n̂3, n̂6 of the Lebesgue set LEBGLS.

deg 1 2 3 4 5 6 7 8 9
n̂1 0 0 1 0 0 1 0 0 1
n̂3 0 0 0 1 2 1 3 3 3
n̂6 0 0 0 0 0 1 1 2 3

deg 10 11 12 13 14 15 16 17 18
n̂1 0 0 1 0 0 1 0 0 1
n̂3 4 5 4 6 6 6 7 8 7
n̂6 4 5 7 8 10 12 14 16 19
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nomials as one of the measures of the influence of the nodes in the interpolation
process. It is pointed out that these values must not be too large, better if close to
1. In Table 3 we show that all the sixfold symmetric sets LEBGLS, TWM and WB
enjoy this property, though forn > 17 the values of WB tend to increase too much.
Finally, in Table 4 we list the orbits ˆn1, n̂3, n̂6 of the set LEBGLS, from which
one can derive also the number of variables ˆn3 + 2n̂6 involved in the optimization
process.

3. An application to solve a PDE

To further compare the LEBGLS with the LEBGL, we have carriedout two
convergence tests for the triangle-based spectral elementmethod (TSEM) defined
in [27] applied to the equation−div(Dgradu) + αu = f in Ω, with mixed Dirichlet-
Neumann boundary conditions on∂Ω, whereD is a suitable 2×2 symmetric matrix
and α ≥ 0 a given real. We recall that the rate of convergence of theTSEM
solutionun to the real oneuexact with respect ton is virtually bounded only bys,
the smoothness degree of the real solutionuexact. Thus foruexact ∈ Hs(Ω), one can
expect the optimal error estimate

||uexact− un||L2(Ω) = O(n−s). (4)

Hereuexact is chosen to be analytical, we then expect to obtain the so-called spectral
accuracy,i.e., an exponentially decreasing error as a function ofn.

3.1. Results on one triangle

We firstly consider the reference triangleT = {(x, y); x, y ≥ −1, x+ y ≥ 0} as
computational domainΩ. Concerning the equation data (D, α) we set

D =

(

y2 + ǫx2 −(1− ǫ)xy
−(1− ǫ)xy x2 + ǫy2

)

, α = 0,

with ǫ ∈ {1, 10−1, 10−2, 10−4}. The right-hand sidef of the equation and the
Dirichlet boundary condition on∂Ω are compatible with the analytical solution
uexact = sin(π x) sin(π y). The discretization of the diffusive term with highly
anisotropic diffusion can lead to numerical instabilities. In Table 5, we detail the
L∞-norm of the approximation error (un − uexact) computed by theTSEM with
different sets of interpolation points in the triangleT and by varying the value of
ǫ. We can remark that the method’s spectral precision is maintained despite the
ratio of anisotropy between the twox andy directions varies from 1 to 104 and the
number of degrees of freedomndo f is only (n+1)(n+2)/2, withn ∈ {9, 12, 15, 18}.
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Table 5:L∞-norm of the approximation error with some sets in the triangleT .

deg ǫ = 1 ǫ = 10−1 ǫ = 10−2 ǫ = 10−4

TWV 9 5.8551e-2 1.6146e-2 6.8236e-2 7.1981e-2

12 6.1157e-4 7.2309e-5 1.9696e-4 2.6727e-4

15 6.3740e-6 3.1264e-6 4.5819e-6 5.3509e-6

18 6.2835e-8 2.0731e-8 5.5160e-8 1.9918e-7

WB 9 5.5463e-2 1.7371e-2 7.1970e-2 1.4273e-2

12 3.2353e-4 1.4579e-4 1.4536e-4 1.9091e-4

15 5.0802e-6 3.5157e-6 3.5585e-6 3.5743e-6

18 1.8770e-7 6.6611e-8 6.8238e-8 1.7519e-8

LEBGL 9 8.9436e-2 1.1839e-2 1.0375e-1 1.5888e-1

12 3.9209e-4 7.7523e-5 3.3503e-4 3.9538e-4

15 4.4529e-6 6.1957e-6 8.1674e-6 1.2272e-5

18 7.9921e-8 2.4293e-8 5.1246e-8 9.8565e-8

LEBGLS 9 5.2980e-2 1.9349e-2 7.8346e-2 1.5080e-1

12 7.3061e-4 9.6412e-5 2.8924e-4 3.7571e-4

15 5.1188e-6 3.3400e-6 4.6035e-6 5.2235e-6

18 1.2909e-7 2.0160e-7 2.6482e-7 2.3948e-7

Figure 3: Unstructured simplicial mesh (created by Triangle, a free-charge 2D mesh generator) for
theTSEM convergence tests. Despite the weak number of elements (163) of the mesh, the number
of degree of freedom (ndof) may be important, namely 12042 with N = 12 and 26865 withN = 18.
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Figure 4: Semi-logarithmic plot of theL2-error versus the polynomial ordern for different distribu-
tions of interpolation points in the mesh triangles.

3.2. Results on a mesh

We now considerΩ = (−10, 10)2 \ H , whereH is a square hole, andΩ is
discretized with the unstructured mesh presented in Fig. 3.For the problem equa-
tion, we setD = I2 (the 2× 2 identity matrix) andα = 1. The analytical solution
is chosen to beuexact = sin(2x + y) sin(x + 1) sin(1− y) and thus the source term
f and the values for the Dirichlet conditions on the outer boundary and Neumann
conditions on the (interior) hole boundary are set accordingly.

By looking at Fig. 4 (Table 6) we can remark that the spectral accuracy is
achieved in theTSEM with the considered nodal sets. Moreover, concerning the
L2-norm of the approximation error, we remark that the LEBGLS points show a
better behavior than the LEBGL ones, and an equally good behavior as the TWV
ones. We note that this ranking is in the opposite order of their Lebesgue constants.

4. Conclusions

We have presented an optimization algorithm to distribute,symmetrically in the
triangle, nodes that minimize the Lebesgue constant. Indeed, the LEBGLS nodes
were shown to have Lebesgue constants which are better than or comparable with
all existing node sets up to at least interpolation degree 18. We showed test interpo-
lation results that give further confidence on the quality ofthe generated nodes in
the frame of high-order triangle-based spectral element methods. LEBGLS points
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Table 6:L2-norm of the approximation error for different nodal sets.

deg ndof TWV WB LEBGL LEBGLS

3 810 3.5267e-0 3.5267e-0 3.9673e-0 3.9673e-0

6 3087 0.1297e-0 0.1457e-0 0.1447e-0 0.1621e-0

9 6831 5.9582e-3 6.3634e-3 6.7333e-3 6.5863e-3

12 12042 5.1437e-5 9.0467e-5 8.4629e-5 5.2218e-5

15 18720 3.6078e-7 7.3335e-7 5.7335e-7 3.9009e-7

18 26865 1.5364e-9 3.9966e-8 3.9897e-8 1.6872e-9

could be next used to constrain the construction (and the optimization process) of
symmetric distributions in the tetrahedron. Other three-dimensional shapes could
be analyzed (prisms and pyramids) in order to rely on so-called hybrid meshes for
performing approximations of PDE solutions by theTSEM in three-dimensions.
In [35], the reader can download Matlab files containing the LEBGLS points on
the unit simplex of vertices (0, 0), (1, 0), (0, 1) and the other set of points that have
been used to make comparative tests. For the WB points, generation Matlab files
are given in [34].
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