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Abstract
We provide Matlab and Python codes for polynomial approximation on complex com-

pact sets with connected complement, by Chebyshev-like admissible polynomial meshes
on boundaries with piecewise (trigonometric) polynomial parametrization. Such meshes
have lower cardinality with respect to those previously known. They are used for polyno-
mial least-squares, for the extraction of extremal interpolation sets of Fekete and Leja type,
as well as for the computation of the uniform norms (Lebesgue constants) of polynomial
projection operators.

Keywords: complex polynomial approximation, interpolation, least-squares, admissible
polynomial meshes, discrete extremal sets, Approximate Fekete Points, Discrete Leja Points,
Pseudo Leja Points, Lebesgue constant. (MSC2020: 65D05,65E05)

1 Introduction
In this paper we are concerned with (admissible) polynomial meshes {Zn}n≥1 and polynomial
approximation on a complex compact set K ⊂ C with connected complement. By the famous
Mergelyan Theorem [15], these are sets where any continuous function f : K → C, with holo-
morphic restriction to int(K), can be uniformly approximated by polynomials.

Polynomial meshes are sequences of finite subsets Zn ⊂ K such that

∥p∥K ≤ c∥p∥Zn , ∀p ∈ Pn(C) , (1)

where ∥·∥ is the uniform norm on a continuous or discrete bounded subset, and p is any polyno-
mial with complex coefficients with degree not exceeding n (we recall that c is usually termed
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the “constant” of the polynomial mesh). Since Zn is Pn(C)-determining, i.e. polynomials in
Pn(C) vanishing on Zn vanish everywhere in C, clearly card(Zn) ≥ n+1 = dim(Pn(C)). The
polynomial mesh is then called optimal when card(Zn) = O(n).

Starting from the seminal paper of 2008 by Calvi and Levenberg [9], polynomial meshes
(that can be defined also in multivariate instances) have begun to play a relevant role in polyno-
mial approximation. Among their numerous properties, we may recall that they are preserved
by affine transformations, finite union and small perturbations, are well-suited for least-squares
approximation and contain extremal subsets of Fekete and Leja type for polynomial interpo-
lation with slowly increasing Lebesgue constant. Moreover, polynomial meshes can be con-
veniently used for polynomial optimization and Lebesgue constant computation with rigorous
interval error bounds. Without any pretence of exhaustivity, we may quote e.g. [2, 3, 4, 5, 6,
16, 17] with the references therein.

Focalizing on the complex univariate case, it has been recently proved in [3] that optimal
admissible meshes of Chebyshev type can be constructed on the boundary ∂K, provided that
it lies on a union of curves in K having a piecewise polynomial or trigonometric polynomial
parametrization. The construction uses the fact that ∥p∥K = ∥p∥∂K by the maximum princi-
ple for holomorphic functions (cf. e.g. [14]), and basic polynomial inequalities concerning
Chebyshev points on the parameter real interval.

More precisely, let CN be the set of N Chebyshev zeros in (−1,1), namely cos((2 j −
1)π/(2N)), 1 ≤ j ≤ N, or the set of N +1 Chebyshev extrema in [−1,1], namely cos( jπ/N),
0 ≤ j ≤ N. Consider the points

C m
ν = τ(CN)⊂ [a,b] (2)

where
N = mν , τ(u) =

b−a
2

u+
b+a

2
, u ∈ [−1,1] , (3)

in the algebraic case, and

N = 2mν , τ(u) = 2arcsin
(

usin
(

b−a
4

))
+

b+a
2

, u ∈ [−1,1] , (4)

in the trigonometric case. Then, the following estimate holds [3]:

Proposition 1. Let ∂K ⊆Γ=
⋃s

j=1 Γ j ⊆K with parametric algebraic or trigonometric arcs Γ j =
γ j([a j,b j]) of degree d j = max{degRe(γ j),degIm(γ j)}, 1 ≤ j ≤ s (where the angle intervals
possibly are sub-intervals of the period in the trigonometric case, namely b j −a j ≤ 2π). Then
for every p ∈ Pn(C), n ≥ 1, m > 1

∥p∥K = ∥p∥Γ ≤ cm∥p∥Zm
n , Zm

n =
s⋃

j=1

γ j(C
m
nd j

) , cm =
1

cos(π/(2m))
, (5)

i.e. {Zm
n }n≥1 is an admissible polynomial mesh for K with constant cm.

Estimate (5) is a cornerstone of our code for complex polynomial approximation. Notice
that the class of domains with connected complement and such boundaries is very wide: it
includes linear polygons, as well as curvilinear polygons with boundary tracked by splines,
or by polar arcs like γ j(t) = z0 + r j(t)(cos(t)+ isin(t)) with r j(t) a trigonometric polynomial.
See the Figures below for some illustrative examples. The corresponding meshes have O(mn)
cardinality, that asymptotically improves the O(n2) cardinality of previously known meshes
on any connected compact set of C whose boundary is a C1 parametric curve with bounded
tangent vectors, cf. [1].
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Observe that cm → 1 as m → ∞. This fact is at the base of a computable interval estimate of
the Lebesgue constant (uniform operator norm) of any linear projection operator Ln : C(K)→
Pn(C) of the form

Ln f (z) =
M

∑
j=1

f (ξ j)φ j(z) , (6)

where {ξ j} ⊂ K and {φ j} is a set of generators of Pn(C). We recall that such an operator
structure holds for polynomial interpolation at M = n+ 1 distinct nodes, where the φ j(z) are
the corresponding cardinal Lagrange polynomials, but also by polynomial least-squares at M >
n+1 sampling nodes (cf. [3]). In both cases we simply have

φ j(z) = Kn(z,ξ j) =
n+1

∑
k=1

qk(z)qk(ξ j) , (7)

where Kn is the reproducing kernel of the discrete scalar product with unit weights supported
at the sampling nodes {ξ j} and {qk} a discrete orthogonal polynomial basis. Given any poly-
nomial basis of Pn(C), say {pk}, we recall that a discrete orthogonal basis can be computed in
principle by a QR factorization of the corresponding Vandermonde-like interpolation matrix, as

[q1(z), . . . ,qn+1(z)] = [p1(z), · · · , pn+1(z)]R−1 . (8)

The following result concerning Lebesgue constants has been proved in [3]:

Proposition 2. Let λn(z) = ∑
M
j=1 |φ j(z)|, z ∈ K, be the “Lebesgue function” of Ln in (6) and

{Zm
n } the polynomial mesh of Proposition 1. Then for every n ≥ 1, m > 1, the following

inequalities hold
∥λn∥Zm

n ≤ ∥Ln∥ ≤ cm∥λn∥Zm
n , (9)

0 ≤ ∥Ln∥−∥λn∥Zm
n ≤ (cm −1)∥Ln∥ , (10)

for the Lebesgue constant ∥Ln∥= ∥λn∥K = ∥λn∥Γ.

We observe that

cm −1 =
1− cos(π/(2m))

cos(π/(2m))
∼ π2

8m2 ≈ 1.23
m2 , (11)

that is ∥λn∥Zm
n by (10) is a O(1/m2) relative approximation of the Lebesgue constant: for m = 4

we already get the Lebesgue constant with an error less than 10%, i.e. we can substantially
evaluate its actual order of magnitude.

2 Description of the code
After the above summary of the main theoretical results and estimates underlying the complex
polynomial approximation algorithms, we can now briefly describe the code implemented in
Matlab and Python and available at https://github.com/alvisesommariva/CPOLYMESH. All
the main computations are performed by basic numerical linear algebra subroutines. The main
functions are:

• Polynomial Mesh Constructor
Function Cpom
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This function, given the parametrization intervals [a j,b j] and the corresponding curve
components, namely the complex algebraic or trigonometric polynomials γ j(t) of degree
d j, computes the Chebyshev submeshes γ j(C m

nd j
) and their union

Zm
n =

s⋃
j=1

γ j(C
m
nd j

)

as in Proposition 1. Linear and curvilinear polygons defined by spline arcs are included,
as well as trigonometric polar arcs like γ j(t) = z0 + r j(t)(cos(t)+ isin(t)), with r j(t) a
real trigonometric polynomial on a subinterval of the period.

• Stabilized Vandermonde Matrix Constructor
Function Cvand

Constructs a rectangular Vandermonde-like matrix

Vn(X) = (p j(zi)) , 1 ≤ i ≤ card(X) , 1 ≤ j ≤ n+1 ,

on a complex set X = {zi}. In order to cope with the extreme ill-conditioning of the
Vandermonde matrices with the standard monomial basis, we have chosen to work with
a shifted and scaled basis

p j(z) = ((z− zb)/δ ) j−1 , 1 ≤ j ≤ n+1 ,

where zb = 1
card(X) ∑zi∈X zi is the barycenter of the points and δ = maxzi∈X |zi − zb| the

radius of an enclosing disk. If an enclosing disk is already known, its center zb and radius
δ can be directly passed as input parameters.

• Discrete Orthogonal Polynomials Constructor and Evaluator
Functions Cdop and Cdopeval

Cdop computes a discrete orthogonal polynomial basis on a finite complex set X with
card(X) ≥ n+ 1, and Cdopeval evaluates the orthogonal basis on a target complex set
Y . Orthogonalization is performed by applying twice a QR factorization with unitary Q
and square triangular factor R, namely

Vn(X) = Q1R1 , Vn(X)/R1 = Q2R2

following the well-known “twice is enough” orthogonalization rule in finite precision
arithmetic [10]. The target matrix is

Wn(Y ) = (Vn(Y )/R1)/R2

where the matrix operator / is preferred to inv in order to automatically cope with pos-
sible ill-conditioning of the triangular factors.

• Discrete Extremal Sets Constructor
Function Cdes

Computes three interpolation pointsets corresponding to a greedy maximization of the
Vandermonde determinant modulus on the polynomial mesh Zm

n . We do not discuss their
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features in detail here and refer to the quoted literature for the underlying theoretical and
computational issues.

- AFP (Approximate Fekete Points): after a call to Cdop with X = Zm
n to get a better

conditioned matrix, AFP are obtained by a QR factorization with column pivoting of
the adjoint QH

2 , taking the points in Zm
n corresponding to the first n+ 1 elements of the

column permutation vector. They do not form a sequence, but typically have the lowest
Lebesgue constant among the three sets; cf. [5, 6, 8, 19].

- DLP (Discrete Leja Points): again after a call to Cdop with X = Zm
n , DLP are obtained

by a LU factorization with row pivoting of Q2, taking the points in Zm
n corresponding to

the first n+1 elements of the row permutation vector. They form a sequence and in the
present univariate complex instance are substantially equivalent to the iteration

ξ j = argmaxz∈Zm
n

j−1

∏
k=1

|z−ξk| , j = 2, . . . ,n+1 ,

after choosing ξ1 as the point that maximizes the element modulus in the first column of
Q2; cf. [6, 7].

- PLP (Pseudo Leja Points): these are a sequence obtained by the iteration

ξ j = argmaxz∈Zm
j−1

j−1

∏
k=1

|z−ξk| , j = 2, . . . ,n+1 ,

after choosing the first point ξ1 arbitrarily, e.g. ξ1 is one of the points in Zm
1 with largest

imaginary component; cf. [1] (and [11] for a multivariate extension).

• Polynomial Projectors (either Interpolation or Least-Squares)

Function Cfit

Given a sample column array f = f (X) of a function at a finite complex set X with
card(X)≥ n+1, computes the polynomial projector coefficients in an orthogonal poly-
nomial basis at X and evaluates the projector Ln f at a target complex set Y . In view of
(7)-(8) the computation is simply

Ln f (Y ) =Wn(Y )QH
2 f

after a call to Cdop on X and Cdopeval on Y .

• Lebesgue Constant Evaluator
Function Cleb

Computes on a control set Z the maximum of the Lebesgue function of interpolation on
a set X with card(X) = n+1 or least-squares with card(X)> n+1, as

∥λn∥Z = ∥Wn(Z)QH
2 ∥∞ = ∥((Vn(Z)/R1)/R2)QH

2 ∥∞

by a call to Cdop on X and to Cdopeval with Y = Z. In view of Proposition 2, choosing
Z = Zm

n produced by a call to Cpom one gets the certified interval estimate (9) for the
Lebesgue constant of X .
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3 Numerical tests and demos
In this section we present several numerical tests for the code CPOLYMESH. All the corre-
sponding demos are available at [12, 13], along with a number of other examples.

The compact sets considered, say K1, . . . ,K9, with boundary defined by algebraic or trigono-
metric polynomial arcs, appear in Figure 2. For the sake of clarity and brevity we do not
plot Leja-like interpolation points, whose structure however is not much different from that of
Fekete-like points. The figures below have been obtained by the Matlab package [12].

Figure 1: Exemplifying the variety of feasible (curvi)linear polygons: Approximate Fekete Points (magenta dots) for polynomial interpo-
lation at degree n = 20 via Chebyshev admissible meshes (black dots) of the piecewise polynomial or trigonometric boundary, with m = 2 (cf.
Proposition 1).

In particular, the compact sets are:

• a cardioid K1 where ∂K1 is defined parametrically as z(t)= cos(t)(1−cos(t)+i(sin(t)(1−
cos(t)))), with t ∈ [0,2π];

• the “Laporte heart” K2 where ∂K2 is defined parametrically as z(t) = sin3(t)+ i(cos(t)−
cos4(t)), with t ∈ [0,2π];

• the deltoid K3 where ∂K3 is defined parametrically as z(t) = 10exp(it)+ 5exp(−2it),
with t ∈ [0,2π];
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Figure 2: Lebesgue constants for the extremal interpolation sets AFP, DLP, PLP, and for LS approximation, with degrees n = 1,2, . . . ,20,
on the domains of Fig. 1 in the same order.

• a sun shaped domain K4 obtained as union of the unit-disk with 4 segments of length 0.5;

• the “Sautereau butterfly” K5 where ∂K5 is defined parametrically as z(t) = (−3cos(2t)+
sin(7t)−1)exp(it), with t ∈ [0,2π];

• the domain K6 obtained as union of 3 random rectangles and 3 disks;

• the “Borromean-circles” domain K7, that is the union of three disks with radii equal to√
3 and centers exp(itk) with tk =

(4k−3)π
6 , k = 1,2,3;

• an equilateral triangle K8 with vertices Pk = exp(itk) with tk =
(4k−1)π

6 , k = 1,2,3;

• a symmetric cross K9 given as the union of 4 orthogonal unit segments with a common
extremum.

We stress the variety of “(curvi)linear polygons” appearing in these examples: some do-
mains are closure of open connected sets, other have components with no internal points. Some
have a boundary corresponding to a single parametric curve, other have a complicated bound-
ary being the union of simpler elements. In the latter case, there is no need to track accurately
the boundary of the union (that in some situations could be a difficult task), since we can sim-
ply take a union admissible mesh for the union of the element boundaries. Notice also that
the extremal interpolation points tend to concentrate on outward tips, cusps, angles or convex
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portions of the boundary and to avoid inward and concave ones (a well-known electrostatic
charges-like behavior, connected with their potential theoretic background, cf. [18]).

In Figure 2 we report the Lebesgue constants of interpolation at discrete extremal sets
of Fekete and Leja type, and of Least Squares approximation. We can observe that all the
Lebesgue constants exhibit an apparently sub-exponential average increase in the present de-
gree range, in line with the corresponding continuous extremal sets, cf. e.g. [9, 20]. However,
Leja-like points have tendentially a more erratic behavior with larger oscillations and tenden-
tially higher values with respect to approximate Fekete points (a phenomenon already observed
for example in the multivariate framework of [7]). On the contrary, Lebesgue constants of Least
Squares approximation on the whole polynomial mesh have the lowest values, with an appar-
ently logarithmic-like behavior.

3.1 Demos summary
3.1.1 Matlab package

The Matlab package includes two demos, that we briefly comment.

1. demo_cdes_1: by this routine we show how to

• define the complex domain (several ways),

• compute an admissible mesh (AM) of a fixed degree,

• extract extremal sets,

• compute a certified Lebesgue constant.

2. demo_cdes_2: by this routine we perform all batteries of numerical tests that are de-
scribed above.

In particular, varying the degrees, we

• compute an admissible mesh (AM) of a fixed degree,

• extract the AFP, DLP, PLP extremal sets,

• compute for each of them a certified Lebesgue constant,

• plot domain, extremal points and Lebesgue contants.

Changing the value of the variable domain_type, from 1 to 22, one can test our routines
also on other complex geometries, like hypocycloids, epicycloids, epitrochoids, lima-
cons, rhodoneas, eggs, bifoliums, Talbot curves, tricuspoids, torpedos, ellipses and an
alternative heart-shaped domain.

3.1.2 Python package

The Python package features a primary demo as well as four additional ones that are contained
within subpackages. These subpackages are named according to the points outlined in Section
2. We briefly comment these demos.

1. demo: This is the primary routine of the Python package, performing identical tasks to
demo_cdes_2 available from the Matlab version.
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2. demo_cleb: This demo is included in "lebesgue_constant_evaluator" subpackage and
performs the same functions as demo_cdes_1 from the Matlab package.

3. demo_cfit: This demo is included in "polynomial_projectors" subpackage and performs
the following tasks by varying the degrees:

• compute an admissible mesh (AM) for each degree,

• extract the AFP, DLP, PLP extremal sets,

• compute the polynomial of interpolation associated with each extremal set and com-
pute the discrete least squares polynomial fitting the whole admissible mesh,

• compute the errors of approximation in the supremum norm by varying the polyno-
mial degrees,

• plot the extremal points for the highest degree and the errors of approximation.

4. demo_cdes: This demo is included in "discrete_extremal_sets_constructor" subpackage
and performs the following tasks:

• compute an admissible mesh (AM) of a fixed degree,

• extract the AFP, DLP, PLP extremal sets,

• plot the extremal points on separate figures.

5. demo_cpom: This demo is included in the "polynomial_mesh_constructor" subpackage.
It computes the admissible mesh for a fixed degree and plots the points on a figure.

When testing our routines, changing the values inside the python function define_domain(),
from 0 to 31, will lead to the creation of complex polynomial curves such as: 0. Unit circle, 1.
Segment [-1,1], 2. Polygon M, 3. Sun, 4. Ellipse, 5. Union of circles, 6. Lune, 7. Cardioid, 8. 4
lenses, 9. Curve polygon, 10. Limacon, 11. Lissajous, 12. Egg, 13. Rhodonea, 14. Habenicht
clover, 15. Bifolium, 16. Torpedo, 17. Double egg, 18. Sautereau butterfly 1, 19. Sautereau
Butterfly 2, 20. Borromean circles, 23. Laporte heart, 24. Epicycloid, 25. Epitrochoid, 26.
Hypocycloid, 27. Nephroid, 28. Talbot curve, 29. Tricuspoid, 30. Rectangles+circles, 31.
Equilateral triangle.
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