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Abstract

We propose a numerical method (implemented in Matlab) for com-
puting algebraic quadrature nodes and weights on compact multivariate
domains. It relies on the search of maximum volume submatrices of Van-
dermonde matrices in suitable polynomial bases, by a greedy algorithm
based on QR factorization with column pivoting. Such nodes are ap-
proximate Fekete points, and are good also for polynomial interpolation.
Numerical tests are presented for the interval and the square.
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1 Introduction.

Our work started from the search for a strategy to generate good points for alge-
braic quadrature over general multidimensional regions. A possible approach is
the following. Let Ω ⊂ Rd be a compact subset (or lower dimensional manifold).
Given a polynomial basis for Πd

n(Ω) (the subspace of d-variate polynomials of
degree ≤ n restricted to Ω), say

span(pj)1≤j≤N = Πd
n(Ω) , N = N(n) := dim(Πd

n(Ω)) , (1)

and a sufficiently large and dense discretization of Ω

X = {xi} ⊂ Ω, , 1 ≤ i ≤ M , M > N , (2)

we can construct the rectangular Vandermonde matrix

V = Vn(x1, . . . , xM ) = (vij) := (pj(xi)) ∈ R
M×N . (3)
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A quadrature formula of algebraic degree of exactness n for a given measure
µ on Ω can be obtained by solving the underdetermined linear system of the
quadrature weights

M
∑

i=1

wi pj(xi) =

∫

Ω

pj(x) dµ , 1 ≤ j ≤ N (4)

that is in matrix form

V tw = m , m = {mj} =

{
∫

Ω

pj(x) dµ

}

, 1 ≤ j ≤ N , (5)

provided that the “moments” {mj} are explicitly known or computable (cf., e.g.,
[39, 40] for the computation of polynomial moments over nonstandard domains).
We observe that in the numerical literature there is not an universal agreement
on the terminology on Vandermonde matrices, often V t (in our notation) is
called the Vandermonde matrix; see, e.g., [2].

The solution of such a system by a standard SVD approach (cf. [2, 27])
would then give in general a vector of M nonzero weights, and thus a quadrature
formula which uses all the original discretization points. On the contrary, if V t

has full rank, its solution by the standard Matlab backslash “\” solver for linear
systems (cf. [33]) gives only N nonzero weights, and thus also an automatic
selection of the relevant N quadrature nodes and weights. In a Matlab-like
notation we can write:

Algorithm 1 (approximate Fekete points)

• w = V t\m ; ind = find(w 6= 0) ;

• X∗ = X(ind) ; w∗ = w(ind) ; V∗ = V (ind, :) ;

where ind = (i1, . . . , iN ), that is we get the two arrays of length N

X∗ = {xi1 , . . . , xiN
} , w∗ = {wi1 , . . . , wiN

} , (6)

which generate the quadrature formula

∫

Ω

f(x) dµ ≈

N
∑

k=1

wik
f(xik

) , f ∈ C(Ω) . (7)

Moreover, we also extract a nonsingular Vandermonde submatrix V∗ (corre-
sponding to the selected points), which can be useful for polynomial interpola-
tion. Computing quadrature weights from moments via square Vandermonde
matrices is a well-known and developed approach in the 1-dimensional case (see,
e.g., [25]), whereas the general and multidimensional extraction procedure just
sketched (based on rectangular Vandermonde matrices) seems in some respect
new.

Our numerical experiments in the interval and in the square show that, when
suitable polynomial bases are used, this formula is a good (stable and conver-
gent) quadrature formula, and in addition the extracted quadrature nodes are
good polynomial interpolation points (slow growth of the Lebesgue constant).
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This is essentially due to the implementation of the Matlab backslash opera-
tor for underdetermined linear systems, which is based on the QR factorization
algorithm with column pivoting, firstly proposed by Businger and Golub in 1965
(cf. [11, 33]). The result is that such points are approximate Fekete points, that
is points computed “trying to maximize” the Vandermonde determinant ab-
solute value, as we shall discuss in the next sections. Our work is mainly of
computational kind, for a deep discussion about the theoretical issues of the
present approach in the 1-dimensional case we refer the reader to the work in
progress [5].

2 Approximate Fekete points in the interval.

In order to show the potentialities of the method, we present in Table 1 be-
low some relevant parameters concerning quadrature and interpolation in the 1-
dimensional case, Ω = [−1, 1] and dµ = dx. The nodes are extracted from a uni-
form grid of 5000 points at a sequence of degrees, n = 10, 20, . . . , 60, with three
different polynomial bases (the monomial, the Legendre and the Chebyshev ba-
sis). The parameters (given with two or three significant figures) are the spec-
tral condition number of the transpose rectangular Vandermonde matrix, the
euclidean norm of the weights system residual (say ‖res(w)‖2 = ‖m − V tw‖2),
the sum of the weights absolute values (a measure of the quadrature stability,
cf. [30]), the Lebesgue constant Λn (a measure of the interpolation stability,
cf. [36]: such a quantity is evaluated numerically on a very large set of control
points). Concerning quadrature, the required moments are known analytically,
in particular by orthogonality the integrals of the Legendre basis polynomials
are all vanishing except at degree zero (cf., e.g., [32] for the Chebyshev basis).

We can see that both the orthogonal bases give very good results, the best
in terms of Lebesgue constant being obtained with the Chebyshev basis. On the
contrary, the monomial basis suffers from ill-conditioning of Vandermonde ma-
trices, which at higher degrees become even rank-deficient, i.e. rank(V t) < N ,
so that Algorithm 1 fails to extract the correct number of points. This means
that polynomial interpolation at that degree is not possible by the extraction
procedure. Nevertheless, a quadrature formula can be constructed with a num-
ber of points (in parentheses) that is less than the dimension of the polynomial
space of “exactness”, and which gives still acceptable results (see also Table 5
below). Observe that we could have computed the Lebesgue constant also in
the cases of failure using the available nodes, but we have avoided this since
it makes sense only in one dimension (where any natural number can be the
dimension of a polynomial subspace).

The good behavior of the points selected by Algorithm 1, for algebraic
quadrature and for polynomial interpolation (at least when suitable polynomial
bases are used), is directly related with the features of the Matlab “backslash”
linear solver. In fact, in the case of underdetermined systems, such a solver per-
forms a QR factorization with column pivoting of the matrix (cf. [11, 27, 33]).
In practice, this corresponds to a special QR factorization of the transpose Van-
dermonde submatrix V t

∗ ∈ RN×N , that is

(V tP )(:, 1 : N) = V t
∗ = QR , (8)

where Q is orthogonal, R upper triangular with |r11| ≥ |r22| ≥ · · · ≥ |rNN |, and
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Table 1: Relevant parameters for the extracted points, Ω = [−1, 1] (where (+)
means that the weights are all positive, and ∗ that Algorithm 1 fails to extract
N = n + 1 points due to rank-deficiency).

basis n = 10 n = 20 n = 30 n = 40 n = 50 n = 60
mon cond(V t) 3.1E+03 1.8E+07 1.1E+11 6.7E+14 1.7E+16 3.6E+16

‖res(w)‖2 5.5E-16 1.4E-15 5.1E-12 2.8E-10 3.1E-10 2.0E-10
P

|wik
| 2.00(+) 2.00(+) 5.31 5.47 93.6 56.7

Λn 5.33 5.06 ∗(30pts) ∗(30pts) ∗(32pts) ∗(35pts)
Leg cond(V t) 4.6E+00 6.4E+00 7.8E+00 9.0E+00 1.0E+01 1.1E+01

‖res(w)‖2 6.6E-16 7.0E-16 1.1E-15 2.3E-15 1.4E-15 2.0E-15
P

|wik
| 2.00(+) 2.00(+) 2.01 2.05 2.00(+) 2.00(+)

Λn 2.74 5.94 7.11 9.59 10.9 12.4
Cheb cond(V t) 3.7E+00 5.0E+00 6.0E+00 6.7E+00 7.1E+00 7.5E+00

‖res(w)‖2 1.2E-15 1.4E-15 1.6E-15 1.8E-15 1.9E-15 2.1E-15
P

|wik
| 2.00(+) 2.00(+) 2.00(+) 2.00(+) 2.00(+) 2.00(+)

Λn 2.27 2.79 3.13 3.40 3.58 3.80

P a permutation matrix. More precisely, since inside a QR process with stepwise
selection of the columns, we can see the diagonal element of R produced at a
given step as a function of the matrix columns involved so far,

rkk = rkk(γ1, . . . , γk) , 0 ≤ k ≤ N , γj ∈
{

col1(V
t), . . . , colM (V t)

}

⊂ R
N ,

(9)
it can be shown that the QR algorithm with column pivoting acts in such a way
to maximize rkk as a function of the vector variable γk (the vector variables
γ1, . . . , γk−1 having been fixed by the previous steps). In other words, since

|det(V t
∗ )| = |det(V∗)| =

N
∏

k=1

|rkk| , (10)

all the process can be re-interpreted as an heuristic optimization of the extracted
Vandermonde determinant (as a function of N of the M original discretization
points), based on sequential componentwise maximization of the factors.

An equivalent but more “geometric” interpretation of Algorithm 1, is that
related with the notion of volume of submatrices. Indeed, it can be shown that
the QR factorization (8) (the core of the algorithm) is an implementation of
the standard “greedy” approximation algorithm for selecting N columns with
maximal associated volume, which can be sketched as follows:

Algorithm greedy (max volume submatrix of A ∈ R
M×N )

• ind = [ ] ;

• for k = 1, . . . , N

– “select the largest norm column colik
(A)”; ind = [ind, ik];

– “remove the projection of colik
from every column of A”;

end;
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see, e.g., [5, 16] and references therein. It is worth stressing that (8) acts only
on the matrix and thus the mere selection of the points in Algorithm 1 could
be done with any right-hand side in the system (i.e., it is independent of the
specific quadrature problem).

Observe that such a discrete nonlinear optimization problem is known to be
NP-Hard (cf. [16]), and thus heuristic/stochastic methods are mandatory. The
strength of Algorithm 1 is that it gives good results in practice, by using only
basic optimized tools of numerical linear algebra.

Points that maximize the Vandermonde volume in the continuum, the so-
called Fekete (or extremal) points, are important in polynomial interpolation
(see, e.g., [19, 35]). This stems directly from the representation of the Lagrange
cardinal polynomials for a given unisolvent set at degree n, say {ξ1, . . . , ξN}, as
the ratio of two Vandermonde determinants

Lξi
(x) =

det(Vn(ξ1, . . . , ξi−1, x, ξi+1, . . . , ξN ))

det(Vn(ξ1, . . . , ξi−1, ξi, ξi+1, . . . , ξN ))
, Lξi

(ξk) = δik , (11)

(cf. (3) for the definition of Vn), from which it is clear that at a subset of Ω
which maximizes the absolute value of the Vandermonde determinant, say Fn =
{φ1, . . . , φN}, we have that the Lebesgue constant (the norm of the interpolation
operator) is bounded by N

‖Lφi
‖∞ = 1 , 1 ≤ i ≤ N =⇒ Λn := max

x∈Ω

N
∑

i=1

|Lφi
(x)| ≤ N . (12)

Such a rough estimate already shows that Fekete points are good interpolation
points. Moreover, they can be also near-optimal interpolation points, as it
happens in the 1-dimensional case, where they are known to be the Gauss-
Lobatto points by a classical result of Fejér and to have a Lebesgue constant
growing like O(log n) (cf. [42]). Much less is known in higher dimension, see [7]
and references therein.

The numerical computation of high-degree Fekete points on a given d-dimen-
sional compact subset is a hard large-scale problem, since it corresponds to the
optimization of a nonlinear function with 2N variables (recall that N ∼ nd/d!).
Indeed even in important 2-dimensional instances, like the triangle which is
relevant for the application to spectral element methods for PDEs, Fekete points
have been computed only up to relatively small degrees; cf., e.g., [43, 34, 10] and
references therein. A big effort has been made to compute Fekete (or extremal)
points on the sphere, in view of their importance in applications, by methods
that need large-scale computational resources, cf. [38] and references therein.

On the other hand, also the computation of good points for algebraic quadra-
ture over d-dimensional compact subsets, especially for the so-called minimal
quadrature formulas, is a substantially open problem with several important ap-
plications, whose direct numerical solution again involves large-scale nonlinear
problems; cf., e.g., [17, 44] and references therein.

Our numerical experiments have shown that Algorithm 1 gives a reason-
able compromise between quality of the quadrature/interpolation points, and
computational cost. As sketched above, the method is related with the maxi-
mization of Vandermonde volumes, and thus we can call the produced points
“approximate Fekete points”. The following tables give more evidence in this
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direction, by comparing the Vandermonde volume (Table 2) and the Lebesgue
constant (Table 3) of the 1-dimensional Fekete points with that of equally spaced
points, of the three families of approximate Fekete points of Table 1, and of the
Gauss-Chebyshev and Chebyshev-Lobatto points which are known to be excel-
lent interpolation points (the Vandermonde matrix is computed in the Cheby-
shev basis in all instances). In Table 4, we report the euclidean distance of
different arrays of points from the Fekete points (ordered arrays). The superi-
ority of the orthogonal bases is confirmed also in terms of these parameters: in
particular, the approximate Fekete points obtained by the Chebyshev basis are
in all respects the closest to the true Fekete points.

Table 2: Absolute value of the Vandermonde determinants (in the Chebyshev
basis) for different families of points, Ω = [−1, 1].

points n = 10 n = 20 n = 30 n = 40 n = 50 n = 60
eq spaced 8.4E+02 2.0E+03 6.7E-01 1.3E-08 1.1E-20 2.2E-37

approx Fek
basis mon 9.6E+03 7.3E+10 ∗ ∗ ∗ ∗
basis Leg 2.4E+04 6.5E+10 1.7E+18 2.0E+26 1.0E+35 2.2E+44

basis Cheb 3.1E+04 1.5E+11 8.4E+18 2.3E+27 2.0E+36 5.6E+45
true Fek 3.1E+04 1.5E+11 8.6E+18 2.5E+27 2.4E+36 6.2E+45
ChebLob 2.8E+04 1.3E+11 6.8E+18 2.0E+27 1.8E+36 4.5E+45

GaussCheb 1.7E+04 7.5E+10 4.0E+18 1.1E+27 1.0E+36 2.7E+45

Table 3: Comparison of the Lebesgue constants for different families of points,
Ω = [−1, 1].

points n = 10 n = 20 n = 30 n = 40 n = 50 n = 60
eq spaced 29.9 1.10E+04 6.60E+06 4.05E+08 7.34E+09 1.24E+10

approx Fek
basis mon 5.33 5.06 ∗ ∗ ∗ ∗
basis Leg 2.74 5.94 7.11 8.59 10.9 12.4

basis Cheb 2.27 2.79 3.13 3.40 3.58 3.80
true Fek 2.18 2.61 2.86 3.04 3.18 3.30
ChebLob 2.42 2.87 3.13 3.31 3.45 3.57

GaussCheb 2.49 2.90 3.15 3.33 3.47 3.58

Table 4: Euclidean distances of the approximate from the true Fekete points,
Ω = [−1, 1] (ordered arrays).

points n = 10 n = 20 n = 30 n = 40 n = 50 n = 60
approx Fek
basis mon 1.3E-01 4.3E-02 ∗ ∗ ∗ ∗
basis Leg 5.9E-02 6.1E-02 5.8E-02 4.2E-02 3.0E-02 2.4E-02

basis Cheb 9.1E-03 6.6E-03 6.1E-03 4.8E-03 4.0E-03 3.6E-03

It is worth stressing the fact that, at least in the complex case (polynomial
interpolation in C), there is a sound theoretical basis for the connection of our
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approximate discrete Fekete points with the continuum Fekete points, as it is
made clear by the following key result (cf. [5]) which applies in particular to
the case of the interval.

Theorem 1 (Bos and Levenberg, 2008) Suppose that Ω ⊂ C is a continuum
(i.e. compact and connected, not a single point). Suppose further that Xn ⊂ Ω,
n = 1, 2, . . . , are discrete subsets of Ω such that for all x ∈ Ω

min
y∈Xn

|x − y| ≤ φ(n) , where lim
n→∞

n2φ(n) = 0 . (13)

(For example, if Ω = [−1, 1], Xn consisting of order n2+ε, ε > 0, equally spaced
points would suffice).

Then, independently of the bases used, Algorithm 1 will generate sets of
approximate Fekete points that have the same asymptotic distribution (see [29])
as do the true Fekete points. Specifically, they tend weak-∗ to the equilibrium
measure for Ω.

Notice that the number M = 5000 of discretization points used in the numer-
ical experiments on the interval, is consistent with the assumptions of Theorem
1 up to the highest degree (n2 = 602 = 3600).

We conclude this section by showing a numerical test (Table 5), where the
quadrature and interpolation errors of the Runge function f(x) = 1(1+16x2) at
approximate Fekete points of Table 1 are compared with those at the true Fekete
points. As expected, the points obtained via the Chebyshev-Vandermonde ma-
trix are excellent quadrature/interpolation points. Notice that the points cor-
responding to the monomial basis even in the presence of severe ill-conditioning
and rank-deficiency are able to give acceptable quadrature results, but with an
observed error stalling around O(10−4).

Table 5: Quadrature and interpolation errors for the Runge function.

points n = 10 n = 20 n = 30 n = 40 n = 50 n = 60
approx Fek
basis mon quadr 1.9E-02 2.0E-04 3.5E-04 8.2E-05 4.9E-04 4.8E-04

interp 1.9E+00 1.5E-01 ∗ ∗ ∗ ∗
basis Leg quadr 2.7E-03 1.6E-03 3.9E-05 6.8E-06 3.8E-07 6.7E-08

interp 1.6E+00 1.8E-01 1.5E-02 1.3E-03 9.8E-05 1.1E-05
basis Cheb quadr 9.6E-03 6.7E-05 6.8E-07 1.2E-07 2.1E-09 6.8E-10

interp 1.7E+00 1.3E-01 1.1E-02 9.6E-04 8.1E-05 6.8E-06
true Fek quadr 8.9E-03 6.2E-05 4.4E-07 3.1E-09 2.2E-11 1.6E-13

interp 1.6E+00 1.3E-01 1.1E-02 9.5E-04 7.8E-05 6.7E-06

3 Iterative refinement.

The approximate Fekete points computed by Algorithm 1 depend on the poly-
nomial basis adopted, as it is clear from the previous tables (even though, in
the 1-dimensional case, all these points should “converge” theoretically to the
true Fekete points, in view of Theorem 1).

Using “wrong” bases, especially for the interpolation problem, leads to “bad”
sets of points, due to the extreme ill-conditioning of the Vandermonde matrices,
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or even to computational failure since such matrices can become rank-deficient.
As it is well-known in the 1-dimensional case, the problem of ill-conditioning
is typical of the monomial basis. We recall, for example, that in view of the
results of [22], the spectral conditioning of V t for the monomial basis when
M ≫ N = n+1 is expected to be close to the square root of the conditioning of
the Hilbert matrix of order N . The ill-conditioning can be attenuated or even
eliminated by resorting to bases of orthogonal polynomials; cf., e.g., [24, 2] and
references therein. This behavior is also evident in Table 1.

The following iterative refinement algorithm, based on successive changes of
basis by QR factorizations of the (nontranspose) Vandermonde matrices (with
Q rectangular orthogonal and R square upper triangular), tries to give a com-
putational solution to the problem of the basis choice. This will be particularly
relevant in dimension greater than 1, where bases of orthogonal polynomials are
not known explicitly for general domains.

Algorithm 2 (approximate Fekete points by iterative refinement)

• V0 = V ; P0 = I ;

• for k = 0, . . . , s − 1

Vk = QkRk ; Uk = inv(Rk) ; Vk+1 = VkUk ; Pk+1 = PkUk ;

end ;

• µ = P t
sm ; w = V t

s \µ ; ind = find(w 6= 0) ;

• X∗ = X(ind) ; w∗ = w(ind) ; V∗ = Vs(ind, :) ;

We stress that multiplication by Uk corresponds to a change of basis in the
Vandermonde matrix, in a such a way that starting from a polynomial basis

p = (p1, . . . , pN) the final basis will be q(s) = (q
(s)
1 , . . . , q

(s)
N ) = pPs (the column

vector of moments must then be transformed into µ = P t
sm).

If V0 = V is not severely ill-conditioned, then Q0 is numerically orthogonal
and V1 = V0U0 is close to Q0, that is the basis q(1) = pP1 is (numerically)
orthogonal with respect to a discrete inner product defined on the original M
discretization points of Ω

〈q
(1)
j , q

(1)
h 〉 :=

M
∑

i=1

q
(1)
j (xi) q

(1)
h (xi) = (V t

1 V1)jh ≈ (Qt
0Q0)jh = 0 , j 6= h . (14)

If V0 is severely ill-conditioned, then Q0 might be far from orthogonality,
and in addition since also R0 is ill-conditioned then V1 = V0U0 is not close
to Q0. Nevertheless, Q0 and even V1 are much better conditioned than V0.
When V0 is numerically full rank (cf. [26]), the second iteration gives Q1 or-
thogonal up to machine precision (the rule of “twice is enough”, cf. [26]), and
V2 near-orthogonal or at least sufficiently well-conditioned to apply successfully
Algorithm 1. In practice, however, often one iteration is sufficient.

Algorithm 2 can work even when V t
0 is numerically rank-deficient (see the

asterisks in Table 6 for iter = 0), since after some iterations we can get full rank
and then another one or two iterations usually suffice as just described. The
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functional interpretation of Algorithm 2 is that the basis q(k) = pPk approaches
a sort of discrete orthogonality at the original M discretization points of Ω.

In the following tables, the effect of iterative refinement is shown on the
three families of points of Table 1. Observe that 1-2 iterations give a substantial
improvement of the quality of the extracted points, for both the monomial and
the Legendre basis (beyond, a stalling of the stability parameters is observed).
On the contrary, a slight worsening appears with the Chebyshev basis concerning
the Lebesgue constant (but only on the second significant figure), since this
is already an excellent basis for the extraction process, whereas the iterative
refiniment tends to produce the same discrete orthonormal basis (triangular like
the starting bases). Indeed, unless the initial conditioning is too severe as with
the monomial basis at high degrees, we can see that the final Lebesgue constants
are (nearly) the same for all the bases, and increase very slowly (compare again
with the true Fekete points).

In order to appreciate the quality of the approximate Fekete points obtained
after the iterative refinement process, in Table 9 we compare again the quadra-
ture and interpolation errors on the Runge test function. The performance is
now very good also with the Legendre basis at all degrees, and with the mono-
mial basis at low degrees. With the monomial basis at higher degrees, where we
have a severe ill-conditioning of the original Vandermonde matrix (which entails
also a severe ill-conditioning of the transformation matrix Ps), we can observe
an error stalling/worsening like in Table 5 (no refinement), but remaining in
any case 2-3 orders of magnitude below the unrefined case.

Table 6: Iterative refinement of the approximate Fekete points extracted with
the monomial basis, Ω = [−1, 1].

iter n = 10 n = 20 n = 30 n = 40 n = 50 n = 60
cond(V t) 0 3.1E+03 1.8E+07 1.1E+11 6.7E+14 1.7E+16 3.6E+16

1 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.1E+09 3.3E+12
2 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00
3 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00

‖res(w)‖2 0 5.5E-16 1.4E-15 5.1E-12 2.8E-10 3.1E-10 2.0E-10
1 5.9E-16 1.1E-17 2.2E-17 2.3E-17 2.5E-14 7.3E-13
2 7.5E-16 1.9E-17 2.1E-17 2.4E-17 2.9E-17 4.7E-17
3 2.1E-16 4.7E-18 2.0E-17 1.7E-17 3.5E-17 3.5E-17

P

|wik
| 0 2.00(+) 2.00(+) 5.31 5.47 93.6 56.7

1 2.00(+) 2.00(+) 2.00(+) 2.00(+) 24.0 22.0
2 2.00(+) 2.00(+) 2.00(+) 2.00(+) 2.17 2.23
3 2.00(+) 2.00(+) 2.00(+) 2.00(+) 2.13 2.34

Λn 0 5.33 5.06 ∗ ∗ ∗ ∗
1 2.38 2.93 3.29 3.54 12.0 13.8
2 2.38 2.93 3.29 3.54 7.76 10.7
3 2.38 2.93 3.29 3.54 7.76 10.7

true Fek Λn 2.18 2.61 2.86 3.04 3.18 3.30

4 Towards multivariate Fekete points.

The computation of approximate Fekete points in multivariate instances is a
challenging problem. In principle, Algorithm 1-2 can be applied in any compact

9



Table 7: Iterative refinement of the approximate Fekete points extracted with
the Legendre basis, Ω = [−1, 1].

iter n = 10 n = 20 n = 30 n = 40 n = 50 n = 60
cond(V t) 0 4.6E+00 6.4E+00 7.8E+00 9.0E+00 1.0E+01 1.1E+01

1 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00
2 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00

‖res(w)‖2 0 6.6E-16 7.0E-16 1.1E-15 2.3E-15 1.4E-15 2.0E-15
1 1.4E-17 1.7E-17 2.3E-17 2.8E-17 2.8E-17 3.6E-17
2 1.4E-17 2.0E-17 2.1E-17 2.8E-17 2.2E-17 4.2E-17

P

|wik
| 0 2.00(+) 2.00(+) 2.01 2.05 2.00(+) 2.00(+)

1 2.00(+) 2.00(+) 2.00(+) 2.00(+) 2.00(+) 2.00(+)
2 2.00(+) 2.00(+) 2.00(+) 2.00(+) 2.00(+) 2.00(+)

Λn 0 2.74 5.94 7.11 9.59 10.9 12.4
1 2.38 2.93 3.29 3.54 3.72 3.90
2 2.38 2.93 3.29 3.54 3.72 3.90

true Fek Λn 2.18 2.61 2.86 3.04 3.18 3.30

Table 8: Iterative refinement of the approximate Fekete points extracted with
the Chebyshev basis, Ω = [−1, 1].

iter n = 10 n = 20 n = 30 n = 40 n = 50 n = 60
cond(V t) 0 3.7E+00 5.0E+00 6.0E+00 6.7E+00 7.1E+00 7.5E+00

1 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00
2 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00

‖res(w)‖2 0 1.2E-15 1.4E-15 1.6E-15 1.8E-15 1.9E-15 2.1E-15
1 1.0E-17 2.0E-17 2.0E-17 2.4E-17 2.8E-17 2.7E-17
2 7.0E-18 1.8E-17 2.2E-17 2.7E-17 2.3E-17 2.9E-17

P

|wik
| 0 2.00(+) 2.00(+) 2.00(+) 2.00(+) 2.00(+) 2.00(+)

1 2.00(+) 2.00(+) 2.00(+) 2.00(+) 2.00(+) 2.00(+)
2 2.00(+) 2.00(+) 2.00(+) 2.00(+) 2.00(+) 2.00(+)

Λn 0 2.27 2.79 3.13 3.40 3.58 3.80
1 2.38 2.93 3.29 3.54 3.72 3.90
2 2.38 2.93 3.29 3.54 3.72 3.90

true Fek Λn 2.18 2.61 2.86 3.04 3.18 3.30

Table 9: Absolute quadrature and interpolation errors for the Runge function
at the approximate Fekete points extracted after 2 refinement iterations (com-
parison with the true Fekete points).

points n = 10 n = 20 n = 30 n = 40 n = 50 n = 60
approx Fek
basis mon quadr 1.2E-02 1.1E-04 1.9E-06 4.7E-08 5.3E-07 6.8E-07

interp 1.7E+00 1.3E-01 1.1E-02 9.3E-04 3.2E-04 2.8E-04
basis Leg quadr 1.2E-02 1.1E-04 1.9E-06 2.3E-09 8.2E-10 2.5E-10

interp 1.7E+00 1.3E-01 1.1E-02 9.3E-04 7.8E-05 6.5E-06
basis Cheb quadr 1.2E-02 1.1E-04 1.9E-06 2.3E-09 8.2E-10 2.5E-10

interp 1.7E+00 1.3E-01 1.1E-02 9.3E-04 7.8E-05 6.5E-06
true Fek quadr 8.9E-03 6.2E-05 4.4E-07 3.1E-09 2.2E-11 1.6E-13

interp 1.6E+00 1.3E-01 1.1E-02 9.5E-04 7.8E-05 6.7E-06
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domain, as soon as a suitable basis and initial set of points have been chosen. So,
the basic questions are: given a multidimensional compact domain, which could
be a reasonable distribution of points? and which could be a reasonable basis
to work with? The answers depend strongly on the geometry of the domain.

Concerning the basis, the computational experience and the univariate the-
ory (cf. [2, 24]) show that a better conditioning is obtained using orthogonal
bases (when available, cf. [20] about multivariate orthogonal polynomials), and
that Algorithm 2 can improve substantially bases that are not “too bad”, de-
pending on the level of conditioning of the initial Vandermonde matrix.

Concerning the initial set of points, in the univariate case Theorem 1 gives a
clear guideline, and it is worth recalling that the (continuum) Fekete points are
known to be asymptotically nearly equally spaced with respect to the arccos
metric. In multivariate instances, much less is known about the distribution
of Fekete points. Some results have been recently obtained on the spacing of
Fekete points in important standard geometries, like the sphere, the ball and
the simplex, which can be summarized as

c1

n
≤ min {dist(a, b) , b ∈ Fn , b 6= a} ≤

c2

n
, ∀a ∈ Fn , (15)

where Fn is a set of Fekete points for the domain, c1, c2 are positive constants
and “dist” is the Dubiner (sphere, ball) or the Baran (simplex) metric (which
are generalizations of the arccos metric); see [6, 7, 8] and references therein.
The lower bound holds for the former with c1 = π/2 in any compact set, by a
general result of Dubiner [19, 8].

These results give further support to the conjecture (Bos et al., see also [12])
that “near-optimal” multivariate interpolation points in general compact do-
mains, and in particular Fekete points, are asymptotically nearly equally spaced
with respect to the Dubiner metric. We recall that the Dubiner metric on a com-
pact subset Ω ⊂ R

d has the following definition

distD(a, b) := sup

{

| arccos (p(b)) − arccos (p(a))|

deg(p)
, ‖p‖Ω ≤ 1 , deg(p) ≥ 1

}

,

(16)
for every pair of points a, b ∈ Ω, cf. [19].

Such a distance is known in explicit form only for very few domains, namely
for the square

distD(a, b) = max {| arccos (a1) − arccos (b1)| , | arccos (a2) − arccos (b2)|} ,
(17)

a = (a1, a2), b = (b1, b2) ∈ Ω = [−1, 1]2, for the sphere where it turns out to be
simply the geodesic distance, and for the disk where it is obtained by projection
on a corresponding hemisphere

distD(a, b) =

∣

∣

∣

∣

arccos

(

a1a2 + b1b2 +
√

1 − a2
1 − b2

1

√

1 − a2
2 − b2

2

)
∣

∣

∣

∣

, (18)

a, b ∈ Ω = {z = (z1, z2) : z2
1 + z2

2 ≤ 1}, with natural generalizations in higher
dimension to hypercubes, hyperspheres and balls (cf. [6, 7, 8]).

4.1 Approximate Fekete points in the square.

Consider now, as a guideline, the case of the square Ω = [−1, 1]2. It is worth
recalling that Fekete points are known in this case only for tensor-product poly-

11



nomial spaces [9], whereas here we are interested in total degree polynomial
spaces.

Assume that at degree n there are (at least two) Fekete points in a euclidean
neighborhood of the boundary with radius O(1/n), a fact that even though
not rigorously proved till now, numerically is verified (indeed, Fekete points
cluster at the boundary). Then from the spacing inequality (15), which is only
conjectured for the square, and the formula of the Dubiner metric (17), it is not
difficult to see that there are Fekete points a ∈ Fn such that

k1

n2
≤ min {max (|a1 − b1|, |a2 − b2|) , b ∈ Fn , b 6= a} ≤

k2

n2
, (19)

where k1, k2 are positive constants. This suggests that, if we compute approx-
imate Fekete points by Algorithm 1-2 starting from a uniform grid of points,
the spacing of the grid should be O(1/n2), i.e. we should use a O(n2 ×n2) grid
which has M = O(n4) points.

Now, since the dimension of the polynomial space is N = dim(Π2
n(Ω)) = (n+

1)(n+2)/2 ∼ n2/2, and the computational complexity of the QR factorizations
is O(MN2) flops (cf. [27]), our algorithm for the computation of approximate
Fekete points has a cost of O(n8) flops and O(n6) storage at degree n, which
becomes soon a very heavy computational load even using optimized routines
of numerical linear algebra.

An alternative strategy could be that of starting from points that have al-
ready the right spacing as in (15), for example from a grid of (n + 1) × (n + 2)
Chebyshev-Lobatto points, that are exactly equally spaced (with a O(1/n) spac-
ing) in the Dubiner metric. In such a way we deal with M = O(n2) instead
of O(n4) points, and the computational cost is pulled down by a factor n2 to
O(n6) flops and O(n4) storage. The qualitative idea behind this approach is
that Algorithm 1 will then select half of these points as approximate Fekete
points, possibly maintaining the correct spacing.

It is worth to stress that both the qualitative strategies sketched above to
generate the starting discretization via the conjectured spacing in the Dubiner
metric, have indeed also a foundation in the theory of “admissible meshes” for
polynomial approximation developed very recently by Calvi and Levenberg in
[15]. Both the strategies, in fact, produce (weakly) admissible meshes (at least
qualitatively), as tensor products of 1-dimensional (weakly) admissible meshes.
In [15] it is proved that maximizing the Vandermonde volume on such kind
of meshes, gives approximate Fekete points that are (asymptotically) nearly as
good as continuum Fekete points. An important fact is that the theory of [15] is
applicable to many other multivariate compact domains, e.g. to domains that
admit a Markov polynomial inequality, as well as to finite unions and products
of such domains.

In Tables 10-12 we show at a sequence of low degrees the cubature and in-
terpolation parameters of approximate Fekete points extracted by Algorithm
2 from a (2n2 + 1) × (2n2 + 1) uniform grid, and of those extracted from
(n + 1) × (n + 2) Chebyshev-Lobatto and Gauss-Lobatto grids. Observe that
following [15] the former is sufficiently dense to be an admissible mesh (see
the proof of Thm.5 there), and the latter are tensor products of 1-dimensional
weakly-admissible meshes. On the other hand, the latter are also (nearly for
Gauss-Lobatto) equally spaced in the Dubiner metric (17). We use the product
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Chebyshev orthogonal basis (cf. [20]), suitably ordered, to construct the Van-
dermonde matrix. All the tests are done by an Intel-Centrino Duo processor
1.38 GHz with 1 Gb RAM, using Matlab 6.5 under Windows XP. To avoid possi-
ble confusion with the examples of the previous sections, we stress that here we
extract approximate Fekete points with a fixed polynomial basis from different
grids, whereas in the univariate examples we worked with different bases on a
fixed grid.

In order to have a meaningful comparison, we report also the absolute value
of the Vandermonde determinant (in the product Chebyshev basis) and the
Lebesgue constant of the so-called “Padua points”, and of a family of “Padua-
like” points obtained from the Gauss-Lobatto tensorial grid (PdGL). We re-
call that the Padua points, recently studied in [12, 3, 4, 13, 14], are the first
known optimal family for total degree bivariate polynomial interpolation, with
a Lebesgue constant growing like O(log2 n). At a fixed degree n, they are the
union of the two subgrids of a (n + 1) × (n + 2) Chebyshev-Lobatto grid, ob-
tained by alternating odd and even indexes in one direction, see Fig. 1 (indeed,
there are four families of such points, obtainable one from the other by suitable
rotations of the square). Their optimality is intimately related to the fact that
they lie on a peculiar algebraic “generating” curve, see [3]. The “Padua-like”
Gauss-Lobatto points, obtained in the same way as union of two subgrids of a
(n + 1) × (n + 2) Gauss-Lobatto grid, are considered here for the first time.

We can see that the best approximate Fekete points seem those extracted
from the Chebyshev-Lobatto tensorial grid (Table 12), for example the Lebesgue
constant with one refinement iteration tends to be the closest to that of the
Padua points (a strange oscillation appears at degree n = 16, which however is
present also in Tables 10 and 11 with the other grids). The quadrature weights
are not all positive, but their ℓ1-norm remains close to 4 (the square area), that
is the negative weights are few and small. Also extraction from the other grids
gives good results, but with the (much more dense) uniform grid we begin to
have memory allocation problems already at relatively low degree (n = 16 for
iter > 0 and n = 20 already for iter = 0: see the machine features quoted
above).

It is quite surprising that the Padua points exhibit numerically the largest
Vandermonde |det|. This suggests a possible difference for Fekete points of
total degree polynomial spaces with the univariate case and with tensor-product
polynomial spaces, since it is known that tensor-product Gauss-Lobatto points
are Fekete points for tensor-product polynomial interpolation [9].

The use of Chebyshev-Lobatto tensorial grids allows to work without prob-
lems at much higher degrees, as we can see in Tables 13-14. We report the
Lebesgue constants of the approximate Fekete points (after one refinement it-
eration) at degrees 10, 20, . . . , 60, and the corresponding quadrature and inter-
polation errors on the bivariate Runge test function, compared to those of the
Padua and PdGL points. Notice the very good behavior of the quadrature
formulas, which turns out to be more accurate than tensor-product Gaussian
formulas and even of the few known minimal formulas, a phenomenon already
discussed in [41] (see the error curves in Section 3.3 there).
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4.2 Conclusions and perspectives.

We have implemented (in Matlab) a method for computing approximate Fekete
points, which is essentially based on a greedy algorithm for discrete maximiza-
tion of Vandermonde determinants and uses only optimized tools of numerical
linear algebra (QR-type factorizations of Vandermonde matrices on suitable
discretization grids). The choice of the polynomial basis seems to play an im-
portant computational role, but it can be corrected and stabilized by discrete
orthogonalization. See Algorithms 1-2 in Sections 1 and 3.

The numerical tests for the interval (Sections 2-3) and for the square (Section
4.1) have shown that such approximate Fekete points have very good features for
algebraic quadrature and interpolation. Their Lebesgue constants grow slowly,
and the associated quadrature weights, even though not all positive, show a
bounded ℓ1-norm. The interval and the square are the only domains where
optimal interpolation points are theoretically known, and indeed we have used
such points for the purpose of comparison (in particular, the recently discovered
“Padua points” for the square, see [12, 3, 4]).

In the examples we have used a connection with the theory of metrics asso-
ciated to polynomial inequalities and with the very recent theory of admissible
meshes for polynomial approximation, see [7, 8, 15]. This connection, together
with the relatively low computational complexity of the discrete method with
respect to very costly maximizations in the continuum (cf. e.g. [43]), seems to
open the way towards computation of good points for global high-degree inter-
polation and quadrature in many other standard and nonstandard multivariate
domains. On the other hand, also local polynomial methods based on piecewise
interpolation over standard and nonstandard partitions of the domains could
benefit of this new approach.

Moreover, the convergence theorem of [5], reported at the end of Section 2,
and some preliminary numerical tests suggest that the complex version of the
present method could play a significant computational role in the interplay of
complex polynomial approximation with potential theory and its applications:
discrete electrostatic equilibria on 2-dimensional continua, digital filters, matrix
functions, ... (cf. e.g. [1, 21, 28, 31, 37] and references therein).
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Figure 1: N = 66 approximate Fekete points (asterisks) and Padua points
(bullets) from a 11 × 12 Chebyshev-Lobatto grid at degree n = 10 (they differ
only by 4 points close to the top vertices).
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Figure 2: N = 66 approximate Fekete points (asterisks) and Padua-like points
(bullets) from a 11 × 12 Gauss-Lobatto grid at degree n = 10 (they differ only
by 9 points close to the boundary).
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Table 10: Quality parameters of N = ((n + 1)× (n + 2))/2 approximate Fekete
points extracted from a (2n2 + 1)× (2n2 + 1) uniform grid in Ω = [−1, 1]2 with
iterative refinement (product Chebyshev basis); ∗ = “out of memory”.

n = 4 n = 8 n = 12 n = 16 n = 20
iter (N = 15) (N = 45) (N = 91) (N = 153) (N = 231)

cond(V t) 0 2.1E+00 2.1E+00 2.1E+00 2.1E+00 ∗
1 1.0E+00 1.0E+00 1.0E+00 ∗ ∗
2 1.0E+00 1.0E+00 1.0E+00 ∗ ∗

|det(V∗)| 0 3.0E+06 1.3E+27 4.9E+65 2.2E+125 ∗
1 3.0E+06 7.8E+26 3.6E+66 ∗ ∗
2 3.0E+06 7.8E+26 3.6E+66 ∗ ∗

Padua pts |det| 2.0E+06 1.6E+27 6.7E+66 5.0E+127 4.2E+211
‖res(w)‖2 0 2.2E-15 3.9E-15 5.9E-15 6.0E-15 ∗

1 1.7E-16 5.7E-17 2.6E-17 ∗ ∗
2 9.5E-17 5.0E-17 2.4E-17 ∗ ∗

P

|wik
| 0 5.05 4.32 5.31 4.11 ∗

1 6.34 5.45 4.24 ∗ ∗
2 6.34 4.95 4.20 ∗ ∗

Λn 0 5.27 10.6 22.6 28.1 ∗
1 5.59 11.4 12.1 ∗ ∗
2 5.59 11.4 12.1 ∗ ∗

Padua pts Λn 4.41 6.21 7.45 8.41 9.20

Table 11: Quality parameters of N = ((n + 1)× (n + 2))/2 approximate Fekete
points extracted from a (n + 1) × (n + 2) Gauss-Lobatto grid in Ω = [−1, 1]2

with iterative refinement (product Chebyshev basis); PdGL = Padua-like Gauss-
Lobatto points.

n = 4 n = 8 n = 12 n = 16 n = 20
iter (N = 15) (N = 45) (N = 91) (N = 153) (N = 231)

cond(V t) 0 2.6E+00 2.6E+00 2.5E+00 2.4E+00 2.3E+00
1 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.00E+00
2 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.00E+00

|det(V∗)| 0 2.0E+06 5.0E+26 5.4E+65 7.7E+124 1.0E+207
1 1.8E+06 1.3E+27 1.7E+65 6.6E+123 1.9E+209
2 1.8E+06 1.3E+27 1.7E+65 6.6E+123 1.9E+209

PdGL pts |det| 1.9E+06 1.3E+27 4.2E+66 2.2E+127 1.2E+211
Padua pts |det| 2.0E+06 1.6E+27 6.7E+66 5.0E+127 4.2E+211

‖res(w)‖2 0 2.2E-15 4.0E-15 5.4E-15 5.1E-15 7.3E-15
1 6.7E-16 5.8E-16 6.2E-16 4.2E-16 4.1E-16
2 6.7E-16 5.8E-16 6.2E-16 4.2E-16 4.1E-16

P

|wik
| 0 5.11 4.56 4.43 4.56 4.40

1 6.40 4.19 4.63 4.75 4.11
2 6.40 4.19 4.63 4.75 4.11

Λn 0 6.53 12.5 15.5 26.0 34.9
1 5.83 7.99 17.0 39.3 22.7
2 5.83 7.99 17.0 39.3 22.7

PdGL pts Λn 5.20 8.53 11.3 13.7 15.8
Padua pts Λn 4.41 6.21 7.45 8.41 9.20
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Table 12: Quality parameters of N = ((n + 1)× (n + 2))/2 approximate Fekete
points extracted from a (n+1)×(n+2) Chebyshev-Lobatto grid in Ω = [−1, 1]2

with iterative refinement (product Chebyshev basis).

n = 4 n = 8 n = 12 n = 16 n = 20
iter (N = 15) (N = 45) (N = 91) (N = 153) (N = 231)

cond(V t) 0 2.6E+00 2.6E+00 2.5E+00 2.4E+00 2.3E+00
1 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00
2 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00

|det(V∗)| 0 1.4E+06 6.4E+25 3.1E+65 3.1E+124 6.2E+206
1 1.4E+06 9.9E+26 4.5E+66 1.7E+125 2.9E+211
2 1.4E+06 9.9E+26 4.5E+66 1.7E+125 2.9E+211

Padua pts |det| 2.0E+06 1.6E+27 6.7E+66 5.0E+127 4.2E+211
‖res(w)‖2 0 2.3E-15 5.4E-15 6.1E-15 6.0E-15 7.5E-15

1 8.3E-16 5.9E-16 5.3E-16 5.0E-16 4.3E-16
2 8.3E-16 5.9E-16 5.3E-16 5.0E-16 4.3E-16

P

|wik
| 0 5.25 4.85 5.14 4.93 4.54

1 8.45 4.19 4.04 4.56 4.01
2 8.45 4.19 4.04 4.56 4.01

Λn 0 6.74 19.0 20.6 30.9 32.2
1 7.09 8.48 9.54 20.2 11.2
2 7.09 8.48 9.54 20.2 11.2

Padua pts Λn 4.41 6.21 7.45 8.41 9.20

Table 13: Comparison of the Lebesgue constants in Ω = [−1, 1]2: approximate
Fekete points (obtained as in Table 12 by 1 refinement iteration), Padua points,
Padua-like Gauss-Lobatto points (PdGL).

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60
points (N = 66) (N = 231) (N = 496) (N = 861) (N = 1326) (N = 1891)

approx Fek 9.01 11.2 11.0 37.9 38.2 40.6
Padua 6.88 9.20 10.7 11.9 12.9 13.7
PdGL 10.0 15.8 20.5 24.6 28.2 31.5
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Table 14: Absolute quadrature and interpolation errors for the bivariate version
of the Runge function: approximate Fekete points (obtained as in Table 12 by 1
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