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Abstract

We construct Weakly Admissible polynomial Meshes (WAMs) on
circular sections, such as symmetric and asymmetric circular sectors,
circular segments, zones, lenses and lunes. The construction resorts to
recent results on subperiodic trigonometric interpolation. The paper is
accompanied by a software package to perform polynomial fitting and
interpolation at discrete extremal sets on such regions.
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1 Introduction

In the recent literature on multivariate polynomial approximation, the no-
tion of “Weakly Admissible Mesh” has emerged as a basic tool, from both
the theoretical and the computational point of view; cf., e.g., [4, 6, 12] and
the references therein.

We recall that a Weakly Admissible Mesh (WAM) is a sequence of finite
subsets of a multidimensional compact set, say An ⊂ K ⊂ R

d (or Cd), which
are norming sets for total-degree polynomial subspaces,

‖p‖K ≤ C(An) ‖p‖An
, ∀p ∈ P

d
n(K) , (1)

where both C(An) and card(An) increase at most polynomially with n.
Here and below, Pd

n(K) denotes the space of d-variate polynomials of degree
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not exceeding n (restricted to K), and ‖f‖X the sup-norm of a function f
bounded on the (discrete or continuous) set X. Moreover, we shall term
C(An) the “constant” of the WAM. Observe that necessarily card(An) ≥
dim(Pd

n(K)). When C(An) is bounded we speak of an “Admissible Mesh”
(AM), sometimes also called “polynomial mesh” in the literature (cf., e.g.,
[23, 33, 29, 30]).

Among their properties, we quote that WAMs are preserved by affine
transformations, can be constructed incrementally by finite union and prod-
uct, and are ”stable” under small perturbations [28]. Moreover, we recall
that unisolvent interpolation point sets, with slowly (at most polynomially)
increasing Lebesgue constant, are WAMs, with C(An) equal to the Lebesgue
constant and card(An) = dim(Pd

n(K)). It has been shown in the seminal
paper [12] that WAMs are nearly optimal for polynomial least-squares ap-
proximation in the uniform norm, in the sense that

‖f − LAn
f‖K . C(An)

√

card(An) inf
p∈Pd

n(K)
‖f − p‖K , ∀f ∈ C(K) , (2)

where LAn
denotes the least-squares projection operator.

On the other hand, discrete extremal sets (of Fekete and Leja type) ex-
tracted from such meshes show good Lebesgue constants and behave asymp-
totically as the corresponding continuum extremal sets; we refer the reader,
e.g., to [4, 5], and to the excellent survey [3] on the state of the art in
multivariate polynomial interpolation and approximation.

In the present paper, we connect the theory of WAMs to the recently
developed theory of “subperiodic” trigonometric interpolation, that is inter-
polation by trigonometric polynomials on subintervals of the period. The
main motivation for the study of the subperiodic case, came from its con-
nection with polynomial approximation and numerical quadrature on mul-
tivariate domains that are related to circular arcs. The case of solids of
rotation was considered in [20]. Gaussian subperiodic trigonometric rules
and subperiodic transformations were the basis for the construction of al-
gebraic cubature formulas on several circular sections, obtained by linear
blending of arcs [8, 15, 16, 14] (such as circular lenses among others), and
on circular lunes by suitable subperiodic trigonometric diffeomorphisms [18].
Applications arise, for example, in the framework of optical design, cf. [1].

Here we show how to construct WAMs on arc blending domains and on
circular lunes, and we provide the software package [19], written in Matlab,
that performs such WAM constructions, as well as polynomial fitting and
interpolation at discrete extremal sets on the corresponding domains.

2 WAMs by arc blending

The key tool in all the constructions below is the fact that, by suitable
geometric transformations, total-degree bivariate algebraic polynomials on

2



circular sections belong to tensor-product spaces of trigonometric, or of
algebraic with trigonometric, univariate polynomials. In addition to the
notations described in the Introduction, we shall denote by Tn([α, β]) the
(2n+1)-dimensional subspace of trigonometric polynomials with degree not
exceeding n, restricted to the angular interval [α, β]. Moreover, we shall use
the following sets of angular nodes

Ξk(α, β) =

{

θj = ψj +
α+ β

2
, j = 1, 2, . . . , k + 1

}

⊂ (α, β) , k > 0 , (3)

where

ψj = ψj(k, ω) = 2 arcsin(sin(ω/2)τj) ∈ (−ω, ω) , ω =
β − α

2
≤ π ,

and

τj = τj,k+1 = cos

(

(2j − 1)π

2(k + 1)

)

∈ (−1, 1) , j = 1, 2, . . . , k + 1

are the zeros of the (k+ 1)-th Chebyshev polynomial Tk+1(τ) in (−1, 1). In
particular, a key role will be played by

Θn = Θn(α, β) = Ξ2n(α, β) . (4)

We begin with the following basic inequality for trigonometric polyno-
mials on subintervals of the period.

Lemma 1 Let be t ∈ Tn([α, β]) with 0 < β − α ≤ 2π, and Θn the angular
nodal set (4). Then the following inequality holds

‖t‖[α,β] ≤ Cn‖t‖Θn
, Cn = O(log n) . (5)

Proof. In [8], resorting to the nonlinear transformation

θ(τ) = 2 arcsin((sin(ω/2) τ)) ∈ [ω, ω] , for τ ∈ [−1, 1] , (6)

with inverse

τ(θ) =
sin(θ/2)

sin(ω/2)
∈ [−1, 1] , for θ ∈ [−ω, ω] , (7)

it was proved that the 2n + 1 Chebyshev-like angles {ψj} in (3) for k =
2n are unisolvent for trigonometric interpolation of degree n in [−ω, ω],
with cardinal functions expressible in terms of the fundamental Lagrange
polynomials of the Chebyshev points {τj} in [−1, 1]. Moreover, in [17] it
was proved that their Lebesgue constant, say Cn, is independent of ω and
increases logarithmically with respect to the degree, Cn = O(log n). Clearly,
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all these properties are shift-invariant and hence are inherited by any angular
interval [α, β] with β − α ≤ 2π.

Now, calling Ln the trigonometric interpolation operator at Θn, we
have Lnt ≡ t for every t ∈ Tn([α, β]), and thus ‖t‖[α,β] = ‖Lnt‖[α,β] ≤
‖Ln‖ ‖t‖Θn

= Cn‖t‖Θn
. �

Remark 1 Observe that, generalizing the notion, Θn in Lemma 1 can be
viewed as a WAM for univariate trigonometric polynomials, with logarith-
mically increasing constant. Moreover, by a slight extension of the argu-
ments in [36] (that we do not report for brevity), it can be proved that
Ξ⌈mπn⌉(α, β), m > 1, is an Admissible Mesh (AM) for Tn([α, β]) with con-
stant Cn ≡ C = m/(m− 1) and cardinality ⌈mπn⌉ + 1.

The first circular sections that we consider belong to the more general
family of domains obtained by linear blending of elliptical arcs. This family
has been extensively studied in [14], in view of the construction of product
Gaussian formulas. Differently from [14], here we do not need that the
underlying transformation is injective. Let

P (θ) = A1 cos(θ)+B1 sin(θ)+C1 , Q(θ) = A2 cos(θ)+B2 sin(θ)+C2 , (8)

θ ∈ [α, β], be two trigonometric planar curves of degree one,

Ai = (ai1, ai2) , Bi = (bi1, bi2) , Ci = (ci1, ci2) , i = 1, 2 , (9)

being suitable bidimensional vectors (with Ai, Bi not all zero), with the im-
portant property that the curves are both parametrized on the same angular
interval [α, β], 0 < β − α ≤ 2π. It is not difficult to show, by a possible
riparametrization with a suitable angle shift when Ai and Bi are not or-
thogonal, that these curves are arcs of two ellipses centered at C1 and C2,
respectively (cf. [14]).

Consider the compact domain

Ω = {(x, y) = ξ(s, θ) = sP (θ) + (1 − s)Q(θ) , (s, θ) ∈ [0, 1] × [α, β]} , (10)

which is the transformation of the rectangle [0, 1]× [α, β] obtained by convex
combination (linear blending) of the arcs P (θ) and Q(θ). Observe that the
transformation ξ is analytic and not injective, in general.

We can now prove the following

Proposition 1 Let Xn = {si} be the set of n+ 1 Chebyshev-Lobatto points
in [0, 1], namely si = 1

2(1 + cos(iπ/n)) , i = 0, . . . , n. Let Θn be the set of
the 2n+ 1 angular nodes (4).

The sequence of finite subsets An = ξ(Xn ×Θn) is a WAM of Ω defined
in (10), with constant C(An) = O(log2 n).
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Proof. Let p ∈ P
2
n(K). By the transformation (10) we have that p(ξ(s, θ))

belongs to the tensor-product space P
1
n([0, 1])

⊗

Tn([α, β]). Now, Xn is an
algebraic WAM for [0, 1] with constant Λn = O(log n) (being formed by
Chebyshev interpolation nodes), whereas Θn is a trigonometric WAM for
[α, β] with constant Cn = O(log n) (cf. Lemma 1 and Remark 1).

Then, for every q ∈ P1
n([0, 1])

⊗

Tn([α, β]) we can write the chain of
inequalities

‖q‖[0,1]×[α,β] = |q(s∗, θ∗)| ≤ Λn‖q(·, θ∗)‖Xn
= Λn|q(si∗ , θ∗)|

≤ ΛnCn‖q(si∗ , ·)‖Θn
= ΛnCn|q(si∗ , θj∗)| ≤ ΛnCn‖q‖Xn×Θn

,

where we have used the fact that q(·, θ) is an algebraic polynomial for any
fixed θ and q(s, ·) is a trigonometric polynomial for any fixed s, and (s∗, θ∗),
si∗ and θj∗ are suitable maximum points. It follows that

‖p‖Ω = ‖p ◦ ξ‖[0,1]×[α,β] ≤ ΛnCn‖p ◦ ξ‖Xn×Θn
= ΛnCn‖p‖ξ(Xn×Θn) .

This shows that An = ξ(Xn × Θn) is a WAM of Ω defined in (10), with
constant C(An) = ΛnCn = O(log2 n). �

Notice that card(An) ≤ (n+1)(2n+1) = 2n2+3n+1, since the transfor-
mation can be non injective and multiple points can occurr. Clearly, other
WAMs can be constructed with the same structure and constant growth,
for example choosing for Xn the classical Chebyshev points instead of the
Chebyshev-Lobatto points, or other optimal families of algebraic interpola-
tion nodes (cf., e.g., [24, Ch. 4]).

2.1 Examples

Several instances of standard as well as less standard sections of disks (and
ellipses) can be treated by arc blending, as it has been shown in [14] in the
framework of cubature. All the examples below can be reproduced by the
Matlab software package WAM in [19]. The software automatically elimi-
nates possible point repetitions when the transformation is not injective.

2.1.1 Symmetric annular sectors

Symmetric annular sectors of a disk with radius R1 centered in (a, b), corre-
sponding to an arc with angular interval [α, β], are defined by (8)-(10) where
A1 = (R1, 0), B1 = (0, R1), C1 = (a, b), and A2 = (R2, 0), B2 = (0, R2),
C2 = (a, b), 0 ≤ R2 < R1. A standard circular sector with vertex in the cen-
ter corresponds to the degenerate case R2 = 0, i.e., A2 = (0, 0), B2 = (0, 0)
and Q(θ) ≡ C2 = (a, b).

The cardinality of the WAM given by Proposition 1 is 2n2 + 3n + 1 in
the annular case (R2 > 0), whereas it is 2n2 + 3n + 1 − 2n = 2n2 + n + 1
when R2 = 0, since we have to subtract the repetitions of the vertex.
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See Figure 1, where (a, b) = (0, 0), R1 = 1, and R2 = 0, α = π/6,
β = π/2 (left), whereas R2 = 1/3, α = −π/3, β = π (right).

Figure 1: WAMs for degree 5 on a circular sector and an annular sector.

2.1.2 Asymmetric sectors and asymmetric annuli

Asymmetric circular sectors of a disk with radius R centered in (a, b), cor-
responding to an arc with angular interval [α, β], whose vertex is in any
point (c, d) of the disk, are given by (8)-(10) with A1 = (R, 0), B1 = (0, R),
C1 = (a, b), and A2 = (0, 0), B2 = (0, 0), C2 = (c, d). Here the WAM
cardinality is 2n2 + n+ 1.

An asymmetric annulus is a disk with a circular hole of radius R2 > 0,
whose center (c, d) is different from the disk center (a, b). It can be described
by A1 = (R, 0), B1 = (0, R), C1 = (a, b), and A2 = (R2, 0), B2 = (0, R2),
C2 = (c, d), with [α, β] = [−π, π]. The WAM cardinality is 2n2 + 3n+ 1.

See Figure 2, where (a, b) = (0, 0), R = 1, and (c, d) = (0.5,−0.5),
R2 = 0, α = −π/6, β = π/2 (left), whereas (c, d) = (0.5, 0.5), R2 = 0.2,
α = −π, β = π (right).

2.1.3 Circular zones and circular segments

A circular zone is the portion of a disk cut by two parallel lines. Up to a
rotation, we can consider the case of vertical lines, corresponding to opposite
arcs with angular interval [α, β], 0 ≤ α < β ≤ π. The transformation is given
by (8)-(10) with A1 = (R, 0), B1 = (0, R), C1 = (a, b), and A2 = (R, 0),
B2 = (0,−R), C2 = (a, b). The WAM cardinality is 2n2 + 3n + 1.

A special case is a circular segment, one of the two portions of the disk
cut by a single line. With no loss of generality, up to a rotation we can
consider the circular segment corresponding to an angular interval [−ω, ω],
that by the zone transformation above would correspond to α = 0, β = ω.
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Figure 2: WAMs for degree 5 on an asymmetric sector and an asymmetric
annulus.

In order to reduce the cardinality, we can exploit symmetry by the same
tranformation with a different angular interval, α = −ω, β = ω. In such
a way, the transformation becomes non injective, each internal node of the
WAM is repeated twice whereas the node (R, 0) is repeated n times. Hence,
the WAM cardinality is (2n2 + 3n+ 1− (n+ 1))/2 + 1 = n2 + n+ 1, that is
about half the maximal one.

See Figure 3, where (a, b) = (0, 0), R = 1, and α = π/6, β = π/2 (left),
whereas α = −π/3, β = π/3 (right).

Figure 3: WAMs for degree 5 on a circular zone and a circular segment.

2.1.4 Circular lenses

A circular lens is the intersection of two overlapping disks. When the disks
have equal radius, the lens is symmetric. If δ =

√

(a− c)2 + (b− d)2 is the
centers distance and R the radius, δ < 2R, the lens is described by (8)-(10)
with A1 = (R, 0), B1 = (0, R), C1 = (a, b), and A2 = (−R, 0), B2 = (0, R),
C2 = (c, d), and angular interval α = −ω, β = ω, ω = arccos(δ/2). The
WAM cardinality is 2n2 +3n+1. See Figure 4-bottom, where (a, b) = (0, 0),
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(c, d) = (0.6, 0), R = 1.
General lenses, as well as double bubbles (union of two overlapping

disks), can be treated as union of two circular segments (cf. [18] in the
context of cubature). The corresponding WAMs are union of the WAMs of
the circular segments, with cardinality 2(n2 + n + 1) and constant which
is still O(log2 n), being the maximum of the two constants (cf. [12]). See
Figure 4-top.

2.1.5 Butterfly-shaped and candy-shaped regions

A butterfly-shaped region corresponds to linear blending of two opposite
circular arcs, that is A1 = (R, 0), B1 = (0, R), A2 = (−R, 0), B2 = (0,−R),
C1 = C2 = (a, b), and β − α ≤ π. The WAM cardinality is 2n2 + 3n + 1
for odd n, and 2n2 + 2n + 1 for even n (where we have to substract the 2n
repetitions of the centre). See Figure 5-left, where (a, b) = (0, 0), R = 1,
α = −π/4, β = π/4.

A candy-shaped region can be generated by linear blending of two sym-
metric overlapping circular arcs with opposite concavity, that is (up to
a rotation) A1 = (R, 0), B1 = (0, R), C1 = (a,−b), and A2 = (R, 0),
B2 = (0,−R), C2 = (a, b), 0 < b < R, 0 < α < arcsin(b), β = π − α.
The WAM cardinality is 2n2 + 3n+ 1 (excluded the exceptional case that at
some degree the intersection points of the arcs correspond to Chebyshev-like
angular nodes). See Figure 5-right, where (a, b) = (0, 0.8), R = 1, α = π/4,
β = 3π/4.

2.1.6 WAMs on the disk by different transformations

The whole disk can be viewed in different ways as linear blending of circular
arcs. It can be considered a sector with vertex angle 2π, either symmetric
or asymmetric, or a circular zone corresponding to an angular interval of
length π. With such transformations, the WAM cardinality is 2n2 + O(n).
See Figure 6.

On the other hand, we can reduce the cardinality by exploiting symme-
try. Indeed, we can view the disk as a circular segment with angular interval
of length 2π, or as a butterfly-shaped region again with angular interval of
length 2π. In such a way the internal nodes are mapped noninjectively in a
symmetric way and the resulting cardinality is essentially halved, n2+O(n).
See Figure 7.

In Table 1, we summarize the blending parameters for some of the cir-
cular sections listed before.
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Figure 4: WAMs for degree 5 by union of circular segments on a symmetric
lens and a symmetric double bubble (top), and on the same lens by direct
transformation (bottom).

Figure 5: WAMs for degree 5 on a butterfly-shaped (left) and a candy-
shaped (right) region.

3 WAMs on lunes

A quite different situation, where only product trigonometric polynomials
are involved, is given by circular lunes, that are difference of two overlapping
disks.

By no loss of generality, up to rotation, translation and scaling, we can
consider a lune, say L, which is the difference of the unit disk with of a disk
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Figure 6: WAMs for degree 5 on the disk, as extremal case of a symmetric
sector (top-left), an asymmetric sector (top-right), a circular zone (bottom).

Figure 7: WAMs for degree 5 on the disk as extremal case of a circular
segment (left), and a butterfly-shaped region (right).

of radius r centered at (−d, 0), d > 0. The condition |1 − r| < d < 1 + r
ensures that the intersection is nonempty and one disk is not included into
the other, so that we have a proper lune. The boundary of the lune is
given by two circular arcs: the right one (longer) is an arc of the unit circle
with semiangle ω2, the left one (shorter) is an arc of the other circle with
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Table 1: Blending parameters in (8)-(10) for some circular sections (for the
lens, δ < 2R, ω = arccos(δ/2)).

region/parms A1 B1 C1 A2 B2 C2 ang intv
symm sector (R, 0) (0, R) (a, b) (0, 0) (0, 0) (a, b) [−ω, ω]
asymm sector (R, 0) (0, R) (a, b) (0, 0) (0, 0) (c, d) [α, β]
circ zone (R, 0) (0, R) (a, b) (−R, 0) (0, R) (a, b) [α, β]
circ segment (R, 0) (0, R) (a, b) (R, 0) (0,−R) (a, b) [−ω, ω]
symm lens (R, 0) (0, R) (a, b) (−R, 0) (0, R) (a+ δ, b) [−ω, ω]
butterfly (R, 0) (0, R) (a, b) (−R, 0) (0,−R) (a, b) [−ω, ω]

semiangle ω1, where

0 < ω1 = arccos

(

r2 + d2 − 1

2dr

)

< ω2 = arccos

(

r2 − d2 − 1

2d

)

< π . (11)

We consider three bilinear trigonometric transformations of rectangles
(in angular variables) to the lune, which have been proposed in [18], of the
form

σ(φ, θ) = A1 +A2 cos(θ) +A3 sin(θ) +A4 cos(φ) +A5 cos(φ) cos(θ)

+A6 cos(φ) sin(θ) +A7 sin(φ) +A8 sin(φ) cos(θ) +A9 sin(φ) sin(θ) , (12)

where the Ai = (Ai(1), Ai(2)) are suitable 2-dimensional vectors, i.e., each
component of σ is in the trigonometric space T1

⊗

T1.
The first transformation is

σ1 = (x(φ, θ), y(φ, θ)) : [−ω1, ω1] × [0, ω2] → L , (13)

x(φ, θ) = cos(θ) − cos(ω1)

sin(ω1)
sin(θ) +

1

sin(ω1)
cos(φ) sin(θ) ,

y(φ, θ) =
1

sin(ω1)
sin(φ) sin(θ) .

In [18] it was proved that such a transformation maps (not injectively since
σ1(φ, 0) ≡ 1) the boundary of the rectangle onto the boundary of the lune
(preserving the orientation) and has positive Jacobian, so that it is a diffeo-
morphism of the interior of the rectangle onto the interior of the lune.

The second transformation is

σ2 = (x(φ, θ), y(φ, θ)) : [−ω1, ω1] × [−ω2, ω2] → L , (14)

x(φ, θ) = cos(θ) +
(1 − cos(θ)) sin(ω2)

(1 − cos(ω2)) sin(ω1)
(cos(φ) − cos(ω1)) ,
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y(φ, θ) =
1

sin(ω1)
sin(φ) sin(θ) .

As proved in [18], under the condition

ω1 ≤ arctan

(

2(1 − cos(ω2))

sin(ω2)

)

, (15)

the transformation maps [−ω1, ω1]× [0, ω2] onto the lune, diffeomorphically
on the interiors, having positive Jacobian. Here we do not need injectivity
at all, so in order to reduce the number of nodes we have choosen the
rectangle [−ω1, ω1] × [−ω2, ω2], such that now the transformation (14)-(15)
is surjective, σ2(φ, θ) = σ2(−φ,−θ) for every interior point of the rectangle,
and σ2(φ, 0) ≡ (1, 0).

The third transformation is

σ3 = (x(φ, θ), y(φ, θ)) : [−ω1, ω1] × [−ω2, ω2] → L , (16)

x(φ, θ) = (cos(φ)− cos(ω1))

(

cos(ω2)

1 − cos(ω1)
+

sin(ω2)

sin(ω1)

)

+
1 − cos(φ)

1 − cos(ω1)
cos(θ) ,

y(φ, θ) =
1

sin(ω1)
sin(φ) sin(θ) .

Under the condition

(cos(ω2) + cos(ω2 − ω1))
2 ≤ 4 cos(ω1) , (17)

it maps [0, ω1] × [−ω2, ω2] onto the lune, diffeomorphically on the interiors,
having positive Jacobian (cf. [18]). In order to reduce the number of nodes
we have choosen again the rectangle [−ω1, ω1] × [−ω2, ω2], such that now
the transformation (16)-(17) is surjective, σ3(φ, θ) = σ3(−φ,−θ) for every
interior point of the rectangle, and σ3(0, θ) ≡ (−d+ r, 0).

As discussed in [18], condition (17) determines a set of the parameters
ω1, ω2 which has nonempty difference with that determined by condition
(15). Moreover, when ω1 > π/2, only the general transformation (13) is
applicable. The geometric action of the three transformations can be seen
in Figure 8.

We are now ready to state and prove the following

Proposition 2 Let L the lune defined as the difference of the unit disk with
of a disk of radius r centered at (−d, 0), d > 0, where |1−r| < d < 1+r. Let
Θn(α, β) be the set of the 2n+1 angular nodes (4), ω1, ω2 the angles defined
in (11), σi, i = 1, 2, 3, the transformations (13), (14)-(15), (16)-(17).

The sequence of finite subsets A(1)
n = σ1(Θn(−ω1, ω1) × Θn(0, ω2)) is a

WAM of L, with constant C(A(1)
n ) = O(log2 n) and cardinality card(A(1)

n ) =

4n2 + 4n + 1. Moreover, for i = 1, 2 the sequence of finite subsets A(i)
n =

σi(Θn(−ω1, ω1) × Θn(−ω2, ω2)) is a WAM of L, with constant C(A(i)
n ) =

O(log2 n) and cardinality card(A(i)
n ) = 2n2 + n+ 1.
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Proof. Let p ∈ P
2
n(L). We have that p(σ1(φ, θ)) belongs to the tensor-

product space Tn([−ω1, ω1])
⊗

Tn([0, ω2]), whereas p(σi(φ, θ)), i = 1, 2, be-
longs to the tensor-product space Tn([−ω1, ω1])

⊗

Tn([−ω2, ω2]). Then, rea-
soning as in the proof of Proposition 1 we get

‖p‖L = ‖p ◦ σ1‖[−ω1,ω1]×[0,ω2] ≤ C2
n‖p ◦ σ1‖Θn(−ω1,ω1)×Θn(0,ω2) = ‖p‖

A
(1)
n

,

where Cn = O(log n) by Lemma 1. By injectivity of the transformation σ1
in the interior of the rectangle, the cardinality is (2n + 1)2 = 4n2 + 4n +
1. The argument is the same for σ2 and σ3, whereas the structure of the
transformations entails that the cardinality is essentially halved. In fact, by
symmetry of the nodes and of the transformations we have to subtract the
node repetitions, so that the cardinality is ((2n + 1)2 − (2n + 1))/2 + 1 =
2n2 + n+ 1. �

Figure 8: Mapping a 10 × 10 angular grid from the relevant rectangles to a
lune by the three transformations σ1, σ2, σ3.

In Figure 9 we show examples of WAMs on circular lunes, obtained by
the transformations σ1, σ2, σ3. The top-left lune is the difference of the disk
of radius r = 0.8 centered in (−0.7, 0) with the unit disk, with the top-right
lune the disks are interchanged, whereas the bottom lune is the difference
of the disk of radius r = 0.8 centered in (−0.4, 0) with the unit disk.

Remark 2 It is worth observing that in view of Remark 1 and of a well-
known univariate polynomial inequality by Ehlich and Zeller [21] (see also
[9, Rem. 1]), we can even easily construct an Admissible Mesh on arc-
blending domains and on circular lunes. Indeed, reasoning as in the proof
of Proposition 1, it turns out that ξ(Xmn × Ξ⌈mπn⌉(α, β)), m > 1, is an
Admissible Mesh for Ω defined in (10), with constant

C =
m

(m− 1) cos
(

π
2m

)

and cardinality not exceeding (mn+ 1)(⌈mπn⌉ + 1) ∼ π(mn)2.
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Figure 9: WAMs for degree 5 on three circular lunes, by the transformation
σ1 (bottom), σ2 (top-left) and σ3 (top-right).

Similarly, σi(Ξ⌈mπn⌉(−ω1, ω1) × Ξ⌈mπn⌉(−ω2, ω2)), m > 1, i = 1, 2, 3, is
an Admissible Mesh for a lune L, with constant

C =

(

m

m− 1

)2

and cardinality (πmn)2 +O(n) for σ1, and (πmn)2/2 +O(n) for σ2 and σ3.
Working with Admissible Meshes, however, is not really convenient from

the computational point of view. For example, takingm = 2 we get C(An) ≡
C = 2

√
2 (arc-blending domains) or C(An) ≡ C = 4 (lunes), instead of the

very slowly increasing C(An) = O(log2 n) of a WAM, but the cardinality is
from approximately 6 (arc-blending domains) to approximately 10 (lunes)
times higher.

4 Polynomial fitting and polynomial interpolation

The theoretical and computational role of WAMs in multivariate polynomial
approximation has been extensively studied in the last years, starting from
the seminal paper [12]. We recall here some basic results and algorithms
concerning polynomial fitting on WAMs, and polynomial interpolation at
discrete extremal sets extracted from WAMs.
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Let us term LAn
the projection operator C(K) → P

d
n(K) defined by

polynomial least-squares on a WAM, and LFn
the projection operator de-

fined by interpolation on Fekete points of degree n, say Fn, extracted from
a WAM (Fekete points are points that maximize the absolute value of the
Vandermonde determinant). Concerning their operator norms with respect
to ‖ · ‖K , in [12] it is proved that

‖LAn
‖ . C(An)

√

card(An) , (18)

for polynomial least-squares, and

‖LFn
‖ ≤ NC(An) , N = dim(Pd

n(K)) , (19)

for polynomial interpolation, which show that WAMs with slowly increasing
constants C(An) and cardinalities, are relevant structures for multivariate
polynomial approximation. The WAMs of circular sections studied in the
previous sections are good candidates for polynomial fitting and interpola-
tion on the corresponding 2-dimensional regions, since

C(An) = O(log2 n) , card(An) = O(n2) . (20)

Moreover, (18)-(19) turn out to be in practice large overestimates of the
actual growth.

A standard calculation for projection operators provides from (18)-(19)
estimate (2), as well as

‖f − LFn
f‖K . NC(An) inf

p∈Pd
n(K)

‖f − p‖K , ∀f ∈ C(K) , (21)

from which we get, if K is a Jackson compact and for a sufficiently regular
function f ,

‖f − LAn
f‖K = O

(

C(An)
√

card(An)n−k
)

, (22)

and
‖f − LFn

f‖K = O
(

NC(An)n−k
)

, (23)

which shows that the least-squares approximation process is theoretically
convergent in the uniform norm whenever k > 1, and the interpolation
process is theoretically convergent whenever k > 2 (since N ∼ n2/2).

We recall that a fat compact set K ⊂ R
d (i.e., K = Ko) is termed a

Jackson compact if it admits a Jackson inequality, namely for each k ∈ N

there exist a positive integer mk and a positive constant ck such that

nk inf
p∈Pd

n(K)
‖f − p‖K ≤ ck

∑

|i|≤mk

‖Dif‖K , n > k , ∀f ∈ Cmk(K) . (24)
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Examples of Jackson compacts are d-dimensional cubes (with mk = k + 1)
and Euclidean balls (with mk = k).

In [32], it is proved that if a fat compact set K is Whitney-regular and
admits a Markov polynomial inequality, then it is a Jackson compact. Now,
two deep results based on subanalytic geometry and pluripotential theory al-
low to conclude that arc-blending domains and lunes are Jackson compacts.
In fact, being an analytic image of a rectangle, they are subanalytic com-
pact subset of R2 and then they admit a Markov polynomial inequality; see
[27, 32] and the survey [31] for the relevant definitions and proofs. Moreover,
being subanalytic their are also Whitney-regular (cf. [35]), a fact that can
be proved also directly by geometrical considerations as in [18].

4.1 Computational issues and numerical tests

Below, we describe the computational issues of polynomial approximation
on the circular sections of Section 2 and 3. We recall briefly the main
features of the approximation procedures, that resort to basic Numerical
Linear Algebra methods, referring the reader, e.g., to [4, 5, 7, 34] for a more
extensive and deep analysis. All the algorithms are implemented in the
Matlab package [19].

The approximation algorithms start from Vandermonde-like matrices in
suitable total-degree polynomial bases. The choice of the standard mono-
mial basis is unappropriate already at small degrees, due to its severe ill-
conditioning. A general and more suitable choice is the product Chebyshev
basis of the smallest Cartesian rectangle (say [a, b] × [c, d]) containing the
region, namely

Th

(

2x− b− a

b− a

)

Tk

(

2y − d− c

d− c

)

, 0 ≤ h+ k ≤ n .

By a suitable ordering (for example the lexicographical ordering), we obtain
a polynomial basis that we call

p(x, y) = (p1(x, y), . . . , pN (x, y)) , N = dim(P2
n) =

(n+ 1)(n + 2)

2
, (25)

and we can compute the corresponding Vandermonde-like matrix on a WAM
of the region

V (An,p) = (pj(xi, yi)) , 1 ≤ i ≤M , 1 ≤ j ≤ N , (26)

where An = {(x1, y1), . . . , (xM , yM )} . Notice that M ≥ N and V (An,p) is
full-rank by (1), cf. [12].

The core of the fitting and interpolation procedures is a two-step discrete
orthogonalization of the polynomial basis by the QR algorithm, namely

V (An,p) = Q1R1 , Q1 = QR2 , (27)
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where
Q = V (An,ϕ) = V (An,p)R−1

1 R−1
2 (28)

is the (numerically) orthogonal Vandermonde-like matrix corresponding to
the discrete orthonormal polynomial basis

ϕ = (ϕ1, . . . , ϕN ) = (p1, . . . , pN )R−1
1 R−1

2 . (29)

The reason for iterating the QR factorization is to cope with the strong
ill-conditioning which is typical of Vandermonde-like matrices and increases
with the degree. Two orthogonalization iterations generally suffice, unless
the original matrix V (An,p) is so severely ill-conditioned (rule of thumb:
condition number greater than the reciprocal of machine precision) that the
algorithm fails (cf. [34]). This phenomenon of “twice is enough”, is well-
known in numerical Gram-Schmidt orthogonalization, cf. [22]. In practice,
the change of polynomial basis is conveniently implemented by the Matlab
matrix right division operator (cf. [25]) as ϕ = (p/R1)/R2, in view of the
ill-conditioning inherited by the triangular matrices R1 and R2.

The least-squares polynomial projection of f ∈ C(K), computed on an
array of target points X = {(ξ1, η1), . . . (ξS , ηS)} ⊂ K, is simply

LAn
f(X) = V (X,ϕ)Qtf , f = (f(ξ1, η1), . . . , f(ξS, ηS))t . (30)

Moreover, we can estimate the norm of the least-squares projection operator,
that we call its “Lebesgue constant” by analogy with interpolation, by an
array of control points Y as

‖LAn
‖ ≈ ‖Q(V (Y,ϕ))t‖1 , (31)

cf. [6]. In [19], the estimate is repeated with Y = Akn, k = 2, 3, . . . ,
until the ratio of two successive estimates stabilizes around 1. Though the
underlying “Lebesgue function” is not a polynomial and thus the use of
WAMs as control sets has not a sound theoretical basis, this procedure,
adopted for example in [10], turns out to give a good final estimate of the
Lebesgue constant.

Concerning polynomial interpolation on circular sections, we resort to
the approximate versions of Fekete points of K (points that maximize the
absolute value of the Vandermonde determinant) studied in several papers
[4, 5, 34]. By (19), it makes sense to start from a WAM, that is from the
corresponding orthogonal Vandermonde-like matrix Q = V (An,ϕ) in (28)
(which is preferable for conditioning issues). The problem of selecting a
N × N square submatrix with maximal determinant from a given M × N
rectangular matrix is known to be NP-hard [13], but can be solved in an
approximate way by two simple greedy algorithms, that are fully described
and analyzed in [5]. These algorithms produce two interpolation nodal sets,
called discrete extremal sets.
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The first, that computes the so-called Approximate Fekete Points (AFP),
tries to maximize iteratively submatrix volumes until a maximal volume
N × N submatrix of Q is obtained, and can be based on the famous QR
factorization with column pivoting [11], applied to Qt (that in Matlab is
implemented by the matrix left division or backslash operator, cf. [25]). See
[13] for the notion of volume generated by a set of vectors, which generalizes
the geometric concept related to parallelograms and parallelepipeds (the
volume and determinant notions coincide on a square matrix).

The second, that computes the so-called Discrete Leja Points (DLP),
tries to maximize iteratively submatrix determinants, and is based simply
on Gaussian elimination with row pivoting applied to Q.

Denoting by A the M × 2 matrix of the WAM nodal coordinates, the
corresponding computational steps, written in a Matlab-like style, are

w = Q\v; i = find(w 6= 0); FAFP
n = A(i, :); (32)

for AFP, where v is any nonzero N -dimensional vector, and

[L,U,σ] = LU(Q, “vector”); i = σ(1 : N); FDLP
n = A(i, :); (33)

for DLP. In (33), we refer to the Matlab version of the LU factorization
that produces a row permutation vector. In both algorithms, we eventually
select an index subset i = (i1, . . . , iN ), that extracts a Fekete-like discrete
extremal set Fn of the region K from the WAM An. Once one of the discrete
extremal sets has been computed, we can simply apply (26)-(31) with the
N ×N matrix V (Fn,p) substituting the M ×N matrix V (An,p), in order
to compute the interpolation polynomial LFn

and to estimate the Lebesgue
constant ‖LFn

‖. This is the procedure implemented in [19].

Remark 3 Once the underlying extraction WAM has been fixed, differently
from the continuum Fekete points, Approximate Fekete Points depend on
the choice of the basis, and Discrete Leja Points depend also on its order.
An important feature is that Discrete Leja Points form a sequence, i.e., if
the polynomial basis p is such that its first Ns = dim(Pd

s(K)) elements span
P
d
s(K), 1 ≤ s ≤ n, then the first Ns Discrete Leja Points are a unisolvent

set for interpolation in P
d
s(K).

Under the latter assumption for Discrete Leja Points, the two families
of discrete extremal sets share the same asymptotic behavior, which by a
recent deep result in pluripotential theory, cf. [2], is exactly that of the
continuum Fekete points: the corresponding uniform discrete probability
measures converge weakly to the pluripotential theoretic equilibrium mea-
sure of the underlying compact set, cf. [3, 4, 5].

We can now give some numerical examples. All the numerical tests have
been made in Matlab 7.7.0 with an Athlon 64 X2 Dual Core 4400+ 2.40GHz
processor.
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First, we compute the Lebesgue constants of discrete least-squares on
WAMs and interpolation at discrete extremal sets, on the circular sections
listed in Table 1, for ω = π/3; observe that the polynomial inequality defin-
ing a WAM and the Lebesgue constants are both invariant by affine transfor-
mation of a region, so here they are independent of R and (a, b). The results
are collected in Table 2. The family of arc-blending domains, in particular
of circular sections, was studied also in [26].

Notice that the least-squares Lebesgue constants are much smaller than
the interpolation Lebesgue constants, that the DLP constants tend to be
greater than the AFP constants and are prone to large oscillations (see also
Figure 10). As already observed, it is theoretically known that the Lebesgue
constant of univariate trigonometric interpolation at the Chebyshev-like an-
gles (11) is independent of ω [17]. This implies that also the bounds (18)-(19)
are independent of ω.

On the other hand, the actual Lebesgue constants are much smaller
than the bounds, but in our numerical experiments with varying ω (not
reported for brevity), only the size of the least-squares Lebesgue constants
has shown small variations with respect to the arclenght, as well as small or
moderate variations changing the region. This can be seen, for example, in
Table 3, where we display the Lebesgue constants for a circular sector with
ω = π/6, π/2, 2π/3, to be compared also with Table 2 where ω = π/3.

It is also interesting to compare the Lebesgue constants on the whole
disk, treated by the transformations of Section 2.1.6. The numerical results
are listed in Table 4.

Concerning lunes, the results are similar to those obtained with arc-
blending domains. In Figure 10-right, we have plotted the Lebesgue con-
stants corresponding to the lune of Figure 9 top-right. For the purpose of
illustration, in Figures 11 and 12 we show the WAMs and the extracted
AFP and DLP points at degree 10 for the lune, and for a circular lens with
ω = π/3.

Finally, in Figures 13 and 14 we compare the reconstruction error (mea-
sured as relative ℓ2 error on a suitable control mesh) by polynomial least-
squares on a WAM and by interpolation at discrete extremal sets, on the
lens and the lune of Figures 11-12, by five test functions with different reg-
ularity or variation rate: a polynomial, two Gaussians and two fractional
power functions centered at an internal point,

f1(x, y) = (x+ y + 2)10 , f2(x, y) = exp(−c[(x− ξ)2 + (y − η)2]) ,

f3(x, y) = ((x− ξ)2 + (y − η)2))δ , (34)

with c = 1 and c = 5, δ = 3/2 and δ = 5/2. We have that f2 is an analytic
function, whereas f3 ∈ C2 for δ = 3/2 with singular third derivatives, and
f3 ∈ C4 for δ = 5/2 with singular fifth derivatives. Observing Figures 13
and 14, one can notice that the three approximation techniques give closer
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errors than what could be predicted from the large differences between the
Lebesgue constants.
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[33] W. Pleśniak, Nearly optimal meshes in subanalytic sets, Numer. Algo-
rithms 60 (2012), 545–553.

[34] A. Sommariva and M. Vianello, Computing approximate Fekete points
by QR factorizations of Vandermonde matrices, Comput. Math. Appl.
57 (2009), 1324–1336.

[35] J. Stasica, The Whitney condition for subanalytic sets, Zeszyty Nauk.
Uniw. Jagiellon. Prace Mat. 23 (1982), 211–221.

[36] M. Vianello, Norming meshes by Bernstein-like inequalities, Math. In-
equal. Appl. 17 (2014), 929–936.

22



Table 2: Lebesgue constants of least-squares and interpolation at discrete
extremal sets on the circular sections of Table 1 for ω = π/3.

region/degree 3 6 9 12 15 18 21 24
LS 2.6 3.5 4.3 5.1 5.7 6.3 6.8 7.3

symm sector AFP 3.9 7.4 13.8 20.5 33.7 40.5 52.6 74.3
DLP 5.2 9.8 15.6 30.1 60.7 100.8 133.7 92.5
LS 2.8 4.0 4.8 5.5 6.1 6.6 7.1 7.6

circ segment AFP 5.0 14.1 22.7 25.3 38.4 50.3 64.2 74.2
DLP 5.0 13.4 21.2 35.7 67.0 110.0 128.9 147.1
LS 2.8 3.8 4.7 5.5 6.0 6.5 7.0 7.4

symm lens AFP 4.8 8.9 21.6 30.6 47.2 45.9 59.2 74.1
DLP 6.6 9.3 28.3 40.9 62.3 60.7 107.3 194.5
LS 2.2 3.4 4.2 5.1 5.6 6.3 6.7 7.2

butterfly AFP 4.3 7.7 14.8 18.1 36.9 40.2 55.7 62.5
DLP 3.5 13.8 18.8 24.9 48.4 134.6 102.5 103.9

Table 3: Lebesgue constants of least-squares and interpolation on a sym-
metric sector for different values of ω.

degree 3 6 9 12 15 18 21 24
LS 2.6 3.7 4.7 5.4 6.1 6.7 7.2 7.7

ω = π/6 AFP 3.0 7.8 14.8 23.8 29.1 45.9 54.0 61.6
DLP 3.0 10.7 18.0 51.3 39.3 104.3 102.4 129.8
LS 2.7 3.7 4.5 5.2 5.7 6.3 6.7 7.2

ω = π/2 AFP 4.8 10.6 16.3 30.5 40.7 46.1 60.0 73.7
DLP 5.7 16.0 22.0 34.6 61.0 82.2 125.6 125.2
LS 2.6 3.9 4.8 5.5 6.1 6.7 7.2 7.3

ω = 2π/3 AFP 3.3 6.3 17.1 23.7 32.4 42.8 57.4 72.2
DLP 4.5 9.4 25.7 38.8 96.2 54.1 89.5 131.6
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Table 4: Lebesgue constants of least-squares and interpolation on a disk
as extremal case of different transformations (cf. Section 2.1.6 and Figures
6-7).

degree 3 6 9 12 15 18 21 24
disk as LS 3.0 3.9 4.7 5.3 5.9 6.4 7.0 7.4
symm sector AFP 3.4 7.3 14.5 28.0 30.7 50.7 68.8 87.8

DLP 4.8 9.1 14.3 38.1 42.8 63.5 110.2 177.5
disk as LS 2.9 4.0 4.7 5.5 6.3 6.9 7.5 8.0
asymm sector AFP 3.7 8.2 13.2 21.1 38.7 47.3 57.8 72.8

DLP 3.7 11.8 24.1 35.5 59.8 79.4 103.5 133.2
disk as LS 2.7 3.7 4.7 5.3 6.0 6.5 7.1 7.5
circ zone AFP 4.5 10.8 14.2 29.6 30.2 62.7 68.8 87.2

DLP 5.5 11.1 25.9 31.8 64.1 60.6 120.6 143.2
disk as LS 2.7 3.9 4.7 5.4 6.1 6.5 7.0 7.5
circ segment AFP 4.1 10.5 19.3 20.5 33.1 54.1 54.1 65.7

DLP 4.1 11.1 19.4 45.4 41.3 69.3 92.2 218.8
disk as LS 2.1 3.1 3.8 4.6 5.1 5.6 6.0 6.5
butterfly AFP 2.7 6.0 9.4 14.9 32.9 31.4 50.5 56.6

DLP 5.6 9.2 18.2 26.9 52.2 71.2 83.5 131.6
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Figure 10: Lebesgue constants of interpolation at approximate Fekete points
(circles), discrete Leja points (triangles), and of least-squares fitting on a
WAM (squares), for the symmetric sector of Table 2 (left) and for the lune
of Figure 9 top-right (right), with n = 1, 2, . . . , 24.
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Figure 11: Discrete extremal sets (AFP, circles; DLP, asterisks) extracted
from a WAM (dots) for degree 10 on a symmetric lens (top) and on a lune
(bottom).
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Figure 12: As in Figure 11 for a lune.
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Figure 13: Relative ℓ2 error of least-squares (solid), interpolation at AFP
(dashed) and at DLP (dotted), on the lens of Figure 11 for the test functions
f1 (asterisks), f2 with c = 1 (circles) and c = 5 (squares), f3 with δ = 3/2
(triangles) and δ = 5/2 (diamonds), n = 3, 6, . . . , 24, with (ξ, η) = (0.4, 0.4).
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Figure 14: As in Figure 13 for the lune of Figure 12, with (ξ, η) = (0.3, 0.7).

26


