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Abstract

We show that finite-dimensional univariate function spaces satisfy-
ing a Bernstein-like inequality admit norming meshes. In particular, we
determine meshes with “optimal” cardinality for trigonometric poly-
nomials on subintervals of the period. As an application we discuss the
construction of optimal bivariate polynomial meshes by arc blending.
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1 From Bernstein inequalities to norming meshes

We begin with the following definition. Given a sequence {Sn} of finite
dimensional subspaces of C(K) (the space of continuous functions on a real
or complex d-dimensional compact subset K), a sequence {An} of finite
subsets of K is called a {Sn}−norming mesh (in the sup-norm) if there
exists a constant C > 0 such that

‖p‖K ≤ C ‖p‖An
, ∀p ∈ Sn ; (1)

here and below, ‖f‖X denotes the sup-norm of a function bounded on
the set X. Observe that necessarily card(An) ≥ dim(Sn); then, we may
term “optimal” (with respect to the cardinality) a norming mesh such that
card(An) = O(dim(Sn)) as n → ∞.

In recent years, several investigations have been devoted to the theory
and applications of norming meshes in the polynomial case, Sn = P

d
n, with
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the additional requirement that card(An) = O(ns) for some s ≥ d; in such
a case the sequence is called an admissible mesh. An admissible mesh with
s = d is called optimal; see [7, 12]. If in (1) we have a sequence Cn instead of
C, increasing at most polynomially with n, the mesh is called weakly admis-

sible [7]. Admissible and weakly admissible meshes are important structures
in polynomial approximation theory: for example, in [7] it is shown that they
are nearly optimal for least squares approximation, and contain Fekete-like
interpolation sets with a slowly increasing Lebesgue constant. Algorithms
for the approximate computation of such Fekete-like sets have been devel-
oped in [3, 4, 16]. For a recent survey on the state of the art in polynomial
interpolation and approximation in C

d, we refer the reader to [1].
In [7, Thm.5], it has been shown that any (real) compact set which

satisfies a Markov polynomial inequality with exponent r has an admissi-
ble mesh with O(nrd) cardinality. On the other hand, existence of optimal
(or near-optimal) admissible meshes has been proved constructively for sev-
eral families of bidimensional and multidimensional compacts, such as for
example polygons and polyhedra, euclidean spheres and balls, subanalytic
sets, convex bodies and starlike domains with smooth boundary; cf., e.g.,
[5, 11, 12, 13, 14].

Most of these results exploit, in some way, the basic fact that the one-

dimensional interval posesses optimal admissible meshes, see, e.g., [10, 15].
Recently [12], this result has been extended to trigonometric polynomials on
subintervals of the period, where the construction of the optimal mesh has
been obtained using together a Markov and a Bernstein inequality.

In this note, we focus on the univariate case, showing that the availability
of a Bernstein-like inequality allows to construct directly a functional norm-
ing mesh. We then discuss the result in the framework of optimal meshes
for polynomials, and for trigonometric polynomials on subintervals of the
period. To this purpose, we first give the following general:

Proposition 1 Let {Sn} be a sequence of finite dimensional spaces of dif-

ferentiable functions defined in the compact interval [a, b]. Assume that for

any p ∈ Sn and x ∈ (a, b) the following Bernstein-like inequality holds

|p′(x)| ≤ φn(x) ‖p‖[a,b] , φn ∈ L1
+(a, b) , (2)

and define

Fn(x) =

∫ x

a
φn(t) dt . (3)

Consider m + 1 equally spaced points in [0, Fn(b)], where m > Fn(b)/2,
namely yj = jFn(b)/m, j = 0, 1, . . . ,m.

Then, the following functional inequality holds

‖p‖[a,b] ≤
1

1− Fn(b)/2m
‖p‖Xm

, ∀p ∈ Sn , (4)
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where Xm = {F−1
n (y0), . . . , F

−1
n (ym)} is constructed choosing one point in

the inverse image of each yj.

Proof. Fix x ∈ [a, b]: by construction, there exists xk ∈ Xm such that
|Fn(x)−Fn(xk)| ≤ Fn(b)/2m. Now, for every p ∈ Sn we can write the chain
of inequalities

|p(x)| ≤ |p(xk)|+ |p(x)− p(xk)| ≤ |p(xk)|+
∫ max{x,xk}

min{x,xk}
|p′(t)| dt

≤ |p(xk)|+ ‖p‖[a,b]
∫ max{x,xk}

min{x,xk}
φn(t) dt ≤ |p(xk)|+ |Fn(x)− Fn(xk)| ‖p‖[a,b] ,

which gives

|p(x)| ≤ |p(xk)|+
Fn(b)

2m
‖p‖[a,b] .

Taking the maximum for xk ∈ Xm on the right-hand side and then for
x ∈ [a, b] on the left hand-side, we get the inequality

‖p‖[a,b] ≤ ‖p‖Xm
+

Fn(b)

2m
‖p‖[a,b] ,

that is (4). �

Remark 1 Inequality (4) clearly implies the existence of {Sn}-norming
meshes. Indeed, it is sufficient to take

m = ⌈µFn(b)/2⌉ (5)

for a fixed µ > 1, to get a norming mesh An = Xm with O(Fn(b)) cardinality
as n → ∞, and constant C = µ/(µ − 1).

Notice also that in the case when

φn(x) = nφ(x) , φ ∈ L1
+(a, b) , (6)

as it happens for example with polynomials and trigonometric polynomials
(see the discussion below), then in Proposition 1

Xm = {F−1(jF (b)/m)} , j = 0, . . . ,m , F (x) =

∫ x

a
φ(t) dt , (7)

and thus we have a norming mesh with O(n) cardinality, namely

An = X⌈µnF (b)/2⌉ , card(An) =

⌈

µnF (b)

2

⌉

+ 1 , µ > 1 , (8)

and constant
C =

µ

µ− 1
. (9)

Finally, it is worth observing that if φn in (2) is a.e. positive, then Fn is
a strictly increasing and thus invertible function, and Xm in Proposition 1
is uniquely determined.
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1.1 Polynomials

In the case of polynomials, Sn = Pn, we can consider a reference interval,
say [a, b] = [−1, 1], since norming meshes, also called admissible meshes
in the literature, are preserved by affine transformations. By the classical
Bernstein inequality (cf., e.g., [2]), that is (2) with

φn(x) =
n√

1− x2
, x ∈ (−1, 1) , (10)

we get immediately in view of Remark 1 the existence of optimal admissible
meshes, i.e., admissible meshes with O(n) cardinality.

Moreover, observing that in (7) F (x) = arcsin(x)+π/2, and thus F (b) =
F (1) = π and F−1(y) = sin(y − π/2) = − cos(y), the mesh points Xm =
{− cos(jπ/m)}, j = 0, . . . ,m, turn out to be nothing else than the classical
m+1 Chebyshev-Lobatto points for degreem, wherem > nπ/2. This result,
however, is already well-known, since Ehlich and Zeller proved a sharper
inequality (see [10] and [5, Rem.1]), where the first factor on the right-
hand side of (4) is 1/ cos (nπ/2m) ≤ 1/(1 − nπ/2m) and the corresponding
inequality is valid for every m > n.

On the other hand, the general formulation of Proposition 1 can still give
some additional information on the generation of polynomial meshes. In-
deed, observing that

√
1− x2 ≥

√

1− |x|, x ∈ (−1, 1), and that 1/
√

1− | · | ∈
L1
+(−1, 1), we have a Bernstein-like inequality in Pn with

φn(x) =
n

√

1− |x|
, x ∈ (−1, 1) . (11)

Using the notation of Remark 1 we get F (x) = 2
√
1 + x for x ∈ [−1, 0],

and F (x) = 4 − 2
√
1− x for x ∈ [0, 1]. Since F (1) = 4, we have that the

polynomial inequality (4) holds for every m > 2n, with Xm = {F−1(4j/m)},
j = 0, . . . ,m, where F−1(y) = y2/4 − 1 for y ∈ [0, F (0)] = [0, 2], and
F−1(y) = −y2/4 + 2y − 3 for y ∈ [F (0), F (1)] = [2, 4]. By Remark 1 we get
a new family of optimal admissible meshes for the interval, An = X⌈2µn⌉,
with constant C = µ/(µ − 1).

1.2 Trigonometric polynomials

In the case of trigonometric polynomials on subintervals of the period we can
consider the reference interval [−ω, ω], 0 < ω ≤ π, that is Sn = Tn([−ω, ω)]),
since norming meshes are preserved by angle shifts. “Subperiodic” trigono-
metric approximation has received some attention in the recent literature,
in view of the connection with multivariate polynomial approximation on
arc based domains; cf. [6, 12].

In the paper [12] on optimal polynomial meshes, A. Kroó has shown that
Chebyshev-Lobatto points for suitable O(n) degree are norming meshes for
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Tn([−ω, ω)]). The proof is based on the joint use of a Markov and of (a
special formulation of) a Bernstein inequality which are known to hold in the
subperiodic case, cf. [2, Ch.5]. These inequalities involve however constants
that depend on ω and are not bounded as ω → 0. In particular, the optimal
meshes An, with constant C = 2, are mn+ 1 Chebyshev-Lobatto points in
[−ω, ω], with m > πmax{

√

A(ω), 2B(ω)}, where A and B appear in the
Markov and Bernstein trigonometric inequality, respectively. In particular,
A(ω) = 1/k + c(π − ω)/ω → ∞ as ω → 0; it appears in the trigonometric
Markov inequality ‖t′‖[−ω,ω] ≤ A(ω)n2 ‖t‖[−ω,ω], valid for n ≥ k and for
every t ∈ Tn([−ω, ω)]), where c ≤ 16π is a suitable costant, cf. [2, E.15, p.
238].

Here, we show that, in view of Proposition 1, an optimal trigonometric
mesh An on subintervals of the period, such that card(An)/n is bounded
independently of ω, can be constructed directly by the trigonometric Bern-
stein inequality (also known as Videnskii’s inequality in the literature, cf.
[2, E.19, p. 243])

|t′(θ)| ≤ n
√

1− cos2(ω/2)/ cos2(θ/2)
‖t‖[−ω,ω] , θ ∈ (−ω, ω) , ∀t ∈ Tn .

(12)
Consider the primitive

G(θ) = G(θ;ω) =

∫

1
√

1− cos2(ω/2)/ cos2(θ/2)
dθ

= 2 arcsin

(

sin(θ/2)

sin(ω/2)

)

, 0 < ω ≤ π . (13)

Observing that G(±ω) = ±π, and using the terminology of Remark 1 with
[a, b] = [−ω, ω], we get

F (θ) = G(θ) + π , F (b) = 2π , (14)

which is a strictly increasing and thus invertible function, with inverse

F−1(y) = {2 arcsin(− cos(y/2) sin(ω/2)) , y ∈ [0, 2π]} . (15)

Then, inequality (4) holds for every m > πn, with the m+ 1 angles

Xm = {F−1(2πj/m)} = {2 arcsin(− cos(jπ/m) sin(ω/2)) , j = 0, . . . ,m} ,
(16)

that are the image of the classical m+1 Chebyshev-Lobatto points for degree
m by the nonlinear transformation f(u) = 2 arcsin(u sin(ω/2)), u ∈ [−1, 1];
we recall that this transformation plays a key role also in the construction
of near optimal sets for subperiodic trigonometric interpolation, cf. [6, 9].
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By Remark 1 we get a new family of optimal trigonometric norming meshes
for subintervals of the period,

An = X⌈πµn⌉ = {2 arcsin(− cos(πj/⌈πµn⌉) sin(ω/2)) , j = 0, . . . , ⌈πµn⌉} ,
(17)

with constant C = µ/(µ−1) and cardinality ⌈µπn⌉+1. For example, taking
µ = 2 we get an optimal subperiodic trigonometric mesh with C = 2, as in
[12], but cardinality of order O(n) bounded independently of ω.

1.3 Optimal polynomial meshes by arc blending

We discuss now an application of optimal subperiodic trigonometric meshes,
namely the construction of optimal polynomial meshes on bidimensional
domains which can be parametrized by linear blending of elliptical arcs. Let

P (θ) = A1 cos(θ)+B1 sin(θ)+C1 , Q(θ) = A2 cos(θ)+B2 sin(θ)+C2 , (18)

θ ∈ [α, β], be two trigonometric planar curves of degree one,

Ai = (ai1, ai2) , Bi = (bi1, bi2) , Ci = (ci1, ci2) , i = 1, 2 , (19)

being suitable bidimensional vectors (with Ai, Bi not all zero), with the im-
portant property that the curves are both parametrized on the same angular

interval [α, β], 0 < β − α ≤ 2π. It is not difficult to show, by a possible
riparametrization with a suitable angle shift when Ai and Bi are not or-
thogonal, that these curves are arcs of two ellipses centered at C1 and C2,
respectively.

Consider the domain

Ω = {(x, y) = σ(t, θ) = tP (θ) + (1− t)Q(θ) , (t, θ) ∈ [0, 1] × [α, β]} , (20)

which is the transformation of the rectangle [0, 1]× [α, β] obtained by convex
combination (linear blending) of the arcs P (θ) and Q(θ). This transforma-
tion can describe directly or by finite union several types of domain obtained
as section of a disk (ellipse) by straight lines, such as for example circular (el-
liptical) segments, sectors (even asymmetric), zones, lenses. For an overview
we refer the reader to [8], where arc blending is considered in the framework
of numerical cubature (differently from [8], we do not need here that the
transformation σ be also injective, but only surjective).

In the present context, the key observation is that a bivariate polyno-
mial p ∈ P

2
n becomes by the change of variables (20) a mixed algebraic-

trigonometric polynomial in a tensor product-space,

p(σ(t, θ)) ∈ Pn([0, 1])
⊗

Tn([α, β]) . (21)

Consider the optimal polynomial mesh in [0, 1], given by νn+1 Chebyshev-
Lobatto points (ν > 1)

Tn = {(cos(jπ/νn) + 1)/2 , j = 0, . . . , νn} , (22)
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with constant C1 = 1/ cos(π/2ν); cf. [5, 10]. Moreover, consider also the
optimal trigonometric mesh in [α, β], given by the ⌈πµn⌉+1 angles (µ > 1)

Θn = {2 arcsin(− cos(πj/⌈πµn⌉) sin((β−α)/2))−(α+β)/2 , j = 0, . . . , ⌈πµn⌉} ,
(23)

with constant C2 = µ/(µ − 1); cf. (17). Then we can write

‖p‖Ω = ‖p ◦ σ‖[0,1]×[α,β] ≤ C1C2 ‖p ◦ σ‖Tn×Θn
= ‖p‖σ(Tn×Θn) , (24)

i.e., σ(Tn×Θn) is an optimal polynomial mesh for Ω, since it has cardinality
O(n2), with constant C = C1C2. For example, taking µ = ν = 2, we get an
optimal polynomial mesh for Ω with constant C = 2

√
2 and cardinality not

greater than (2n+ 1)(⌈2πn⌉ + 1).
In Figure 1 below we show an example of such optimal polynomial meshes

in two different sections of the unit disk, an annular sector and a circular

segment, at degree n = 4; the blending transformation (20) is σ(t, θ) =
(tr1 +(1− t)r2)(cos(θ), sin(θ)), r1 = 0.3, r2 = 1, [α, β] = [−π/4, π/4] for the
annular sector, and σ(t, θ) = (cos(θ), (2t − 1) sin(θ)), [α, β] = [0, 3π/4] for
the circular segment (notice that in the latter case the right cardinality is
obtained by subtracting the 2n repetitions of the point (1, 0)).

Figure 1: Optimal polynomial meshes at degree n = 4 for an annular sector
(left, 9 × 27 = 243 points), and a circular segment (right, 9 × 27 − 8 = 235
points).

Remark 2 As already observed in [12], the availability of optimal subpe-
riodic trigonometric meshes allows to construct optimal multivariate poly-
nomial meshes, whenever algebraic polynomials on a multidimensional do-
main or manifold, by a suitable change of variables, belong to tensor-product
spaces involving univariate trigonometric (and possibly algebraic) polyno-
mials on suitable intervals.

For example, it is clear that a polynomial on the 2-sphere, in spherical
coordinates, belongs to the tensor-product space of univariate trigonometric
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polynomials with respect to the longitude and the (co)latitude. Then, with
the same reasoning developed above we can construct, by cartesian product
of the angular meshes, optimal polynomial meshes on standard subregions
of the sphere which are lat-long rectangles (up to rotations), such as for
example spherical caps and spherical zones.
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