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Abstract

In this paper, we investigate variants of the well-known Golub and Welsch algo-
rithm for computing nodes and weights of Gaussian quadrature rules for symmetric
weights w in intervals (—a,a) (not necessarily bounded). The purpose is to reduce
the complexity of the Jacobi eigenvalue problem stemming from Wilf’s theorem and
show the effectiveness of these methods for reducing the computer times. Numerical
examples on three test problems show the benefits of these variants.
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1 Introduction

A classical problem in numerical analysis is determining an approximation of
the integral

where f is a continuous function defined on the interval (a,b) and w is a pos-
itive weight function. In general, I,,(f) is computed via an N-point weighted
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sum, usually called a quadrature rule,

Qn(f) = ;wif(xz)-

The abscissas {x;}i—1,.., are known as nodes while the quantities {w;}i=1,. »
are known as weights [9], [13], [18]. A common approach is to determine
{z;}iz1..n and {w;}iz1,.. ., so as to achieve the maximum algebraic degree
of exactness 0, i.e. the maximum positive integer such that I,,(p) = Q.(p) for
any polynomial p of degree less than or equal to ¢. From this point of view,
the highest § that one can achieve for an N-point quadrature is obtained by
the Gaussian rule for which § = 2N — 1. In this case, it is well-known that the
nodes are the zeros of an orthogonal polynomial of degree N w.r.t. the weight
w and that the weights are determined by wy, = [* Ly(z)w(x)dz where Ly is
the k-th elementary Lagrange polynomial.

In the monograph by Wilf [29], it has been noted that starting from the three-
term recurrence of the orthogonal polynomials one can determine a tridiagonal
matrix J, usually referred to as a Jacobi matriz, whose spectral decomposition
delivers the nodes and weights of the desired Gaussian rule. In particular the
eigenvalues of J provide the nodes {xy}, while from the first component of the
eigenvectors one easily gets the weights {wy} (see, e.g., [9, p.118], [13, p.153],
(18, p.99] and [29, p.55] for details). The advantage of this approach is that
reliable linear algebra tools can be used to determine the nodes and weights
of the Gaussian rules [12].

The three-term recurrence is available in several ways. In certain instances it is
known analytically while other times only numerically, e.g. via moments com-
putation or modification algorithms (see e.g. [12], [13]). The spectral decompo-
sition is usually performed by computation of eigenvalues and eigenvectors of
the matrix J via the QR iterative algorithm. Since only the first components
of the eigenvectors of J is needed, a clever technique computing only what is
necessary has been introduced by Golub and Welsch in [19] and [20]. However,
at first glance, this algorithm does not seem to be well suited for even weight
functions on symmetric intervals w.r.t. the origin, i.e. w : (—a,a) — R such
that w(z) = w(—=x). For the sake of simplicity we will call these w symmetric
weight functions; see, for instance, [24].

Since many w’s of practical interest have this form, as in the case of Gegen-
bauer or Hermite weights, in this paper we consider several variants of the
Golub and Welsch algorithm that are suitable for these weight functions and
allow better performances. In the first one, we compute an N-point Gaussian
rule for the symmetric weight function w by means of a N/2-point Gaussian
rule for a certain nonsymmetric weight function. In the second variant, we
use tools from linear algebra to determine the formula via a smaller spectral



problem.

Matlab! routines implementing the Golub and Welsch approach are available
in the OPQ suite by Gautschi (see [14], [16]). Our goal is to improve upon
these routines by implementing our variants in Matlab. We stress that, in the
literature, another approach has been introduced by Glaser, Liu and Rokhlin in
[17] to compute with O(N) complexity up to a million nodes and weights. This
method is implemented in the Matlab package Chebfun [3]. A fast algorithm
for Gauss-Legendre rules has been proposed by Bogaert, Michiels and Foster
in [1]. Hale and Townsend recently described in [22] how to compute the more
general Gauss-Jacobi rules. For a very large number of nodes this method is
today the most efficient one. It is now also implemented in Chebfun.

Since in practical problems the number of nodes is rarely larger than hundreds,
we have found useful to show that our variants are in general competitive with
some recently proposed fast methods for degrees of exactness in the hundreds
or thousands and not for only ¢ < 100 as in the classical approach (see [23]).
Moreover, one should note that our methods are valid for any symmetric
weight function.

We test these algorithms on two classical problems, the computation of the
Gaussian quadrature rules for Gegenbauer and Hermite weights. Finally, we

show their benefits in the case of a new weight function proposed in [6], [8],
[15].

The paper is organized as follows. In §2 we state some basic properties of the
nodes {zy}r—1. n and of the weights {wy}r=1.  n of a Gaussian rule when
the weight function w is symmetric. In §3, we use these results to show how
{@rtr=1,..v and {wy } =1, v for even N are related to the nodes {Zy}r=1,.. n/2
and of the weights {w}r—1,. n/2 of a certain weight function . In §4, we
discuss similarly the case in which NV is odd. In §5 we determine the three-
term recurrence of orthogonal polynomials w.r.t. w, knowing that of w. As an
alternative, in §6 an approach based on linear algebra is developed. Finally,
in §7, 88, 89, §10 numerical tests of all these Matlab implementations are
discussed for three families of weight functions.

L Matlab is a trademark of The Mathworks.



2  On nodes and weights for a symmetric weight function

Let us suppose that w : (—a,a) — R is a symmetric weight function and that
we need to compute the Gaussian quadrature rule

N
Qu(f) = szf(ﬂfz) (1)
i=1
that is exact for all polynomials of degree 5y = 2N — 1, i.e. such that

| @) de = Qx(p)

for all p belonging to the space Ps, of polynomials of degree dy. Here we
do not require a to be finite. Typically a = 1 in the case of Gauss-Jacobi or
a = 00, e.g. for the Gauss-Hermite weight function. The integer dy is known
as the algebraic degree of exactness of the rule.

Since the weight function is symmetric, one can easily prove that

(1) The orthogonal polynomials ¢y € Py associated to w are respectively
even or odd functions if N is even or odd.

(2) Their N simple zeros, i.e. the nodes of the Gaussian rule, belong to the
interval (—a, a) and are symmetric w.r.t. the origin. If NV is odd then 0 is
a node of the Gaussian rule.

(3) Two symmetric nodes of the Gaussian rule share the same weight.

We introduce the quantities z;” and w; to denote respectively the k-th strictly
positive node in the set {x;}Y, and the corresponding weight. Consequently,
the symmetric Gaussian rule (1) can be rewritten for N = 2L as

N L L
Sowif(z) =Y wi f(—a) + > wff(z)
i=1 i=1 i=1

and for N =2L + 1 as

Z:wif(xi> = Z:wff(—ﬁ) +sz~+f(ﬁ)+wo+f(0)-

One can also observe that, owing to the symmetry of the nodes, the orthogonal
polynomial ¢ is such that, if K = 2J + 1 then

K-1 J

o (@) =cx - @ [[ (2 — @) =cx - 2 [[(2* = (27)?)

i=1 i=1



while if K = 2J then

We introduce now the polynomial ¢ () := ¢ - [, (z— (2;)?). Consequently
for K =2J + 1 we have

while for K = 2J we get

We finally observe that the rule is exact for all polynomials of degree dy =
2N — 1 if and only if it is exact on a basis of orthogonal polynomials for
the space Ps, . The Gaussian rule, being symmetric, integrates exactly all the
orthogonal polynomials of odd degree 2J — 1 since by symmetry

_aa ¢os_1(x)w(z)dr = 0.

For the quadrature rule, if N is even, say N = 2L, we have

széf)w 1(25) Zw+¢2J (= +Zw+¢2J ()
:_Zw+¢2J 1 +Zw+¢2J 1(zF) = 0. (2)

For odd N=2L + 1, from ¢9;_1(0) = 0, we get

szcsz 1(5) Zw P27-1( +Zw pas—1(z) + wg ¢d2-1(0)

:—Zw Gag-1(x +Zw Goy_1(z]) +0=0.

This shows that the quadrature rule is exact for odd polynomials. The quadra-
ture problem is therefore reduced to determine N nodes and weights of a sym-
metric rule that is exact only on even orthogonal polynomials ¢of (w.r.t. the
function w), with 2K < éy = 2N — 1.



3 Gaussian rules for symmetric weight functions

Let dA(t) = w(t)dt be a symmetric weight function on [—a,al, a > 0, and
ok (t; dN) =l (1), moa (8 dN) =t () (3)

the respective (monic) orthogonal polynomials. By [13, Theorem 1.18], the 7
are the monic polynomials orthogonal on [0, a?| with respect to the measure
dNE(t) = tT 2 (t/2)dt. Let off, Bi be the recursion coefficients of {mi"}.

3.1 Case I: N even

Let us consider first the case of even N, say N = 2L. Then, suppose that

a? a? w(t/2 L
[ s = [ o e = a0 fe P @

is the L-point Gauss quadrature formula for d\*. Then, putting ¢t = 22, we

get
L

a w(x
2 [* 1) " Drdr = S A), € Pos,
s=1
that is, in view of the symmetry of the weight function w,

a L
| Fatwl@)de = Y- (S), f € Para.
—a s=1

Put q(z) = f(2?), ¢ € Psr_o = Pon_o. Then
N/2

[ atayoae = 33019 = 5 3¢ (atyi9) +a(—i9)).

This is an N-point quadrature rule exact for all even polynomials of degree
< 2N —2. Tt is trivially exact for all odd polynomials. Hence it is exact for all
polynomials of degree < 2N — 1, i.e., it is the Gauss formula for d\ when N
is even.

3.2 Case II: N odd

Let us now consider the case of odd N, say N = 2L + 1. Then, suppose that

2

/Oa f(t)d)\+(t) = )\é%f(()) + i)\ff(tf)’ f € Par, (5)



is the (L + 1)-point Gauss-Radau formula for d\*. Putting ¢t = 22, we get

2/f 2)da = AEF(0) ZAthR ), f € Par

or, setting q(x) = f(2?), ¢ € Par, = Pan_o,

[, ateywtads =3{a0) + 3 Na(yif)

—a

(N—1)/2

=Na0)+ 5 3 A/ + al-yiD). (6)

By the same argument as in Case I, this is the N-point Gauss formula for dA
when N is odd.

4 Computational issues

The L-point Gauss formula (4) can be computed by the Golub and Welsch
algorithm applied to the Jacobi matrix of order L,

ag B 0
5 af 0
=" (7)
I Br_1
o ... Br-1 O@Lfl_

that is, {t&'} are the eigenvalues of (7), and {\¢} given by AY = 8;vs1 where
By = f(?2 dA*(t) and vy is the first component of the normalized eigenvector
v, belonging to the eigenvalue t¢ (cf. [13, Theorem 3.1]). This is implemented
in gauss.m in Gautschi’s OPQ Matlab toolbox [14]. Similarly, the (L+1)-point
Gauss-Radau formula (5) can be computed by the same algorithm applied to
the Jacobi-Radau matrix of order L + 1,

R +
P (dT) = {JL(‘W) \/EGL] cel =10,0,...,1] e RE (8)

\/ 5ZFGL Otf

where of = —g3f 7 _1(0;d\T) /7 (0;d\T) (cf.[13, Theorem 3.2]). This is im-
plemented in radau.m in OPQ. Incidentally, the nodes {t?} are the zeros of
7 (see [13, 3.1.1.2]). It is also known ([5, Chapters 8-9]) that the recursion



coefficients of d\ are a, = 0, and

. B =B /o
Qg ,

52k+1 = Oé;j — Bk

By = k=1,2,3,... (9)

These equalities allow to compute the necessary recursion coefficients a;, 8;
of the monic orthogonal polynomials w.r.t. dA\™ from the correspective oy, Sy
of d\. If B has a finite limit as k — oo, then the nonlinear recursion (9) is
numerically stable (cf. [10, p. 477]).

5 A linear algebra approach for symmetric weight functions

The previous sections have identified the orthogonal polynomials for the sym-
metric problem. In this section we show that the nodes and weights of the
quadrature rule for a symmetric weight function can also be obtained from
a purely algebraic point of view. We start from the three-term recurrence
satisfied by the orthonormal polynomials associated to the weight function w,

Vipi(A) = (A —wj)pj-1(A) = vj—1pj—2(A), j=1,2,...,N (10)

p_1(A) =0, po(A) =1/7.
By symmetry of the weight function w the coefficients w;, j = 1,..., N, are
all zero. The nodes of the Gauss quadrature rule are the eigenvalues of a
symmetric tridiagonal matrix with a zero diagonal. From (10) the eigenvalue
problem can be written as

0 m
10 72
Jr = = \T. (11)
YN—2 0 YN-1
IN-10

The weights, up to a constant factor, are given by the squares of the the
first components of the normalized eigenvectors. Now we use an old trick. We
reorder the equations and the unknowns ;. We first take the odd numbered
equations and then the even numbered ones. For the unknowns we take first
the even components and then the odd ones. Let xo (resp. zg) be the vector
of the odd (resp. even) components of the eigenvector x. Then, the eigenvalue



problem can be written as

F 0 Tg _ ) To
0 FT To Tg

We can eliminate g from these equations to obtain
FFTzo = pro, p= M. (12)

The matrix F' is lower bidiagonal. The number of rows (resp. columns) is the
number of even (resp. odd) components of x. The matrix F' is square if N
is even and has one more row than columns if NV is odd. Nevertheless, it is
straightforward to see that the product FF7T is a square tridiagonal matrix
(with a nonzero diagonal). Hence we have reduced the eigenvalue problem (11)
of order N to the problem (12) of order almost N/2.

The positive nodes of the quadrature rule are the square roots of the eigen-
values of FFT. When N is odd this matrix is singular and we have a zero
eigenvalue. The matrix FFT being semi-positive definite, all the other eigen-
values are strictly positive. The squares of the first components of x can be
obtained by rescaling the eigenvectors of (12). If NV is even, the first compo-
nents of the normalized eigenvectors of (12) have to be divided by v/2. If N
is odd we do the same except for the eigenvector corresponding to the zero
eigenvalue. The weights are then obtained by squaring the first components.

6 Implementations details

Starting in the 1960s the nodes and weights of quadrature rules were computed
by brute force by solving systems of nonlinear equations stating the degree
of exactness of the rule. However, the method of choice today is to compute
the nodes and weights using the tridiagonal Jacobi matrix corresponding to
the orthogonal polynomials associated with the given measure and interval of
integration.

The result saying that the nodes are given by the eigenvalues of the Jacobi
matrix and the weights are given by the squares of the first components of
the normalized eigenvectors was already known at the beginning of the 1960s;
see for instance Wilf [29]. Golub and Welsch [19], [20] used these results and
devised an algorithm based on a QR iteration tailored for tridiagonal matrices
with a Wilkinson-like shift to compute the nodes and weights. It is constructed
in such a way that only the first components of the eigenvectors are computed.
Moreover, as an addendum to [20] there was a microfiche containing the Algol
procedures implementing their algorithm (note that there is a typographical



error in the part of the code symmetrizing the tridiagonal matrix). This paper
and the contents of the microfiche have been reprinted in [2].

In the Fortran package ORTHPOL [11], Gautschi implemented the Golub and
Welsch algorithm as well as many other codes for determining Gaussian rules.
Later on, in [14], he provided a software package for Matlab, called OPQ,
implementing the computation of the nodes and weights. In this classical ap-
proach once the three-term recurrence of the monic orthogonal polynomials
has been computed, the code gauss calls the Matlab built-in function eig
(which is quite fast) to compute eigenvalues and eigenvectors of the tridiag-
onal Jacobi matrix, thus determining the nodes and weights of the Gaussian
quadrature rule via Wilf’s theorem [29, Thm. 5, p.55]. However, all compo-
nents of the eigenvectors are computed contrary to the genuine Golub and
Welsch approach. Moreover, apparently, Matlab does not take into account
the fact that the matrix is tridiagonal. This does not really matter if the num-
ber of nodes N is small. Such a method is sometimes confused with the Golub
and Welsch algorithm (see, e.g. [23]). However, we will see that computing
only the first components can make a big difference for large values of N. A
Matlab (almost verbatim) translation of the Golub and Welsch routines was
provided by Meurant [25] as a toolbox accompanying the book [18]. We denote
this code by GW. It turns out that the Matlab implementation of the Golub
and Welsch algorithm can be optimized by vectorizing most of the statements.
This code is denoted as GWo.

A possible alternative consists in computing only the quadrature nodes {z;}
as eigenvalues of the Jacobi matrix, obtaining the weights {w,} via evaluation
of orthogonal polynomials. In fact, for a general weight function w having py
as normalized orthogonal polynomial of degree k, if {z,};=1,. n are the nodes
of the N-point Gaussian rule then the weights satisfy the equality

N

l/wj = Z(pk(xj))Qa ]: 17"'7N (13)
k=0

(see [9, p.119] for details and [26]). We also take this variant (denoted as Ew)

into account. However, we must warn the reader that computing the weights

using the three-term recurrence may not be always a stable process. It is

sometimes better to normalize the polynomials in a different way. This is the

case, for instance, for the Hermite weight function.

We will use the algorithms described in sections 2 to 5 taking advantage of
symmetry in several different ways and we will compare their results to the
Matlab function gauss from OPQ. The algorithms we consider are:

- SymmAG, the algorithm of Section 3, using gauss (that is, computing all the
components of the eigenvectors) for the reduced system,
- SymmAGWo, the same algorithm but using the optimized Golub and Welsch
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GWo code for the reduced system,

- SymmAw, the algorithm of Section 3 using Matlab’s eig for the eigenvalues
and the three-term recurrence of the polynomials for the weights, as in (13),

- SymmMGWo, the matrix algorithm of Section 5 with GWo for the reduced sys-
tem,

- SymmMw, the algorithm of Section 5 computing the nodes with eig and the
three-term recurrence of the polynomials for the weights.

As we said above, new algorithms that compute nodes and weights of classical
Gaussian rules for some weight functions in O(n) operations have been sug-
gested in [17], [22] and accordingly to this strategy, Matlab routines for the
computation of nodes and weights have been proposed by the Chebfun team
in [3] (see also [21], [28]).

7 Numerical experiments with Gegenbauer weight functions

As a first numerical example we consider the computation of Gaussian rules
for Gegenbauer weights (also known as ultraspherical weights), i.e. nodes and
weights of the quadrature formula

[ @ -yt =Y ), 50

whose degree of exactness is oy = 2N — 1.

The weight function w(x) = (1 —z?)*~! is of course symmetric in the interval
(—=1,1) and corresponds to a Jacobi weight w, s(z) = (1 — 2)%(1 + z)# for
a =0 =p—1>—1. In the numerical experiments, we take u = 7/4.

The computations were done on a PC using an Intel core i5-2430M CPU at
2.40 Ghz with 6 GB of RAM and Matlab R2010b. We chose to display ratios
of computing times relative to gauss from the OPQ toolbox since this is
generally considered as the “standard” Matlab implementation of the Golub
and Welsch algorithm.

Let us first compare the functions gauss, GW, GWo and Ew which compute the
nodes with eig (requiring only the eigenvalues) and the weights with the three-
term recurrence. The speed-ups relative to gauss are given in Figure 1. To
obtain reliable time measurements the tests are repeated 100 times when the
maximum value of N is 200 and 10 times when the maximum value is 2000.
Starting around N = 150, GW is faster than gauss. The optimized version GWo
is faster than GW and its advantage increases with N. Ew is faster than the other
methods for N smaller than 700. This can be explained by the fact that eig is
a built-in function. Figure 2 shows the log;, of the constants C, assuming that
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the computer times are C NY with v = 3 for gauss and v = 2 for GW, GWo and
Ew. Although the constant is much smaller for gauss, but, as it is well known,
the computing time is proportional to N3 while it is proportional to N? for the
Golub and Welsch algorithm. The constant for the optimized version is a little
smaller than for the “genuine” GW version. Although the computing times of
GW and GWo are proportional to N for one step of the algorithm, the number
of iterations needed to obtain the eigenvalues is also increasing linearly with
N. This explains the O(N?) computing times. As we can see, Ew is not really
O(N?). This explains why it is slower than GW and GWo for N large. From now
on we will use the optimized version GWo as the Golub and Welsch algorithm,
instead of GW.

Ratios to Gauss Ratios to Gauss

45

4 —6—GW 4 18
— GWo

35 Ew ] 16

3

25

0 50 100 150 200 0 500 1000 1500 2000

Fig. 1. Comparison of the speed-ups of the rules GW, GWo and Ew relative to gauss.
On the left figure, N = 10,30, ...,200 while on the right, N = 100, 300, . .. 2000.
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Fig. 2. Computer times divided by N3 for gauss and divided by N? for GW, GWo and
Ew

Figure 3 displays the ratios of the computer times relative to gauss. The GLR
algorithm is from Chebfun [3] (without a switch to the Golub and Welsch
algorithm for N small) and the algorithm proposed in [22], that we will name
Hale-T, is from the package quadpts [21]. Note that to be fair to these algo-
rithms, we have taken into account the times for computing the coefficients
of the orthogonal polynomials for the weight function for all methods. This
is done using the function r_jacobi in the package OPQ from Gautschi [16].
The speedups are the average over 100 tests, while in the second test for large
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N, 10 experiments have been considered. The left part of the figure is for small
values of N. We see that SymmAG is much faster than gauss and has a better
ratio than GW and GWo because it uses a built-in function. The right part of the
figure shows that this is true until N = 200. However, for N < 1200 SymmAw
and SymmMw are much faster than the other methods, based on the Golub-
Welsch algorithm. For N larger than 200, the variants SymmAGW and SymmAGWo
are much faster than SymmAG whose performance is stagnating. We note also
that SymmAGWo is a little faster than the matrix approach SymmMGwo. After
N = 1200 SymmAw and SymmMw are levelling off and SymmAGW and SymmAGWo
become faster. The “pure” GLR (without a switch to the methods similar to
gauss) function is slower than gauss for N < 160. For small N the symmetric
variants of Golub and Welsch are faster than GLR. But, GLR becomes faster
than the other Golub-Welsch based methods for N > 1300 as can be seen on
the right part of the figure. On the other side the new method by Hale and
Townsend provides a better performance for N > 850. We do not compare
our algorithms with those introduced by Bogaert, Michiels and Foster since
they exclusively compute Gauss-Legendre rules.

Nevertheless, the ratios of SymmAGwo and SymmMGWo are, of course, still growing
because their complexity is better than that of gauss.

For N = 100, the speedups for SymmAG, SymmAGWo, SymmMGWo, SymmAw, SymmMw,
GLR and Hale-T are respectively, 3.22, 2.30, 2.31, 8.32, 8.07, 0.43 and 0.58.
For N = 1000, the speed-ups are respectively, 9.05, 38.15, 31.09, 39.76, 40.29,
27.45 and 58.74.

The maximum norm of the differences of the nodes and weights with those
computed by gauss are of the order 1074, Thus, the fastest algorithms for
N < 800 are obtained by using the algorithms of sections 3 and 5, computing
the nodes with eig and the weights using the three-term recurrence. The
Golub and Welsch algorithm, coupled with the symmetrizations of the rule,
is also competitive with quadpts for computing Gauss-Gegenbauer rules with
algebraic degree of exactness oy < 1700.

It is important to observe that the results may vary from computer to com-
puter, as well as for different Matlab versions due to possible changes in the
implementation of the Matlab built-in function eig. This example shows that
for the set of algorithms we considered, there is no method which is the best
for all values of N. Note also that the methods using eig have an advan-
tage since this is a Matlab built-in function, but when our variants are faster
the conclusions will be the same with Fortran or C implementations of the
algorithms.
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—e— SymmAG
—+— SymmAGWo
60 SymmMGWo
—6—GLR

—&— SymmMw

o 500 1000 1500

Fig. 3. Comparison of the speed-ups of the rules w.r.t. gauss, for the Gegen-
bauer weight function w(z) = (1 — 22)3/%, in the interval (—1,1). On the left part,
N =5,10,...,200 while on the right, N = 100, 150, . . . , 1500.

8 Numerical experiments with Hermite weight functions

In this section, in order to illustrate the behavior of our algorithms on un-
bounded intervals, we consider the problem of the computation of Gaussian
rules for the Hermite weight function, i.e. formulas

/_O:O f(z) - exp (—2?) dr ~ ;wkf(:ck),

whose degree of precision is oy = 2N — 1.

Then the algorithm denoted as gauss uses the function r_hermite from Gautschi’s
package, followed by eig to compute the nodes {z;} and weights {wy}. Alter-
natively, they can be obtained by hermpts provided by the Chebfun team [4]
that uses the Glaser-Liu-Rokhlin algorithm.

As in the previous section, we use SymmAG, SymmAGWo, SymmMGWo, SymmAw and
SymmMw to determine the nodes and the weights of the Gaussian rule, this time
w.r.t. the Hermite weight.

We observe that, introducing the generalized Laguerre weight function L(x, u) =
a - exp (—z), then w(x) = % = 0.5+ L(z,—0.5). Thus one can compute
the three-term recurrence of the monic w-orthogonal polynomials via the Mat-
lab routine r_Laguerre by Gautschi and the nodes and weights by the Golub

and Welsch algorithm. The routine SymmLGWo implements these ideas.

In Figure 4, we compare the speed-ups of SymmAG, SymmAGWo, SymmMGWo, SymmLGWo,
SymmMw, SymmAw and hermpts w.r.t. the classical algorithm gauss. For small
values of N (left part of the figure) the conclusions are more or less the same
than for the Gegenbauer weight function. The algorithms SymmAGWo, SymmMGWo
become faster than gauss for N between 50 and 60 as for the Gegenbauer
weight but hermpts also, contrary to the previous example. The fastest algo-
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rithms for small N are SymmAw and SymmMw.

Since GLR through hermpts is faster than it was before, it becomes faster
than SymmAGWo and SymmMGWo for N > 400. It becomes faster than SymmMw
and SymmAw for N > 700.

For N = 100, the speed-ups for SymmAG, SymmAGWo, SymmMGWo, SymmLGWo,
SymmMw, SymmAw and hermpts are respectively, 4.21,1.76,1.38,1.98,7.55,6.67
and 1. For N = 1000, the speed-ups are respectively, 9.90, 35.08,29.09, 34.35,
49.79,49.11 and 61.90.

—o— SymmAG
—+— SymmAGWo
SymmMGWo

—6— SymmAG

60 —¥— SymmAGWo
SymmMGWo 4

—4—GLR e

—&— SymmMw

—b— SymmAw
SymmLGWo

—6—GLR

—%— SymmMw
12 —b— SsymmAw
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Fig. 4. Comparison of the speed-ups of the rules w.r.t. gauss, for the Hermite
weight function w(x) = exp (—z?), in the interval (—oc0,00). On the left part,
N =5,9,...,200 while on the right, N = 100, 150, .. ., 1000.

9 Numerical experiments with Trigonometric Gaussian cubature

In some recent papers [6], [7], [8], [15], the authors have considered the problem
of constructing a quadrature formula with n + 1 angles and positive weights,
exact in the (2n+ 1)-dimensional space of trigonometric polynomials of degree
< n on intervals with length smaller than 27. In particular, the following result
has been proven in [6].

Theorem 1 Let {(&;, ;) }i<j<nt1, be the nodes and positive weights of the
algebraic Gaussian quadrature formula for the weight function

w(z) = 2sin (w/2) ’
\/1 — sin?(w/2)z2

Then, denoting by T, ([—w,w]) = span{l,cos(kf),sin(kd),1 < k < n,0 €
[—w,w]}, the (2n+1)-dimensional space of trigonometric polynomials on [—w, —w],
we have

z e (—1,1). (14)

n+1

| 1O@0 =33 f(8). Vf € Ta(-w.—w)), 0<w<n

—Ww
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where

¢; = 2arcsin (sin(w/2)&;) € (—w,w), 7=1,2,...,n+1.

The weight function w in (14) is of course symmetric, but at this time it is not
known whether any second order differential equation exists that determines
the orthogonal polynomials and would allow the application of Glaser-Liu-
Rokhlin techniques. On the other hand, in [6], [8], [15], the authors have been
able to compute in different ways the three-term recursion of the symmetric
weight w described in (14). Note that, without the factor 2 sin(w/2), the weight
function is something in-between the Legendre weight function (w = 0) and
the Chebyshev weight function (w = 7).

The purpose of these rules, as shown in [7], [8], is to provide multidimensional
product rules on elliptical sectors and spherical domains. This entails the
computation of many Gaussian quadrature rules with different values of w,
requiring the efficient computation of the basic univariate rule for the weight
function w introduced in (14).

In Figure 5, we compare the speed-ups of SymmAG, SymmAGWo, SymmMGWo, SymmMw,
SymmAw w.r.t. the classical algorithm gauss for w = /2. We note that nu-
merical underflow problems due to the algorithms proposed in [6], [8], [15], do
not allow the computation of the three-term recurrence for N > 510. Thus,
we limit our experiments to N = 500. SymmMw and SymmAw are the fastest
algorithms but the acceleration factor is smaller than what it was for the
Gegenbauer and Hermite weight functions. All variants are faster than gauss
for N > 50.

For N = 100, the speed-ups for SymmAG, SymmAGWo, SymmMGWo, SymmMw and
SymmAw are respectively, 2.07,1.58,1.39, 2.32 and 2.25. For N = 500, the speed-
ups are respectively, 4.36,5.76, 5.45, 8.29 and 8.21.

10 Conclusion

In this paper we have considered some variants of the well-known Golub and
Welsch algorithm for the computation of Gaussian quadrature rules. We have
shown that, depending on the degree of precision, the performance of Matlab
implementations can be enhanced by vectorizing the original code or comput-
ing the weights by mean of the three-term recurrence.

Furthermore, we have analyzed the case of symmetric weight functions, intro-
ducing some new methods, based on the three-term recurrence of the orthog-
onal polynomials. Some of them are based on exploiting the nodes and the
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Fig. 5. Comparison of the speed-ups of the rules SymmAG, SymmAGWo, SymmMGWo,
2 sin (w/2) .
————/2)__ in the
v/ 1—sin?(w/2)x2
interval (—1,1), for w = 7/2. On the left part, N = 5,9,...100 while on the right,

N = 100,125, ..., 500.

SymmMw, SymmAw w.r.t. gauss, for the weight function w(z) =

weights of a Gaussian rule for a different weight function w and then deriving
those for w, some others use a purely linear algebra approach.

We have implemented these routines in Matlab and compared them on Gegen-
bauer and Hermite weight functions, showing that the methods are competi-
tive with the Glaser-Liu-Rokhlin algorithms implemented in Chebfun for de-
grees of exactness respectively oy < 2600 and oy < 1600 and provide a
certain speed-up w.r.t. the commonly used codes in the OPQ suite. We have
also tested the new algorithm by Hale and Townsend on a Gegenbauer weight
function and seen that our routines SymmMw and SymmAw are competitive for a
degree of exactness 6y < 1700.

A test on a sub-range Chebyshev weight function has also been considered,
exhibiting smaller computer times than the codes previously known. In all
the examples, better performances are outlined even for moderate degrees of
exactness.

Finally we stress that our algorithms can be used for any symmetric weight
function, as demonstrated in the third example in section 9, contrary to some
other fast methods for which one needs to know the associated differential
equation or some asymptotic developments.

Matlab codes implementing our algorithms are available at the homepage [27].
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