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Leokadia Bia las-Cieża, Dimitri Jordan Kenneb, Alvise Sommarivac, Marco Vianelloc

aJagiellonian University, Poland
bDoctoral School of Exact and Natural Sciences, Jagiellonian University

cUniversity of Padova, Italy

Abstract

We construct admissible polynomial meshes on piecewise polynomial or trigonometric curves of the complex
plane, by mapping univariate Chebyshev points. Such meshes can be used for polynomial least-squares, for
the extraction of Fekete-like and Leja-like interpolation sets, and also for the evaluation of their Lebesgue
constants.
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1. Complex Chebyshev-like polynomial meshes

Starting from the seminal paper by Calvi and Levenberg [9], the notion of polynomial (admissible) mesh
has been emerging in the last years as a fundamental theoretical and computational tool in polynomial
approximation. In the present paper we focus on the univariate complex case. We recall that an admissible
polynomial mesh of a polynomially determining compact set K ⊂ C (i.e., a polynomial vanishing on K
vanishes everywhere on C), is a sequence of finite norming subsets Zn ⊂ K such that

∥p∥K ≤ c∥p∥Zn
, ∀p ∈ Pn(C) , (1)

where ∥ · ∥Y denotes the sup-norm on a continuous or discrete compact set Y , card(Zn) = O(nα), α ≥ 1,
and c is a constant independent of n. The fact that card(Zn) ≥ dim(Pn(C)) = n+ 1 necessarily holds, since
each Zn is Pn(C)-determining. Such a mesh is termed optimal when α = 1.

To give only a flavour of the topic, we recall that polynomial meshes are invariant by affine transfor-
mations, are stable under small perturbations, and can be assembled by finite union, finite product and
algebraic transformations, starting from known instances. Moreover, admissible meshes can be conveniently
used for least-square approximation, and contain extremal sets for interpolation of Fekete and Leja type,
that can be computed by greedy algorithms; cf., e.g., [1, 4, 9, 18].

Existence of admissible meshes with O(n2) cardinality has been proved on any connected compact set of
C whose boundary is a C1 parametric curve with bounded tangent vectors, while optimal admissible meshes
are known in special instances; cf. [1]. The following Proposition and Remark show how to construct optimal
admissible meshes of Chebyshev type on a wide class of complex curves and domains. To this purpose, we
need a basic Lemma.

Lemma 1. Let ϕ(t), t ∈ [a, b], be an algebraic or trigonometric polynomial with complex coefficients, of
degree not exceeding ν (with b − a ≤ 2π in the trigonometric case). Denote by TN the set of N Chebyshev
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zeros in (−1, 1), cos((2j − 1)π/(2N)), 1 ≤ j ≤ N , or the set of N + 1 Chebyshev extrema in [−1, 1],
cos(jπ/N), 0 ≤ j ≤ N .

Consider the points
Xm

ν = σ(TN ) ⊂ [a, b] (2)

where

N = mν , σ(u) =
b− a

2
u+

b+ a

2
, u ∈ [−1, 1] , (3)

in the algebraic case, and

N = 2mν , σ(u) = 2 arcsin

(
u sin

(
b− a

4

))
+
b+ a

2
, u ∈ [−1, 1] , (4)

in the trigonometric case.
Then the following inequality holds for every ν ≥ 1, m > 1

∥ϕ∥[a,b] ≤ cm∥ϕ∥Xm
ν
, cm :=

1

cos(π/(2m))
. (5)

Proof. In the real algebraic case, (5) is a well-known polynomial inequality originally proved by Ehlich
and Zeller [12]. Interestingly, a proof can be given also by the notion of Dubiner distance in [a, b], which
is tailored to polynomial spaces; cf., e.g., [3, 16]. Indeed, in [20] such a notion has been extended in the
subperiodic trigonometric case, i.e. to real trigonometric polynomials on subintervals of the period, namely
on [a, b] with b− a ≤ 2π. In such a way, inequality (5) has been proved for real trigonometric polynomials.

We now show how to extend such inequality to algebraic and trigonometric polynomials of a real variable
with complex coefficients. Take t∗ ∈ [a, b] such that |ϕ(t∗)| = ∥ϕ∥[a,b]. We can assume that ϕ(t∗) ̸= 0, since

(5) trivially holds for ϕ ≡ 0. Define the complex number u = ϕ(t∗)/|ϕ(t∗)| (which lies on the unit circle),
and observe that uϕ(t∗) = |ϕ(t∗)|2/|ϕ(t∗)| = |ϕ(t∗)|.

Now, consider ψ(t) = uϕ(t); clearly, |ψ(t)| = |ϕ(t)|, and Im(ψ(t∗)) = 0, since ψ(t∗) = |ϕ(t∗)| is real.
Since Re(ψ(t)) is a real algebraic or trigonometric polynomial, we can write the chain of inequalities

∥ϕ∥[a,b] = |ϕ(t∗)| = Re(ψ(t∗)) ≤ ∥Re(ψ)∥[a,b] ≤ cm∥Re(ψ)∥Xm
ν

≤ cm∥ψ∥Xm
ν

= cm∥ϕ∥Xm
ν
. □

Proposition 1. Let Γ be (the image of) a complex parametric curve z(t), t ∈ [a, b], where z(t) is an algebraic
or trigonometric polynomial of degree k ≥ 1 (with b− a ≤ 2π in the trigonometric case).

Then the sequence Zm
n (k) = z(Xm

nk), cf. (2)-(4), forms an (optimal) admissible polynomial mesh for Γ,
since the following polynomial inequality holds for every p ∈ Pn(C), n ≥ 1, m > 1

∥p∥Γ ≤ cm∥p∥Zm
n (k) . (6)

Proof. Consider the function composition ϕ(t) = p(z(t)), which clearly is an algebraic or trigonometric
polynomial on [a, b] with complex coefficients, of degree at most ν = nk. The result is an immediate
consequence of Lemma 1, by observing that

∥p∥Γ = ∥ϕ∥[a,b] ≤ cm∥ϕ∥Xm
nk

= cm∥p∥Zm
n (k) . □

Remark 1. Let Γ =
⋃s

j=1 Γj be union of parametric algebraic or trigonometric arcs Γj of degree kj on
[aj , bj ], 1 ≤ j ≤ s. Then for every p ∈ Pn(C), n ≥ 1, m > 1

∥p∥Γ ≤ cm∥p∥Zm
n
, Zm

n =

s⋃
j=1

Zm
n (kj) , (7)

i.e. Zm
n is an optimal admissible mesh for Γ, by the finite union property of admissible meshes, cf. e.g. [9,

Lemma 4]. On the other hand, such Zm
n is an admissible mesh also for any compact set K ⊂ C having outer
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boundary lying on Γ, with Γ contained in K, say ∂Kout ⊆ Γ ⊆ K, by the maximum modulus principle applied
to polynomials (we recall that the outer boundary is the boundary of the unbounded connected component of
C\K). Notice that such a class is very wide: it includes linear polygons, as well as curvilinear polygons with
boundary tracked by splines, or by arcs like r(θ)(cos(θ), sin(θ)) in polar coordinates with r(θ) a trigonometric
polynomial. See the Figures below for some illustrative examples.

Remark 2. Though the results above might appear relatively easy, essentially due to the shortness of the
proofs, they are meaningful. Indeed, admissible polynomial meshes are usually constructed via Markov-like
inequalities and typically have larger cardinalities with respect to those presented here. For example, following
the construction in [1, Prop. 2] for piecewise C1 complex parametric curves, it is not difficult to show that
to obtain an admissible polynomial mesh on such curves with exactly the constant cm in (5), one can use
equally spaced points in the parameter interval of each C1 portion, with O(nr/(cm − 1)) = O(m2nr) overall
cardinality, where r is the Markov exponent of the curve. Such an exponent is r = 2 apart from very special
cases, like e.g. ellipses, where it is r = 1. Differently, the Chebyshev-like admissible polynomial meshes
presented here in Proposition 1 and Remark 1 have in any case O(mn) overall cardinality.

The following Proposition shows that suitable admissible meshes of the form (6)-(7) can be conveniently
used to evaluate Lebesgue constants, with rigorous error bounds. Again, we begin with a basic Lemma.
The result is well-known for interpolation operators (cf. e.g. [19]), nevertheless we prefer to prove it here
for more general projection operators (which include for example also least-square approximations). Below
by C(K) we denote as usual the space of continuous functions on the compact set K ⊂ C.

Lemma 2. Let K ⊂ C be a compact set and Ln : C(K) → Pn(C) a linear projection operator such that

Lnf(z) =

M∑
j=1

f(ξj)ϕj(z) , (8)

where Ξ = {ξj} ⊂ K and {ϕj} is a set of generators of Pn(C). Moreover, let

λn(z) =

M∑
j=1

|ϕj(z)|

be the “Lebesgue function” of Ln.
Then the “Lebesgue constant” of Ln, that is its uniform norm, is equal to the sup-norm of the Lebesgue

function on K

∥Ln∥ = sup
f ̸=0

∥Lnf∥K
∥f∥K

= ∥λn∥K = ∥λn∥∂Kout .

Proof. Inequality ∥Ln∥ ≤ ∥λn∥K is immediate, since

|Lnf(z)| ≤
M∑
j=1

|f(ξj)| |ϕj(z)| ≤ ∥f∥Ξλn(z) ≤ ∥f∥Kλn(z) .

Let z∗ ∈ K such that ∥λn∥K = |λn(z∗)|. Now, the point is to find a continuous function f∗ on K such that
f∗(ξj) = uj = |ϕj(z∗)|/ϕj(z∗) for all j such that ϕj(z

∗) ̸= 0, and ∥f∗∥K = 1. To this purpose, since |uj | = 1
let us write uj = eiθj , where θj ∈ [0, 2π), and define a function g : {ξj} → [0, 2π) such that g(ξj) = θj . By
a deep topological result, the celebrated Tietze extension theorem (cf. e.g. [11, Ch.7, Thm.5.1]), since g
is trivially continuous on the closed discrete subset {ξj}, there exists an extension g̃ ∈ C(K) taking values
in [0, 2π). Then, f∗(z) = eig̃(z) ∈ C(K) is the required function, because f∗(ξj) = eig̃(ξj) = eiθj = uj and
|f∗(z)| ≡ 1. To prove that ∥λn∥K = ∥λn∥∂Kout , we can clearly restrict to compact domains (the closure of
bounded connected open sets). Then we can apply the maximum principle for subharmonic functions to
λn, since each |ϕj | is subharmonic being the modulus of an (entire) holomorphic function and the sum of
subharmonic functions is subharmonic; cf. e.g. [15, §7.7]. □
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Remark 3. Existence of a continuous function f∗ as in the proof above can also be proved by Dugundji’s
version of Tietze extension theorem, which in its general formulation concerns extension of continuous
functions defined on closed subsets of metric spaces and taking values in locally convex topological vector
spaces; cf. [11, Ch.9,Thm.6.1]. Applied to the present context, it simply says that defining f such that
f(ξj) = uj, there exists an extension f∗ ∈ C(K) such that f∗(K) ⊂ convhull({f(ξj)}). Thus ∥f∗∥K = 1,
because the uj lie on the unit circle in C and hence their convex hull is a polygon lying in the unit disk.

Remark 4. The structure of projection operators like (8) includes interpolation operators at n+ 1 distinct
nodes ξ1, . . . , ξn+1, where, denoting by Vn = [pj(ξi)], 1 ≤ i, j ≤ n + 1, the Vandermonde-like matrix in any
fixed polynomial basis span(p1, . . . , pn+1) = Pn(C), we have that

ϕj(z) = ℓj(z) =
det(Vn(ξ1, . . . , ξj−1, z, ξj+1, . . . , ξn+1))

det(Vn(ξ1, . . . , ξj−1, ξj , ξj+1, . . . , ξn+1))
=

n+1∏
k=1,k ̸=j

(z − ξk)/(ξj − ξk) (9)

are the corresponding fundamental Lagrange polynomials. But also discrete weighted least-squares operators
at M > n + 1 nodes Ξ = {ξ1, . . . , ξM} with positive weights W = {w1, . . . , wM} are included. Indeed,
denoting by {πk}, 1 ≤ k ≤ n + 1, the orthonormal polynomials with respect to the corresponding discrete

scalar product (f, g)ℓ2W (Ξ) =
∑M

j=1 wjf(ξj)g(ξj), we have that

Lnf(z) =

n+1∑
k=1

(f, πk)ℓ2W (Ξ) πk(z) =

M∑
j=1

f(ξj)wjKn(z, ξj) , (10)

i.e. ϕj(z) = wjKn(z, ξj), where Kn(z, v) =
∑n+1

k=1 πk(z)πk(v) is the reproducing kernel of the discrete
scalar product. Notice that in this case (unless M = n+ 1 where least-squares approximation coincides with
interpolation) the ϕj are linearly dependent, thus forming a set of generators of Pn(C).

Proposition 2. Let the assumptions of Remark 1 be satisfied, and assume that Ln : C(K) → Pn(C) is a
linear projection operator as in Lemma 2.

Then the following estimates hold for every n ≥ 1, m > 1

∥λn∥Zm
n

≤ ∥Ln∥ ≤ cm∥λn∥Zm
n
, (11)

and
0 ≤ ∥Ln∥ − ∥λn∥Zm

n
≤ (cm − 1)∥Ln∥ . (12)

Proof. Applying inequality (7) to the polynomial Lnf , in view of the maximum modulus principle we get

∥Lnf∥K = ∥Lnf∥∂Kout ≤ cm∥Lnf∥Zm
n
.

On the other hand |Lnf(z)| ≤ ∥f∥Ξλn(z) ≤ ∥f∥Kλn(z) and thus ∥Lnf∥K ≤ cm∥f∥K∥λn∥Zm
n

, from which
we get immediately

∥Ln∥ = ∥λn∥K ≤ cm∥λn∥Zm
n
,

and thus (11) and (12), since ∥λn∥K ≥ ∥λn∥Zm
n

by inclusion. □

Remark 5. Notice that cm → 1 and thus, if the sampling set Ξ is independent of m, ∥λn∥Zm
n

→ ∥Ln∥ as
m→ ∞. On the other hand, in any case (12) gives the relative error estimate

∥Ln∥ − ∥λn∥Zm
n

∥Ln∥
≤ cm − 1 =

1 − cos(π/(2m))

cos(π/(2m))
∼ π2

8m2
≈ 1.23

m2
, (13)

that is a O(1/m2) relative approximation of the Lebesgue constant by ∥λn∥Zm
n
. For example, with m = 4

we already get the Lebesgue constant with a relative error less than 10%, thus correctly estimating its actual
order of magnitude that is the relevant parameter in polynomial approximation. On the other hand (11)
gives also the rigorous and computable absolute error estimate

0 ≤ ∥Ln∥ − ∥λn∥Zm
n

≤ (cm − 1)∥λn∥Zm
n
. (14)
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2. Numerical tests

In this section we present several numerical tests (implemented in Matlab), concerning the use of complex
Chebyshev-like polynomial meshes for interpolation and least-squares approximation, as well as for the
evaluation of the corresponding Lebesgue constants. In all these applications we can work on compact sets
whose (outer) boundary has the structure described in Remark 1. A preliminary version of the corresponding
software along with the demos can be found at [14].

Concerning interpolation, an appealing set is given by the so-called Fekete points, that are points which
maximize the modulus of the Vandermonde determinant. As it is well-known, considering their Lebesgue
constant it is immediate to get the (over)estimates ∥Ln∥ ≤ n + 1 for the continuum Fekete points (since
∥ℓj∥K ≤ 1 for each j), and

∥Ln∥ ≤ cm(n+ 1) (15)

when their are extracted from a Chebyshev-like polynomial mesh Zm
n = {z1, . . . , zM} ⊂ Γ. However, the

continuum Fekete points are explicitly known only in two special instances, the interval (where they are the
Gauss-Lobatto points) and the circle (where they are equally spaced in the arclength), in both cases with
∥Ln∥ = O(log(n)).

On the other hand, the computation of Fekete points extracted from a polynomial mesh is known to be
a NP-hard problem; cf. [10]. Then, we can resort to points that approximately maximize the modulus of
the Vandermonde determinant, extracting them from the polynomial mesh by a greedy algorithm. Starting
from [7, 18], such approximate Fekete points have been computed by solving the underdetermined system

Vt
nu = b , Vn = Vn(Zm

n ) = [pj(zi)] ∈ CM×(n+1) , Zm
n = {z1, . . . , zM} , (16)

in a fixed polynomial basis {pj}, where b is any nonzero vector, by QR factorization with column pivoting.
Indeed, the n + 1 nonzero components of the solution vector u select the interpolation nodes Ξ ⊂ Zm

n .
This procedure corresponds to a greedy determinantal maximization, and the resulting interpolation points
asymptotically behave as the continuum Fekete points, in the sense the corresponding uniform discrete
probability measure converge weak-∗ to the potential-theoretic equilibrium measure of the compact set; cf.
[4, 7] for a full discussion of these aspects, in both the univariate and the multivariate setting.

An interesting alternative is given by Leja points. For a fixed ξ1 ∈ K, the points are defined iteratively as
ξj = argmaxz∈K

∏j−1
k=1 |z − ξk|, j = 2, . . . , n+1, which means that differently from Fekete points they form a

sequence, i.e. the first ℓ+ 1 are Leja points for degree ℓ. A relevant result has been recently proved by Totik
[19], who showed that the Lebesgue constant of Leja points has subexponential growth (a fact empirically
well-known but missing before a theoretical base). On the other hand, it was previously proved in [2]
that Leja points behave asymptotically as Fekete points, in the sense the corresponding uniform discrete
probability measure converge weak-∗ to the potential-theoretic equilibrium measure of K.

The same asymptotic property is shared by the two families of Leja-like sequences that we consider
in this paper, namely discrete Leja points and pseudo-Leja points, both corresponding to a greedy discrete
maximization on polynomial meshes. Indeed, discrete Leja points can be computed by LU factorization with
row pivoting of the whole matrix Vn in (16), where the pivots select the interpolation points within Zm

n , a

procedure substantially equivalent to compute ξj = argmaxz∈Zm
n

∏j−1
k=1 |z − ξk|, j = 2, . . . , n+ 1; cf. e.g. [5]

for an analysis of this method, also in the multivariate setting. On the other hand, in our implementation
we considered the pseudo-Leja points corresponding to the iteration ξj = argmaxz∈Zm

j−1

∏j−1
k=1 |z − ξk|, j =

2, . . . , n + 1, after choosing the first point ξ1 arbitrarily, e.g. ξ1 is one of the points in Zm
1 with larger

imaginary component; cf. [1] (and [13] for a multivariate extension).
In Figures 2 and 4, we plot the Lebesgue constants of interpolation at approximate Fekete, discrete

Leja and pseudo-Leja points, extracted from Chebyshev-like polynomial meshes Zm
n with m = 4 on six

different compact sets (see Figures 1 and 3), for degrees n = 1, . . . , 50. We also plot the Lebesgue constant
of standard least-squares approximation of degree n on the whole mesh. All these Lebesgue constants have
been computed on the extraction meshes, recalling that with m = 4 we get a relative error of less than 10%
and thus we substantially recover their actual size, cf. (13).
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We make some observations on the main computational issues. In order to control the conditioning of
the Vandermonde-like matrices, that becomes unacceptable already at moderate degrees with the standard
monomial basis, we have chosen to work with a discrete orthonormalization of the shifted and scaled basis
qj(z) = ((z − zb)/δ)

j−1, 1 ≤ j ≤ n + 1, where zb = 1
M

∑M
i=1 zi is the barycenter of the mesh and δ =

max1≤i≤M |zb − zi|. This approach allows to keep well-conditioning up to moderately high polynomial
degrees (cf. e.g. [4]). Notice that, in view of (10) with wj ≡ 1, the Lebesgue constant on the mesh can then
be simply computed via the relevant matrices as

∥λn∥Zm
n

= max
i

∑
j

∣∣∣∣∣∑
k

πk(zi)πk(ξj)

∣∣∣∣∣ = ∥Vn(Zm
n )R−1QH∥∞ , (17)

where {ξj} are either the interpolation or the least-squares sampling points, and Vn({ξj}) = QR the fac-
torization of the corresponding Vandermonde-like matrix with Q (rectangular) hermitian and R square
upper-triangular, that is [π1(z), . . . , πn+1(z)] = [p1(z), . . . , pn+1(z)]R−1.

Figure 1: A polygon, a curvilinear polygon and a sun-shaped region as subsets of C, the admissible polynomial mesh at degree 20 with
m = 2 (blue dots), the 21 approximate Fekete points extracted from the mesh (green dots).

Figure 2: Lebesgue constants on the domains above for degrees n = 1, . . . , 50: least-squares on the whole mesh (pink dots), extracted
approximate Fekete points (red dots), discrete Leja points (purple dots), pseudo-Leja points (blue dots). In these experiments, m = 4.

Figure 3: A lune, a cardioid and a torpedo as subsets of C, the admissible polynomial mesh at degree 20 with m = 2 (blue dots), the
21 approximate Fekete points extracted from the mesh (green dots).
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Figure 4: The Lebesgue constants as in Figure 2, on the three domains of Figure 3 (again, with m = 4).

In the numerical experiments we have considered six complex regions whose (outer) boundaries can be
tracked parametrically via one or more algebraic or trigonometric polynomials, in particular:

1. a M-shaped polygon with 12 sides;

2. a curvilinear polygon, with boundary defined parametrically by linear and cubic splines;

3. a sun-shaped domain that consists of a unit disk and 8 rays that are segments of length 0.5;

4. a lune defined as disk difference B(−1, 1.5) \B(1, 1.5);

5. a cardioid, ∂K being the closed curve z(t) = cos(t)(1 − cos(t)) + i(sin(t)(1 − cos(t))), t ∈ [0, 2π];

6. a domain where ∂K is the self-intersecting torpedo curve z(t) = cos(t) cos(2t) exp(it), t ∈ [0, 2π].

First we observe that the interpolation points tend to privilege outward angles/tips/cusps as well as
convex portions of the boundary and to avoid inward/concave portions, an electrostatic-like behavior that
can be interpreted in connection with their potential theoretic background, cf. [17]. We see that the Lebesgue
constants of all discrete extremal sets show a slow increase, but those of Leja-like points have a more erratic
behavior with larger oscillations and tendentially higher values with respect to approximate Fekete points
(a phenomenon already observed in the real multivariate setting, cf. e.g. [6]). On the other hand, Lebesgue
constants of least-squares approximation on the whole polynomial mesh have the lowest values with an
essentially logarithmic increase, staying below 5 up to degree 50 in all the six examples.

3. Conclusions and future work

We have presented a method for the construction of low-cardinality admissible polynomial meshes on
compact sets of the complex plane, whose outer boundary is made of piecewise polynomial or trigonometric
curves, by mapping univariate Chebyshev points on such curves. All the relevant polynomial inequalities
are rigorously proved. Differently from usual approaches based on Markov-like inequalities, which would
typically require O(m2n2) points to get a mesh constant cm = 1 + O(m−2), our meshes have only O(mn)
cardinality. They can be conveniently used for polynomial least-squares, for the extraction of Fekete-like
and Leja-like interpolation sets, and also for the evaluation of the respective Lebesgue constants, in view
of a new result which gives a rigorous and computable interval estimate. We have also implemented the
corresponding Matlab codes, which are freely available. Multivariate extensions, from product sets to more
general instances, are not straightforward and could be object of future studies.
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