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DUBINER DISTANCE AND STABILITY

OF LEBESGUE CONSTANTS

MARCO VIANELLO

Abstract. Some elementary inequalities, based on the non-elementary notion
of Dubiner distance, show that norming sets for multivariate polynomials are
stable under small perturbations in such a distance. As a corollary, we get a
new result on the stability of Lebesgue constants.

1. Introduction

Some years ago, during an undergraduate course in numerical analysis, a clever
student in mathematics asked me the following: we know that polynomial interpo-
lation at the Chebyshev zeros or extrema is near-optimal concerning the Lebesgue
constant; but what happens to such a constant if one fails to sample at those points
by a small amount? A continuity argument (the Lebesgue constant is a continu-
ous function of the nodes, see (1.3)-(1.4) below) gives an immediate qualitative
answer. But can we give a quantitative estimate? A possible solution turns out to
be nontrivial and comes from the theory of polynomial inequalities.

In this note we make a further step within this topic, that has been apparently
and surprisingly overlooked for a long time in the framework of interpolation theory,
while the study of interpolation sets and Lebesgue constants continues to be an open
and active research field, especially in the multivariate case (cf., e.g., the quite recent
papers [12, 14, 15, 19]).

As is well-known, the Lebesgue constant essentially measures the sensitivity of
interpolation to function perturbation. Now, the question is: how much sensitive
is the Lebesgue constant to node perturbation? This is a delicate matter, since
as is known by the Runge phenomenon, the size of Lebesgue constants depends
in a substantial way on the node distribution; cf., e.g., [24]. On the other hand,
there is of course some applied interest in the problem, since in practice errors
on the sampling locations are unavoidable. To our knowledge, only recently the
question has attracted some interest and obtained some partial answers, in both
the univariate and the multivariate frameworks, cf. [1, 2, 22].
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Following [22], here we pose the problem in the more general setting of the
stability analysis of multivariate norming sets. Let K ⊂ Rd (or more generally
K ⊂ Cd) be a compact set, and X ⊂ K a compact norming set for polynomials of
degree at most n on K, namely

‖p‖K ≤ C ‖p‖X , ∀p ∈ P
d
n(K) , (1.1)

where ‖ · ‖I denotes the uniform norm of a bounded function on the (continuous or
discrete) set I, and p ∈ Pn(K) the space of d-variate polynomials of (total) degree
not exceeding n, restricted to K. Observe that necessarily

card(X) ≥ N = dim(P d
n(K)) , (1.2)

since X is determining for Pd
n(K), i.e. a polynomial in Pd

n(K) vanishing on X

vanishes everywhere on K. This dimension is N =
(

n+d
d

)

if K is polynomial deter-

mining (polynomials vanishing there vanish everywhere in Rd), which happens for
example when K has nonempty interior, but can be lower if K lies on an algebraic
variety. For example we have that Nn =

(

n+3
3

)

= (n+1)(n+2)(n+3)/6 for the ball

in R
3 and Nn = (n+1)2 for the sphere S2; see, e.g., [13] for an algebraic geometry

setting of the dimension problem.
In the discrete case, sequences of such norming sets are called polynomial meshes

if card(X) grows algebraically with n and C is independent of n; if C = Cn is not
constant but grows subexponentially with n, then one speaks of a “weakly admis-
sible” polynomial mesh. Polynomial meshes, formally defined in the seminal paper
[11] by Calvi and Levenberg, are in practice good discrete models of compact sets,
concerning for example polynomial fitting (least squares, interpolation on discrete
extremal subsets), polynomial optimization, as well as other aspects of polynomial
approximation theory; we refer the reader, e.g., to [5, 6, 17, 20, 21, 23, 25] and the
references therein.

In the case when card(X) = N it is interesting to see (1.1) in terms of the
Lebesgue constant of the unisolvent interpolation set X = {ξ1, . . . , ξN}, namely

ΛX = ‖LX‖ = sup
f∈C(K),f 6=0

‖LXf‖K
‖f‖K

= max
x∈K

N
∑

i=1

|ℓi(x)| , (1.3)

where

ℓi(x) =
det(V (ξ1, . . . , ξi−1, x, ξi+1, . . . , ξN ))

det(V (ξ1, . . . , ξN ))
(1.4)

are the cardinal Lagrange polynomials, ℓi(ξj) = δij , V (ξ1, . . . , ξN ) denotes the

correspondingN×N Vandermonde matrix, and LXf(x) =
∑N

i=1 f(ξi) ℓi(x). Indeed
it is not difficult to check that (1.1) holds with C = ΛX , and conversely if (1.1)
holds for some C > 0 then ΛX ≤ C (see the arguments in the proof of Corollary 1
below).

In [22] it is proved that there is of stability property of norming set inequalities
with respect to the Euclidean distance, whenever a Markov polynomial inequality

‖∇p(x)‖2 ≤ Mnr ‖p‖K , ∀p ∈ P
d
n(K) , (1.5)

holds on K. For example, on real convex bodies, a perturbation of the nodes in the
Euclidean distance not exceeding

δeu =
α

Mn2C
=

αW (K)

4n2C
, α ∈ [0, 1) , (1.6)
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is still a norming set with C/(1 − α) replacing C, where W (K) is the width of K
(the minimum distance between parallel supporting hyperplanes), and the factor 4
in the denominator can be replaced by 2 on centrally symmetric bodies (cf. [26]).

The role of the Euclidean distance, however, is only technical being motivated
by the use of differential calculus (mean value theorem or Taylor formula) in the
estimates. Other notions of distance on a compact set appear more suited for
dealing with polynomials, such as the Dubiner distance (introduced in the seminal
paper [16])

dub(x, y) = sup
deg(p)≥1, ‖p‖K≤1

{ |arccos(p(x)) − arccos(p(y))|
deg(p)

}

, x, y ∈ K . (1.7)

Among its properties, we recall that dub(x, y) = dubK(x, y) is determined modulo
invertible affine transformations. Indeed, if T is such a transformation, then it is
easily checked that dubT (K)(x, y) = dubK(T−1(x), T−1(y)).

The Dubiner distance plays a deep role in polynomial approximation. For exam-
ple, it can be proved that good interpolation points for degree n on some standard
real compact sets are spaced proportionally to 1/n in this distance. This happens
with the Morrow-Patterson and the Padua interpolation points on the square [10],
or the Fekete points on the cube, ball or simplex (in any dimension), cf. [7].

Moreover, it is easy to prove that a subset X ⊂ K (not necessarily discrete) with
covering radius in the Dubiner distance less than θ/n, θ ∈ (0, π/2), is a norming
set for Pd

n(K) with C = 1/ cos(θ); cf. [3, 18]. This property has opened the way
for an effective use of norming sets in the framework of polynomial optimization,
cf. e.g. [23, 25].

Unfortunately, the Dubiner distance has been computed analytically only on the
d-dimensional cube, ball and simplex, on the sphere Sd−1, and more recently in the
case of univariate trigonometric polynomials (even on subintervals of the period);
cf. [7, 25]. In particular, on the cube it turns out that

dub(x, y) = max
1≤i≤d

{|arccos(xi)− arccos(yi)|} , x, y ∈ [−1, 1]d , (1.8)

due to the fact that, by the Van der Corput-Schaake inequality, on [−1, 1] the
Dubiner distance is simply the arccos distance, whereas on the sphere it turns out
to be just the standard geodesic distance.

2. Stability of norming sets

Whenever the Dubiner distance is known or can be at least estimated, we can
measure more precisely the admissible perturbation neighborhood in order to pre-
serve a norming set inequality. This is indeed the meaning of the following elemen-
tary Proposition.

Proposition 2.1. Let X ⊂ K ⊂ Cd be a finite norming set in the uniform norm
for Pd

n(K), with constant C > 0; cf. (1.1). Let

δdub =
α

nC
, α ∈ [0, 1) , (2.1)

and consider a perturbed set X̃ ⊂ K constructed by choosing for every ξ ∈ X a
point ξ̃ such that dub(ξ, ξ̃) ≤ δdub.
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Then X̃ is a norming set, such that card(X̃) ≤ card(X) and

‖p‖K ≤ C

1− α
‖p‖X̃ , ∀p ∈ P

d
n(K) . (2.2)

Proof. First, we observe that for every q ∈ Pd
n(K), ‖q‖K ≤ 1, and for every

x, y ∈ K, in view of the definition of Dubiner distance and the mean value theorem
for the cosine function

|q(x) − q(y)| = | cos(arccos(q(x))) − cos(arccos(q(y)))|
≤ | arccos(q(x)) − arccos(q(y))| ≤ deg(q) dub(x, y) ,

so that, for every p ∈ Pd
n(K),

|p(x)− p(y)| ≤ deg(p) dub(x, y) ‖p‖K .

Hence, taking a point ξ∗ = ξ∗(p) ∈ X where the maximum modulus of p on X

is attained, and ξ̃∗ ∈ X̃ such that dub(ξ∗, ξ̃∗) ≤ δdub, we can write the chain of
inequalities

‖p‖K ≤ C ‖p‖X = C |p(ξ∗)| ≤ C |p(ξ̃∗)|+ C |p(ξ∗)− p(ξ̃∗)|

≤ C ‖p‖X̃ +
deg(p)

n
α ‖p‖K ≤ C ‖p‖X̃ + α ‖p‖K ,

that is (2.2). �

We can now state and prove a stability result for Lebesgue constants.

Corollary 2.2. Let X ⊂ K ⊂ Cd be a unisolvent interpolation set for Pd
n(K), and

denote by ΛX = ‖LX‖ its Lebesgue constant, cf. (1.3). Let

δdub =
α

nΛX

, α ∈ [0, 1) , (2.3)

and consider a perturbed set X̃ ⊂ K constructed by choosing for every ξ ∈ X a
point ξ̃ such that dub(ξ, ξ̃) ≤ δdub.

Then X̃ is a unisolvent interpolation set itself, with Lebesgue constant

ΛX̃ = ‖LX̃‖ ≤ ΛX

1− α
. (2.4)

Proof. Clearly X is a norming set for Pd
n(K) with C = ΛX since

‖p‖K = ‖LXp‖K ≤ ΛX ‖p‖X .

By Proposition 1 and assumption (2.3), we get

‖p‖K ≤ ΛX

1− α
‖p‖X̃ ,

which shows that X̃ is unisolvent itself, being Pd
n(K)-determining. Concerning its

Lebesgue constant, we can write for every f ∈ C(K)

‖LX̃f‖K ≤ ΛX

1− α
‖LX̃f‖X̃ =

ΛX

1− α
‖f‖X̃ ≤ ΛX

1− α
‖f‖K ,

which implies (2.4). �

Though the proofs of Proposition 1 and Corollary 1 are completely elementary,
they are based on the non-elementary notion of Dubiner distance, and are able to
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give a new insight into the perturbation analysis of norming sets and the sensitivity
of Lebesgue constants to node perturbation.

In order to illustrate the perturbation results, we treat two relevant bivariate
cases, the square and the disk, by some examples.

The Dubiner distance on the square K = [−1, 1]2 is given by (1.8) for d = 2. In
Figure 1 we consider a norming grid of (2n+1)×(2n+1) Chebyshev-Lobatto points

for degree n = 3 (whose constant is C =
√
2, cf. [9]), together with the Euclidean

and the Dubiner perturbation neighborhoods (with α = 0.5), namely the metric
balls

B2(ξ, δeu) = {x ∈ K : ‖x− ξ‖2 ≤ δeu} ,

Bdub(ξ, δdub) = {x ∈ K : dub(x, ξ) ≤ δdub} . (2.5)

Since W (K) = 2 and the factor 4 in the denominator of (1.6) can be substituted
by 2 due to the domain’s central symmetry, we have that

δeu =
α

n2C
=

1

n2 2
√
2
, whereas δdub =

α

nC
=

1

n 2
√
2
. (2.6)

Observe that the Dubiner neighborhoods are rectangles, that enclose the Euclidean
neighborhoods except at the boundary. A similar situation (but with smaller neigh-
borhoods) occurs for the Padua interpolation points in Figure 2, where C = ΛX is
the Lebesgue constant, which are the only known near-optimal multivariate interpo-
lation set, with a O(log2 n) Lebesgue constant. A remarkable feature of the Padua
points, and ultimately the key for their interpolation properties, is that they are
generated as self-intersection points and boundary contact points of the algebraic
curve Tn(x1) + Tn+1(x2) = 0, where Tn is the n-th degree Chebyshev polynomial
of the first kind, Tn(t) = cos(n arccos(t)), t ∈ [−1, 1] (the curve is plotted in Figure
2 for n = 3); cf. [4, 10].

The fact that the Dubiner neighborhoods shrink at the boundary is due to the
features of the univariate Dubiner distance in [−1, 1] (the arccos distance), that
behaves like the Euclidean distance at the center and like its square root at the
boundary. More precisely, the width of the boundary Dubiner rectangles is in
general

length ({t : arccos(t) ∈ [0, δdub]}) = length ({t : arccos(t) ∈ [π − δdub, π]})

= 1− cos(δdub) ≤
1

2
δ2dub =

α

2C
δeu <

δeu
2

, (2.7)

see Figure 3 for an example. We stress that a similar configuration of the Dubiner
perturbation neighborhoods (in this case rectangular parallelepipeds) occurs for a
Chebyshev-Lobatto norming grid in the cube [−1, 1]3, with shrinking at the bound-
ary in the direction of the coordinate axes, and maximal shrinking in one direction
at the faces, in two directions at the edges and in all three directions at the vertices.

In Figures 4-7 we illustrate the case of the disk. We recall that the Dubiner
distance on the unit disk K = B2(0, 1) is

dub(x, y) = arccos

(

〈x, y〉 +
√

1− ‖x‖22
√

1− ‖y‖22
)

, (2.8)

〈x, y〉 denoting the Euclidean scalar product, cf. [8]. Geometrically, it is the geo-
desic distance of the points obtained by lifting x, y to the upper hemisphere. The
Dubiner balls are then projections of spherical caps of the hemisphere onto the
equatorial plane. If the Dubiner distance of the ball center from the boundary does
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Figure 1. Chebyshev norming grid on the square and perturba-
tion neighborhoods with α = 0.5 in the Euclidean distance (black
circles) and in the Dubiner distance (purple rectangles), for degree

n = 3 (49 points, C =
√
2).

not exceed the ball radius, then such a Dubiner ball is an ellipse, since it corre-
sponds to an affine transformation of a circle (the cap boundary). In the limit case
where the ball center lies on the disk boundary, the ball is a circular segment; see
Figure 5.

In Figure 4 we display two polar norming grids for the disk with constant C =
2 and their perturbation neighborhoods, corresponding to (2n + 1) Chebyshev-
Lobatto diameter points and 4n equally spaced angles, for degree n = 3 and degree
n = 6 (37 and 145 points, respectively); cf. [9]. In Figure 5 we see a detail near the
boundary. In Figure 6 we show 15 quasi-Lebesgue interpolation points of the disk
for degree n = 4 and their perturbation neighborhoods. The points are taken from
[19], where the best known interpolation sets for the disk up to degree 25 have been
computed, by approximate minimization of the Lebesgue constant.

The situation is similar to that of the square, with the Dubiner neighborhoods
enclosing the Euclidean neighborhoods except near the boundary (see Figure 7,
and Figure 5 for the shape of a boundary point neighborhood). Observe in Figure
4-bottom that the Dubiner neighborhoods can overlap. This however can happen
only for a norming set that is not an interpolation set (otherwise, we could eliminate
some points keeping a norming set but violating condition (1.2)).

The examples and considerations above suggest that the “right” perturbation
neighborhoods can be obtained as the union of the Euclidean and the Dubiner
ones, namely

U(ξ;n, α,K) = B2(ξ, δeu) ∪Bdub(ξ, δdub) , (2.9)
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Figure 2. Ten Padua points on the square (with their generating
curve) and perturbation neighborhoods with α = 0.5 in the Eu-
clidean distance (black circles) and in the Dubiner distance (purple
rectangles), for degree n = 3 (ΛX ≈ 3.78).

cf. (1.6), (2.1), (2.5). Indeed, for K convex body the key inequality |p(ξ∗)−p(ξ̃∗)| ≤
α ‖p‖K in the proof of Proposition 1 above is true if either ξ̃∗ is in the Dubiner or
in the Euclidean neighborhood (cf. also the proof of [22, Prop. 1]).

Such “union” neighborhoods can be nonconvex in some cases, but they are the
largest known regions where perturbed sampling still ensures an increase at most
by a factor 1/(1 − α) of the Lebesgue constant (or in general of the norming set
constant).
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Figure 6. Fifteen quasi-Lebesgue points on the disk and their
perturbation neighborhoods with α = 0.5 in the Euclidean distance
(black circles) and in the Dubiner distance (purple regions), for
degree n = 4 (ΛX ≈ 2.96).
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Figure 7. Details of Figure 6.


