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Abstract

We discuss a cheap and stable approach to polynomial moment-based compression of multivariate measures
by discrete signed measures. The method is based on the availability of an orthonormal basis and a low-
cardinality algebraic quadrature formula for an auxiliary measure in a bounding set. Differently from other
approaches, no conditioning issue arises since no matrix factorization or inversion is needed. We provide
bounds for the sum of the absolute values of the signed measure weights, and we make two examples:
efficient quadrature on curved planar elements with spline boundary (in view of the application to high-
order FEM/VEM), and compression of QMC integration on 3D elements with complex shape.

Keywords: MSC[2020] 65D32

1. Introduction

The possibility of compressing any finite measure into a low-cardinality discrete representing one, which
has the some polynomial moments up to a certain degree, dates back to the famous Tchakaloff theorem,
along with its successive developments; cf. e.g. [36, 27]. The implementation of Tchakaloff theorem has been
an active research subject especially in the last decade, but the constraint of positivity of the weights makes
quite costly the computational solutions via moment-matching, based on theoretical issues like Caratheodory
theorem on conical combinations [5] or Davis-Wilhelmsen theorem on Tchakaloff sets [38], together with
suitable optimization techniques like linear or quadratic programming ; cf. e.g. [17, 21, 23, 25, 29, 32, 37]
with the references therein.

In the present paper we propose a general method still based on moment-matching (with a suitable
orthogonal polynomial basis), that instead computes a signed discrete representing measure (that is, a
quadrature formula with not all positive weights). We recently made a first step in this direction for
integration on polyhedral elements [34], modifying and extending the method proposed in [18]. Indeed,
the present approach has two remarkable features. First, the weights are computed simply (and cheaply)
by a matrix-vector product followed by a vector scaling, so that no matrix conditioning issue can arise,
even at high exactness degrees, because no matrix inversion or factorization is needed. Moreover, in some
situations of practical interest, e.g. in the integration over elements for FEM/VEM, the relevant matrix can
be computed once and for all, and the weights, though not all positive, have a bounded 1-norm, which is a
necessary and sufficient condition for stability of the integration formula. Moreover, differently from [34],
the stability analysis is here performed by rigorous estimates, based on a careful application of the classical
Bessel, Cauchy-Schwarz and Jensen inequalities. As a result, full stability of the method is obtained,
concerning both, the weights computation and the weights behavior.

The method is quite general, since either continuous or discrete measures can be compressed, as we show
by the examples in the numerical section. The paper is organized as follows. The theoretical foundations
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and the relevant estimates are discussed in Section 2. In Section 3 we present two applications, namely
cheap and stable quadrature on curved planar elements with spline boundary (in view of the application
to high-order FEM/VEM), and compression of QMC integration on “difficult” 3D elements with complex
shape, obtained by basic set operations like intersection and union of simpler shapes. The corresponding
Matlab and Python numerical codes are freely available.

2. Moment-based discretized measure compression by orthogonal polynomials

Theorem 2.1. Let µ be a finite measure with support Ω ⊆ Rd, and λ a finite measure with Pn-determining
support B ⊆ Rd (i.e., polynomials of total degree not exceeding n which vanish there vanish everywhere in
Rd). Moreover, let {pj}1≤j≤N be a λ-orthonormal basis for Pn, N = dim(Pn) =

(
n+d
d

)
, and let (X,u) =

{(xi, ui), 1 ≤ i ≤M}, M ≥ N , be the nodes X and positive weights of a quadrature formula for λ, exact in
P2n, that is ∫

B

p(x) dλ =

M∑
i=1

ui p(xi) , ∀p ∈ P2n . (1)

Denote by V ∈ RM×N the Vandermonde-like matrix V = (vij) = (pj(xi)), by D = D(u) = diag(ui) the
diagonal weight matrix, and by m = {mj} ∈ RN the vector of moments

mj =

∫
Ω

pj(x) dµ , 1 ≤ j ≤ N . (2)

Then, the discrete signed measure (X,w) = {(xi, wi), 1 ≤ i ≤ M} supported on X ⊆ B, with weights
w = {wi} ∈ RM computed as

w = DVm , (3)

gives an exact quadrature formula in Pn for µ with the following bound for the weights∫
Ω

p(x) dµ =

M∑
i=1

wi p(xi) , ∀p ∈ Pn , ∥w∥1 ≤
√
λ(B) ∥m∥2 . (4)

Proof. First, we prove that the weight vector w is a solution of the underdetermined moment system
V tw = m, and thus the equality in (4) holds. Indeed, the matrix D1/2V is orthogonal, because in view of
(1) we have

M∑
i=1

ui ph(xi) pk(xi) =

∫
B

ph(x) pk(x) dλ = δhk ,

that is (D1/2V )tD1/2V = V tDV = I. Hence V tw = V tDVm = m.
On the other hand, ∥D−1/2w∥2 = ∥D1/2Vm∥2 =

√
mtV tDVm = ∥m∥2 and thus by Cauchy-Schwarz

inequality

∥w∥1 =

M∑
i=1

|wi| =
M∑
i=1

(|wi|/
√
ui )

√
ui ≤ ∥{|wi|/

√
ui }∥2 ∥{

√
ui }∥2

= ∥D−1/2w∥2

√√√√ M∑
i=1

ui = ∥m∥2
√
λ(B) . □

Corollary 2.1. Let the assumptions of Theorem 2.1 be satisfied, with Ω ⊆ B. If B is bounded then

∥w∥1 ≤
√
λ(B)µ(Ω)

√
max
x∈B

Kn(x, x) , (5)
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where Kn(x, x) =
∑N

j=1 p
2
j (x) is the so called Christoffel polynomial or also reciprocal Christoffel function of

λ (the diagonal of its reproducing kernel). On the other hand, if µ and λ are absolutely continuous (w.r.t.
the Lebesgue measure) with densities ω ∈ L1(Ω) and σ ∈ L1(B), i.e. dµ = ω(x) dx and dλ = σ(x) dx, and
ω2/σ ∈ L1(Ω), then

∥w∥1 ≤
√
λ(B)

√
∥ω2/σ∥L1(Ω) . (6)

Proof. As for the first bound, in view of (4) it is sufficient to observe that by Jensen inequality for probability
measures (∫

Ω

pj(x)
dµ

µ(Ω)

)2

≤
∫
Ω

p2j (x)
dµ

µ(Ω)

and thus

∥m∥22 =

N∑
j=1

(∫
Ω

pj(x) dµ

)2

≤ µ(Ω)

N∑
j=1

∫
Ω

p2j (x) dµ = µ(Ω)

∫
Ω

Kn(x, x) dµ

≤ µ2(Ω)max
x∈Ω

Kn(x, x) ≤ µ2(Ω)max
x∈B

Kn(x, x) .

Observe that the maxima exist since B and Ω are closed (being supports of measures) and bounded, and
hence compact.

Concerning the second bound, denoting by IΩ(x) the indicator function of Ω ⊆ B, we can write

mj =

∫
Ω

pj(x) dµ =

∫
Ω

pj(x)ω(x) dx =

∫
B

pj(x) IΩ(x)
ω(x)

σ(x)
σ(x) dx

which shows that the {mj} are the coefficients of the Fourier expansion in the orthogonal polynomial basis
of the function IΩ ω/σ, that belongs to L

2
λ(B) since∫

B

(
IΩ(x)

ω(x)

σ(x)

)2

σ(x) dx =

∫
B

I2Ω(x)
ω2(x)

σ(x)
dx =

∫
Ω

ω2(x)

σ(x)
dx .

Consequently, by Bessel inequality

∥m∥22 =

N∑
j=1

m2
j ≤ ∥IΩ ω/σ∥2L2

λ(B) = ∥ω2/σ∥L1(Ω) . □

Some remarks are now in order, to deepen the properties of the measure compression method studied
above.

Remark 2.1. The upper bound in (6) is independent of n, thus ensuring stability of the quadrature formula
in the usual sense. On the other hand, whatever is µ the right-hand side of (5) has sub-exponential growth
in n (a weak form of quadrature stability) if λ is a Bernstein-Markov measure, that holds for instance when
λ is absolutely continuous; cf. e.g. [2]. To make an example, if λ is the product Chebyshev measure on
B = [−1, 1]2, it is known that

√
maxx∈[−1,1]2 Kn(x, x) ≤ 1

π

√
2n2 + 2n+ 1 ≲ 0.45n, cf. [10].

Remark 2.2. Though the previous results have a simple proof, resting on basic linear algebra and in-
equalities, they are quite general and give some deep consequences. Indeed, by the signed measure (X,w)
we can “compress” either continuous or discrete measures µ, provided that their polynomial moments are
computable.

A first unusual consequence is for example that we can integrate exactly polynomials somewhere, by
sampling “elsewhere”. Indeed, the sets Ω and B could be even disjoint; a problem is however that we expect
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the polynomials {pj(x)} and Kn(x, x), and thus also ∥m∥2, to increase rapidly with n when Ω∩(Rd \B) ̸= ∅;
cf. e.g. [3, 19, 20] with the references therein. Another (well-known) fact is that also moment computation
can be performed in some situations by sampling only on the boundary ∂Ω, by the divergence theorem, as we
shall see in the application to quadrature on curved planar elements. So that we can integrate a polynomial
on a domain with few or even no samples inside the domain and one might wonder to which extent this can
be extended by the present theory to other functions, well approximated by polynomials (a partial answer is
given by Proposition 2.1 below). In practice however, as we have seen in the absolutely continuous case, a
sufficient condition for quadrature stability, i.e. for ∥w∥1 having a bound independent of n, is that Ω ⊆ B,
even if the weights are not all positive.

Another consequence of Theorem 2.1 is that the weights are computed simply (and cheaply) by a matrix-
vector product, so that no matrix conditioning issue can arise, even at high exactness degrees. This makes
the present approach quite different from other moment-based methods for the compression of discrete mea-
sures, that need Vandermonde matrices factorization or inversion and/or numerical optimization techniques,
especially those implementing Tchakaloff theorem; see, e.g., [17, 18, 21, 25, 29, 32, 37] with the references
therein.

The measure compression method developed above allows to integrate exactly polynomials in Pn. But
in which terms could it be applied to the integration of continuous functions? Which is the cumulated effect
of errors in the computation of moments and errors in the sampled function values? We treat both these
aspects in the case Ω ⊆ B, by resorting to the general result proved in [35, §2] on the role of moment errors
in algebraic quadrature. Indeed, denote by m̃ ≈ m the approximate moments, by w̃ = DV m̃ the resulting
approximate weights, by En(f ;B) = infp∈Pn

∥f − p∥∞,B the best uniform approximation error of f ∈ C(B),

by f = {f(xi)} the exact sampled values of f and by f̃ ≈ f the perturbed sampled values. Moreover, let
⟨· , ·⟩ denote the scalar product in RM . Then we have the following

Proposition 2.1. Let the assumptions of Theorem 2.1 be satisfied with Ω ⊆ B and B bounded.
Then the following cumulative error estimate holds∣∣∣∣∫

Ω

f(x) dµ− ⟨w̃, f̃⟩
∣∣∣∣ ≤ (µ(Ω) + ∥w∥1) En(f ;B) + ∥w∥1 ∥f − f̃∥∞

+
(
∥f∥L2

λ(B) +
√
λ(B) (En(f ;B) + ∥f − f̃∥∞)

)
∥m− m̃∥2 , (7)

where ∥w∥1 can be bounded as in (5), or as in (6 when both µ and λ are absolutely continuous.

Proof. Using formula (15) in [35, §2] we get∣∣∣∣∫
Ω

f(x) dµ− ⟨w̃, f⟩
∣∣∣∣ ≤ (µ(Ω) + ∥w∥1) En(f ;B) +

(
∥f∥L2

λ(B) +
√
λ(B)En(f ;B)

)
∥m− m̃∥2 .

On the other hand,∣∣∣∣∫
Ω

f(x) dµ⟨w̃, f̃⟩
∣∣∣∣ ≤ ∣∣∣∣∫

Ω

f(x) dµ− ⟨w̃, f⟩
∣∣∣∣+ ∣∣∣⟨w, f − f̃⟩

∣∣∣+ ∣∣∣⟨w − w̃, f − f̃⟩
∣∣∣

≤
∣∣∣∣∫

Ω

f(x) dµ− ⟨w̃, f⟩
∣∣∣∣+ ∥w∥1 ∥f − f̃∥∞ + ∥w − w̃∥1 ∥f − f̃∥∞ ,

where reasoning as in the proof of Theorem 2.1 we get ∥w− w̃∥1 ≤
√
λ(B) ∥m− m̃∥2. Putting together all

the bounds we obtain eventually estimate (7). □
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Remark 2.3. When ∥w∥1 is bounded, estimate (7) shows that the quadrature formula ⟨w, f⟩ converges
to the integral for any continuous function (the condition being indeed also necessary, by the multivariate
extension of Polya-Steklov theorem). We recall that the rate of En(f ;B) can be estimated depending on the
regularity of f , if B is a so-called “Jackson compact set”, i.e. a Jackson like inequality is available on B.
This means that for every ℓ > 0 there exists a positive integer kℓ and a constant Cℓ(f), depending on the
partial derivatives of f up to order kℓ, such that for f ∈ Ckℓ(B) the estimate En(f ;B) ≤ Cℓ(f)n

−ℓ holds
for n > ℓ. Examples are balls with kℓ = ℓ and boxes with kℓ = ℓ+ 1; cf. [26].

Notice that in practice, by neclecting the products of errors (which tendentially give a much smaller
contribute) , we get the approximate bound∣∣∣∣∫

Ω

f(x) dµ− ⟨w̃, f̃⟩
∣∣∣∣ ≲ (µ(Ω) + ∥w∥1) En(f ;B) + ∥w∥1 ∥f − f̃∥∞ + ∥f∥L2

λ(B) ∥m− m̃∥2 . (8)

3. Numerical examples

In this numerical section we consider the application of the Cheap technique to the computation of
integrals on planar spline curvilinear elements, potentially useful for solving PDEs problems by high-order
FEM of VEM, and to the compression of discrete measures with large cardinality support such as those
corresponding to QMC integration on 3D elements with complex shape. In each example we will

• discuss how to compute the moments;

• check numerically the ADE (Algebraic Degree of Exactness);

• display the average cputime for determining the Cheap rules, comparing them with other methods.

The open source codes that accomplish the numerical experiments of this section are available on GitHub
(respectively at [30] for the Matlab version, and at [28] for the Python one).

3.1. Cheap and stable quadrature on planar spline curvilinear elements

As first case we consider the application of Cheap technique to planar spline curvilinear elements. These
are Jordan domains Ω ⊂ R2 whose boundary ∂Ω is described by parametric equations

x = ϕ(t) , y = ψ(t) , t ∈ [a, b] , ϕ, ψ ∈ C([a, b]) , ϕ(a) = ϕ(b) , ψ(a) = ψ(b) ,

and there is a partition {I(k)}k=1,...,M of [a, b] and partitions {I(k)j }j=1,...,mk
of each I(k), such that the

restrictions of ϕ, ψ on each I(k) are splines of degree δk, w.r.t. the subintervals {I(k)j }j=1,...,mk
. Namely,

given the arc “vertices” Vk ∈ ∂Ω, k = 1, . . . ,M + 1, then ∂Ω := ∪M
k=1Vk ⌢ Vk+1, each curved side

Vk ⌢ Vk+1 is tracked by a spline curve of degree δk, interpolating an ordered subsequence of control knots
P1,k = Vk, P2,k, . . . , Pmk−1,k, Pmk,k = Vk+1.

Elements of this kind have been considered in [31], where we introduced a panelization technique to
determine a rule with ADE equal to n, of PO type, that is with positive weights and some nodes possibly
outside the element. Such quadrature rules have been often used in the recent FEM and VEM literature,
in view of their flexibility, but have the drawback of producing a large number of nodes per element.

Later on, in [33] we proposed a moment-based algorithm that determines PI rules, i.e. with positive
weights and all nodes in the element. To this purpose, we have developed a fast in-domain routine, to allocate
points from which low-cardinality rules are extracted. The drawback here is the necessity of computing a
sparse nonnegative solution to the underdetermined moment-matching system, where we used the Lawson-
Hanson algorithm as implemented in the Matlab lsqnonneg function, or suitable accelerated variants based
on the concept of “deviation maximization” instead of column pivoting for the underlying QR factorizations;
cf. [9, 11]. In any case, this part turns out to be the computational bulk of the method, and leads to a
significant cost per element.
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In the Cheap implementation, we proceed differently, avoiding at all matrix factorizations and system
solution, as well as sub-tessellation of the element. From this point of view the method is also alternative
to the triangulation-free approach recently proposed in [18], and gives a first extension to curved elements
of the approach recently adopted in [34] for linear polyhedra. Instead, we compute:

• the smallest cartesian rectangle B containing the element Ω;

• the tensorial Gauss-Chebyshev rule (ADE = 2n) on the rectangle with M = (n+ 1)2 nodes X ⊂ B;

• the modified Chebyshev moments

mj =

∫
Ω

pj(x, y) dxdy =

∮
∂Ω

Pj(x, y) dy ,
∂Pj

∂x
= pj , j = 1, . . . , N =

(n+ 1)(n+ 2)

2
, (9)

by Gauss-Green theorem and Gauss-Legendre quadrature on the polynomial sub-arcs of ∂Ω, where
pj(x, y) = τi1(x)τi2(y), 0 ≤ i1 + i2 ≤ n, is the suitably (e.g. lexicographically) ordered orthonormal
Chebyshev basis of B;

• the weights w of the cheap rule, relatively to the nodes X, by a single matrix-by-vector product as in
(3).

In the examples below we test the Matlab routines on a computer with a 2.7 GHz Intel Core i5 CPU,
with 16 GB of RAM. In particular, we consider the curvilinear elements Ω1 and Ω2 depicted in 1, where

• Ω1 is nonconvex with four linear sides (linear splines) and one curved side (cubic spline);

• Ω2 is convex with six linear sides (linear splines) and one curved side (cubic spline).

Elements of this kind could typically appear when intersecting elements of a polygonal mesh with the domain
near a curved boundary (tracked by splines).

In Figure 1, we plot the nodes of the cheap rules with ADE = 10 equal to 10 (green dots express positive
weights, while red dots non positive ones). In Figure 2 we report the corresponding weights in increasing
order.

Figure 1: The planar curvilinear elements Ω1 and Ω2 and the nodes of a cheap formula with ADE = 10. Green dots: nodes
with positive weights; red dots: nodes with negative weights.

Next, to check the exactness of these rules, for any fixed algebraic degree of exactness n = 2, 4, . . . , 16
we compute 100 trials of the integrals

Is,n =

∫
Ωs

(c0 + c1x+ c2y)
n dx dy , s = 1, 2
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Figure 2: 121 = 112 weights of the cheap rule with ADE = 10 on the planar curvilinear elements Ω1 (left) and Ω2 (right), in
increasing order.

with uniform random coefficients cj ∈ (0, 1), j = 0, 1, 2. The reference values of the integrals have been
computed by applying Gauss-Green theorem and Gauss-Legendre quadrature as in [33]. In Figure 3 we have
plotted by small crosses the relative errors made in the trials and by a circle their geometric mean. The
results show that the implemented rules have mean errors not far from machine precision.
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Figure 3: Small crosses: relative quadrature errors for 100 trials of random polynomials (c0 + c1x+ c2y)n on the elements Ω1

(left) and Ω2 (right). Circles: geometric mean of the relative errors. The abscissae are the ADE of the formulas.

Next we take into account the quality of numerical integration of the functions

f1(x, y) = exp(−(x2 + y2)), (10)

f2(x, y) = (x2 + y2)11/2, (11)

f3(x, y) = (x2 + y2)3/2, (12)

(13)

that present different regularity: f1 is analytic and entire, whereas f2 and f3 have singularities of certain
derivatives at the point (0, 0) in Ω1 and Ω2. In Table 1 we list the relative errors of the cheap rules, varying
the ADE. The reference values of the integrals have been computed by the routine with ADE equal to 30.

We conclude the section by displaying the construction cputime and the cardinality of the rules, for the
two examples above; see Tables 2 and 3. As anticipated, we compare the cheap rules with specialized rules
for elements with spline boundary, namely rules of PO type introduced in [31] and of PI type described in
[33]. Concerning the cputime, we run 100 tests over Ω1 and Ω2. The startup process for cheap algorithm

7



ADE f1 f2 f3 f1 f2 f3
2 3e-02 6e-01 2e-02 7e-05 3e-01 4e-02
4 5e-03 2e-01 3e-04 9e-07 6e-01 3e-03
6 1e-04 4e-03 2e-05 2e-09 2e-02 2e-05
8 5e-05 2e-04 5e-07 4e-12 2e-03 8e-05
10 4e-06 5e-07 2e-07 1e-14 5e-05 5e-05
12 2e-08 1e-09 7e-08 2e-15 5e-06 2e-06
14 7e-09 1e-10 3e-08 9e-16 5e-07 1e-05
16 5e-10 1e-11 7e-09 6e-16 5e-08 2e-06

Table 1: Relative errors of the cheap rules for the integration of f1, f2, f3 on the elements Ω1 (left) and Ω2 (right).

ADE CH PO PI CH PO PI
2 5e-04 9e-04 9e-04 7e-04 9e-04 2e-03
4 4e-04 8e-04 2e-03 6e-04 8e-04 2e-03
6 4e-04 8e-04 7e-03 6e-04 8e-04 3e-03
8 4e-04 8e-04 6e-03 6e-04 8e-04 6e-03
10 4e-04 8e-04 1e-02 6e-04 8e-04 1e-02
12 5e-04 8e-04 3e-02 7e-04 8e-04 3e-02
14 5e-04 8e-04 5e-02 9e-04 8e-04 5e-02
16 6e-04 8e-04 8e-02 8e-04 8e-04 7e-02

Table 2: Comparison of average construction cputimes (in seconds) of the cheap rule (CH), with the PO rule from [31] and the
PI rule from [33], on the elements Ω1 (left) and Ω2 (right).

(construction of the bivariate Chebyshev-Vandermonde matrix) has been skip since it can be done once and
for all for any mesh. The results show that the cputime order of the present procedure is comparable to
that of [31], with the advantage of a much lower cardinality of the rule. The PI rules proposed in [33] have
lower cardinality, but their computation is more expensive, especially at higher ADE.

Finally, we report in Table 4 the stability parameters ∥w∥1/|
∑

j wj | ≈ ∥w∥1/vol(Ωs), s = 1, 2. The
experiments show that these quantities are close to the optimal value 1, so confirming quantitatively the
expected stability of the rule.

Remark 3.1. Such a combination of no conditioning problem, low construction cost, stability and low
cardinality, makes the Cheap rules a promising alternative for the time-consuming integral computations
of FEM/VEM discretizations with curved polygonal elements, in the construction of stiffness and mass
matrices.

ADE CH PO PI CH PO PI
2 9 76 6 9 132 6
4 25 171 15 25 297 15
6 49 304 28 49 528 28
8 81 475 45 81 825 45
10 121 684 66 121 1188 66
12 169 931 91 169 1617 91
14 225 1216 120 225 2112 120
16 289 1539 153 289 2673 153

Table 3: As in Table 2 concerning the cardinality of the rules.
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ADE CH(Ω1) CH(Ω2)
2 1.15 1.05
4 1.14 1.05
6 1.15 1.08
8 1.12 1.05
10 1.10 1.06
12 1.10 1.04
14 1.09 1.05
16 1.09 1.04

Table 4: The stability parameters ∥w∥1/|
∑

j wj | of the cheap rules on the elements Ω1 (left) and Ω2 (right).

3.2. Compression of discrete measures with large support: QMC on complex 3D shapes

In this section we consider the compression of discrete measures with large support on 3D geometries
that may have a complex shape. The context is the following. Given a sequence of low-discrepancy points
{Qi}i=1,...,L on a compact domain Ω ⊂ R3, one may apply the Quasi-Montecarlo (QMC) method to approx-
imate the integral w.r.t. the Lebesgue measure of a continuous function f , that is∫

Ω

f(x, y, z) dx dy dz ≈ vol(Ω)

L

L∑
i=1

f(Qi) .

Typically one generates a low-discrepancy sequence of cardinality K on a parallelepiped B that contains
Ω, and then by an in-domain routine (implementing the indicator function of Ω) extracts those L points
{Qi = (xi, yi, zi)}i=1,...,L belonging to Ω. If the volume of Ω is not easily available, as it happens for domains
with complex geometrical shape, since vol(Ω) ≈ vol(B)L/K, one can consider the approximation∫

Ω

f(x, y, z) dx dy dz ≈
∫
Ω

f(x, y, z) dµ:=
vol(B)

K

L∑
i=1

f(xi, yi, zi) . (14)

that is, QMC integration can be seen as computing the integral of f w.r.t. a discrete measure µ defined by
the nodes Qi and the equal weights νi = vol(B)/K, i = 1, . . . , L. At this point, as described in Theorem 2.1,
one can easily achieve a cheap rule with M points in B, where in general M ≪ L, that is a compression of
the original QMC rule. The resulting cheap QMC rule is exact for f ∈ Pn, and integrates f ∈ C(Ω) with an
additional error term of the order of the best polynomial approximation in Pn to f on Ω. We refer the reader
e.g. to [12] on QMC integration theory and to [13, 14] for a discussion on the error of compressed QMC
(notice that a different and more costly compression method is there adopted, based on moment-matching
via Nonnegative Least-Squares).

To give the idea, we consider two elements Ω3 and Ω4 with a complex shape. In particular

• Ω3 is the intesection of the unit ball with a nonconvex polyhedron with 20 vertices and 30 triangular
facets;

• Ω4 is the union of 5 balls B(Ck, r) with centers {Ck}k=1,...,5 in [0, 1]3 and equal radius r = 0.5.

As it can be seen in Figure 4, the shapes are particularly complex and it is not easy to determine algebraic
quadrature rules on these elements, since they would require an accurate tracking of the specific element
geometry. This difficulty makes QMC integration an appealing alternative. To construct a QMC rule

• for Ω3, we set as bounding box B the parallelepiped obtained by intersection of cube [−1, 1]3 (circum-
scribed to the sphere), with the smaller parallelepiped containg the polyhedron (easily available from
the vertices);

• for Ω4, we set as bounding box B the smaller parallelepiped that contains all the five circumscribed
cubes to the balls defining the element.

9



Figure 4: The multivariate elements Ω3 and Ω4.

Next, to determine a cheap QMC rule we compute

• the tensorial Gauss-Chebyshev rule (ADE = 2n) on the parallelepiped with M = (n + 1)3 nodes
X ⊂ B;

• the QMC Chebyshev moments

mj =

∫
Ω

pj(x, y, z) dµqmc :=
vol(B)

K

L∑
i=1

pj(xi, yi, zi) , j = 1, . . . , N =
(n+ 1)(n+ 2)(n+ 3)

6
, (15)

where pj(x, y, z) = τi1(x)τi2(y)τi3(z), 0 ≤ i1 + i2 + i3 ≤ n, is the suitably (e.g. lexicographically)
ordered orthonormal Chebyshev basis of B;

• the weights w of the cheap QMC rule, relatively to the nodes X, by a single matrix-by-vector product
as in (3).

In our numerical experiments we first scale K = 105 Halton points in the bounding box B. Since
in-domain functions are trivially available for balls and have been implemented by efficient algorithms for
general polyhedra (cf. e.g. [16]), we can determine the QMC rules for both the elements. Such formulas
have respectively L = 23076 and L = 37379 nodes.

To test the quality of QMC compression by the cheap rule, we plot the relative errors on 100 trials of
the QMC rules applied to random polynomials of degree n = 2, 4, . . . , 16, with uniform random coefficients
cj ∈ (0, 1)

Is,n =

∫
Ωs

(c0 + c1x+ c2y + c3z)
n dµqmc =

vol(B)

K

L∑
i=1

(c0 + c1xi + c2yi + c3zi)
n , s = 3, 4.

In Figure 6 we have plotted by small crosses the relative errors made in the trials and by a circle their
geometric mean. The results show that the implemented rules have mean errors that range from 10−14 to
10−12 depending on n.

Next, in Table 5 we examine the quality of numerical integration of the functions
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Figure 5: Weights in increasing order of the cheap QMC rules with ADE = 10 on the 3D elements Ω3 (left) and Ω4 (right).
The corresponding nodes are 113 = 1331, much less than the hundreds of thousands of points in the original QMC rules.
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Figure 6: Small crosses: relative quadrature errors for 100 trials of random polynomials (c0+ c1x+ c2y+ c3z)n on the elements
Ω3 (left) and Ω4 (right). Circles: geometric mean of the relative errors. The abscissae are the ADE of the formulas.

f1(x, y, z) = exp(−(x2 + y2 + z2)), (16)

f2(x, y, z) = ((x− x0)
2 + (y − y0)

2 + (z − z0)
2)11/2, (17)

f3(x, y, z) = ((x− x0)
2 + (y − y0)

2 + (z − z0)
2)3/2, (18)

with (x0, y0, z0) = (0.51, 0.26, 0.63) ∈ Ω3 or (x0, y0, z0) = (0.21, 0.36, 0.51) ∈ Ω4. Again, the test functions
present different regularity: f1 is analytic and entire, whereas f2 and f3 have singularities of certain deriva-
tives at (x0, y0, z0). As reference values of the integrals, we considered those obtained by QMC rules on Ω3

and Ω4, constructed starting with 106 points in the respective bounding boxes.
In Table 6 we list the construction cputime, for the two examples above. As anticipated, these times do

not include the construction of the tensorial Gauss-Chebyshev rule that can be done once, independently
of the element. After having at hand the cheap QMC rules, we run 100 tests over Ω3 and Ω4. The average
cputimes of the cheap rules on the two elements are quite similar, while those of QMC are not, taking
respectively 1 and 0.1 seconds. We observe that the higher numerical cost w.r.t. the bivariate experiments
is due to the evaluation of the scaled Chebyshev-Vandermonde matrix at QMC points. In particular, the
determination of QMC rule in the element Ω3 is more time consuming, since such is the in-domain routine
on polyhedron w.r.t. that on union of balls. We can also see that for low degrees the compression time is
negligible, while it should be taken into account for larger ADE.

We conclude by listing in Table 7 the stability parameter ∥w∥1/|
∑

j wj | ≈ ∥w∥1/vol(Ωs), s = 1, 2. The
experiments show that these quantities are close to the optimal value 1, ensuring a good stability of the rule.
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ADE f1 f2 f3 f1 f2 f3 card
2 3e-02 8e+00 1e-01 6e-02 5e+01 2e-01 27
4 1e-03 2e+00 6e-03 6e-03 2e+01 2e-02 125
6 5e-05 6e-02 5e-04 7e-04 4e-01 1e-03 343
8 4e-05 1e-02 2e-04 7e-04 4e-01 2e-03 729
10 4e-05 6e-03 3e-04 6e-04 7e-05 2e-03 1331
12 4e-05 5e-03 4e-04 6e-04 9e-03 2e-03 2197
14 4e-05 5e-03 4e-04 6e-04 9e-03 2e-03 3375
16 4e-05 5e-03 4e-04 6e-04 9e-03 2e-03 4913

QMC 4e-05 5e-03 4e-04 6e-04 9e-03 2e-03

Table 5: Relative errors of the cheap QMC rules for the integration of f1, f2, f3 on the elements Ω3 (left) and Ω4 (right). The
last row shows the relative errors of the original QMC rules with 105 points in the bounding box B. In the last column we list
the cardinality of the cheap rules that must be compared with the L = 23076 and L = 37379 nodes of the QMC rules on Ω3

and Ω4, respectively.

ADE CH(Ω3) CH(Ω4)
2 3e-03 5e-03
4 9e-03 1e-02
6 2e-02 3e-02
8 3e-02 5e-02
10 6e-02 9e-02
12 9e-02 1e-01
14 1e-01 2e-01
16 2e-01 3e-01

QMC 1e+00 1e-01

Table 6: Average construction cputimes of the cheap QMC rule (in seconds), on the elements Ω3 (left) and Ω4 (right). The
last row shows the average cputimes for determining the nodes of the original QMC rules.

ADE CH(Ω3) CH(Ω4)
2 1.54 1.52
4 1.76 1.45
6 1.57 1.28
8 1.36 1.28
10 1.30 1.21
12 1.29 1.18
14 1.26 1.19
16 1.23 1.16

Table 7: The stability parameter ∥w∥1/|
∑

j wj | of the cheap rules on the elements Ω3 (left) and Ω4 (right).
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Notice that in this case (6) is clearly an overestimate of the size of ∥w∥1. This can be ascribed to the fact
that the QMC moments of the product Chebyshev basis approximate the Lebesgue moments of the basis
(at least when the number L of QMC points is large) so that, rather, a bound close to (5) and consequently
a substantial boundedness of the stability parameter is expected.

Remark 3.2. The possibility of integrating numerically on very complex spatial elements without a difficult
accurate tracking of the geometrical shape, makes in principle QMC an appealing approach, alternative to
traditional cubature methods. Its Cheap version is able to reduce substantially the amount of computations,
when a low-cost and stable integration formula is needed for several integrations on the same element. On the
other hand, the applicability within FEM/VEM polytopal discretizations is questionable, due to the relatively
high cost of the initial construction of the QMC nodes and moments. Nevertheless, a possible interest
may arise for example with parametric PDEs, where a given discretization can be used repeatedly changing
the parameters, and certain preparatory computations can be made once per element and used in different
simulations.
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