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CHEBYSHEV-DUBINER NORMING WEBS

ON STARLIKE POLYGONS

MARCO VIANELLO

Abstract. We construct web-shaped polynomial norming meshes on starlike
polygons by radial and boundary Chebyshev points, via the approximation
theoretic notion of Dubiner distance. As an application, we get a (1 − ε)-
approximation to the minimum of an arbitrary polynomial of degree n by
O(n2/ε) sampling points.

1. Introduction

In some recent papers [10, 11, 13, 14, 15] we applied, in the framework of poly-
nomial optimization, discrete polynomial norming inequalities on multidimensional
compact sets with different geometries. The basic notions were that of polynomial
norming mesh and of Dubiner distance of a compact set.

Let K ⊂ R
d be a compact set. For convenience, we restrict here to polynomial

determining compact sets, i.e., a real d-variate polynomial vanishing there vanishes
everywhere in R

d (the definition below can be easily extended to nondetermining
compact sets, for example subsets of an algebraic variety).

A polynomial norming mesh of K is a sequence of finite norming sets Xn ⊂ K,
such that

‖p‖K ≤ C ‖p‖Xn
, ∀p ∈ P

d
n , card(Xn) = O(nβ) , (1.1)

for some constant C ≥ 1, where P
d
n denotes the subspace of polynomials of total-

degree not exceeding n with dimension N = dim(Pd
n) =

(

n+d
d

)

, and ‖p‖Y the
uniform norm on a continuous or discrete compact set Y ). Observe that β ≥ d,
since Xn is Pd

n-determining and thus card(Xn) ≥ N ∼ nd/d!.
When β = d the polynomial mesh is termed optimal in the literature, since it

has the lowest possible order of growth with respect to n; cf., e.g., [8, 9].
Among their properties, we recall that polynomial norming meshes are invariant

under affine transformations, can be extended from known instances by algebraic
transformation, finite union and finite product, are near-optimal for least-square
approximation and contain good unisolvent sets for polynomial interpolation. On
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the theory and applications of polynomial norming meshes, mainly developed in the
last decade, we may refer the reader to [2, 4, 8, 9, 12] with the references therein.

Concerning polynomial optimization, the general result in [13] implies that if
K admits an optimal norming mesh, for any given ε ∈ (0, 1) we can construct a
(optimal) norming mesh Xn(ε) with card(Xn(ε)) = O((n/ε)d), such that

‖p‖K ≤ (1 + ε) ‖p‖Xn(ε) , ∀p ∈ P
d
n . (1.2)

From (1.2) it is easy to prove that

min
Xn(ε)

p−min
K

p ≤ ε
(

max
K

p−min
K

p
)

, ∀p ∈ P
d
n , (1.3)

i.e., discrete minimization on Xn(ε) provides a (1− ε)-approximation to the global
minimum (the notion is relative to the range of p, as usual in the optimization
context, cf. e.g. [5]).

The cardinality can be reduced for special classes of compact sets, by resorting
to the geometric structure of the domain. In [10], it is shown that (1.2)-(1.3) hold
for multidimensional boxes on suitable Chebyshev grids, with

card(Xn(ε)) = O((n/
√
ε)d) (1.4)

(a similar result in the tensor-product setting was already proved in [16], whereas
uniform rational grids are considered, e.g., in [5, 6]). Similar results have been
recently obtained also for sections of sphere, ball and torus [14, 15], and on convex
(or even starlike) bodies with smooth boundary [11].

All these constructions, which typically produce nonuniform meshes clustering
at the boundary, make use of another relevant notion of multivariate polynomial
approximation theory, the Dubiner distance on a compact set K (introduced in the
seminal paper [7])

dubK(x, y) = sup
deg(p)≥1, ‖p‖K≤1

{

1

deg(p)
|arccos(p(x))− arccos(p(y))|

}

. (1.5)

Among its basic properties, we recall that it is invariant under invertible affine
transformations, i.e., if σ(x) = Ax + b, det(A) 6= 0, then

dubK(x, y) = dubσ(K)(σ(x), σ(y)) . (1.6)

Moreover, it is monotone nonincreasing with respect to set inclusion, namely, if
x, y ∈ K ⊆ H then dubH(x, y) ≤ dubK(x, y).

The notion of Dubiner distance plays a deep role in multivariate polynomial
approximation, cf. e.g. [3, 7]. Unfortunately, such a distance is explicitly known
only in the univariate case on intervals (where it is the arccos distance by the
Van der Corput-Schaake inequality), and on cube, simplex, sphere and ball (in any
dimension), cf. [3, 7]. On the other hand, it can be often estimated, for example
on smooth convex bodies via a tangential Markov inequality on the boundary, cf.
[11]. Its connection with the theory of polynomial norming meshes is given by the
following elementary but powerful lemma (proved essentially in [1], see also [10]);
for the reader’s convenience, we recall also the simple proof.

Lemma 1.1. Let X be a compact subset of a compact set K ⊂ R
d whose covering

radius r(X) with respect to the Dubiner distance does not exceed θ/n, where θ ∈
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(0, π/2) and n ≥ 1, i.e.

r(X) = max
x∈K

dubK(x,X) = max
x∈K

min
y∈X

dubK(x, y) ≤ θ

n
. (1.7)

Then, the following inequality holds

‖p‖K ≤ 1

cos θ
‖p‖X , ∀p ∈ P

d
n . (1.8)

Proof. First, possibly normalizing and/or multiplying p by −1, we can assume
that ‖p‖K = p(x̂) = 1 for a suitable x̂ ∈ K. Since (1.7) holds for X , there exists
ŷ ∈ X such that

| arccos (p(x̂))− arccos (p(ŷ))| = | arccos (p(ŷ))| ≤ θ deg(p)

n
≤ θ <

π

2
.

Since the arccos function is monotonically decreasing and nonnegative, we have
that p(ŷ) ≥ cos(θ) > 0, and thus

‖p‖K = 1 ≤ p(ŷ)

cos θ
≤ 1

cos θ
‖p‖X . �

Notice that X is not necessarily discrete, for example in [1] the notion is applied
to suitable Lissajous curves of the cube. Now, fix ε ∈ (0, 1). In view of the inequality

1

cos(θ)
− 1 =

1− cos(θ)

cos(θ)
≤ θ2

2

1

1− θ2/2
=

θ2

2− θ2
, (1.9)

valid for θ <
√
2 < π/2, let θ(ε) be the angle such that θ2/(2− θ2) = ε. If we are

able to construct a mesh Xn(ε) with covering radius

r(Xn(ε)) ≤
θ(ε)

n
, θ(ε) =

√

2ε

1 + ε
∼

√
2ε , ε → 0+ , (1.10)

we get a (1− ε)-approximation to the global minimum of any polynomial in P
d
n, in

view of (1.2)-(1.3).
In the next Section, we apply such a construction to planar starlike polygons.

2. Chebyshev-Dubiner norming webs

We focus now on 2-dimensional instances, namely on planar starlike polygons
with respect to an internal center. A polygon K is starlike with respect to a point
c ∈ int(K), that we may term a star center of the polygon, if for ever x ∈ K the
closed segment [c, x] connecting c and x is in contained in K (a convex polygon as
any convex body is obviously starlike with respect to any of its points).

Proposition 2.1. Let K ⊂ R
2 be a simple polygon, starlike with respect to a

center point c ∈ int(K), with (clock- or counterclockwise) ordered vertices {vi},
1 ≤ i ≤ ℓ. Let {tj} be the nm Chebyshev points of (0, 1), namely tj = 1

2 τj +
1
2 ,

where τj = cos((2j − 1)π/(2nm)), 1 ≤ j ≤ nm, and

ξis =
vi+1 − vi

2
τs +

vi+1 + vi
2

, 1 ≤ s ≤ nm , (2.1)

the nm Chebyshev points of the side (vi, vi+1), 1 ≤ i ≤ ℓ (where we have put
vℓ+1 = v1).
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Then for every m > 2 the point set (Chebyshev-Dubiner web)

Znm =

nm
⋃

j=1

(c+ tj(Wnm − c)) , Wnm =

ℓ
⋃

i=1

nm
⋃

s=1

ξis ⊂ ∂K , (2.2)

satisfies the inequality

‖p‖K ≤ 1

cos(π/m)
‖p‖Znm

, ∀p ∈ P
d
n . (2.3)

Proof. Denote by Kc = K− c the translation of K by the center point c ∈ int(K),
by

φKc
(u) = inf{λ > 0 : u ∈ λKc} , u ∈ Kc

its Minkowski functional, φKc
(u) ∈ [0, 1], and by

x∂K = c+ (x− c)/φKc
(x− c)

the intersection point of the ray exiting from c and containing x with the boundary
∂K.

First, we prove the following estimate of the Dubiner distance (that is valid on
any starlike body)

dubK(x, y) ≤ |arccos(2φKc
(x− c)− 1)− arccos(2φKc

(y − c)− 1)|
+ dub∂K(x∂K , y∂K) , ∀x, y ∈ K . (2.4)

Consider the intersection point y(x) of the ray exiting from c and contaning x
with the Minkowski level set of y, say Sy = {w ∈ K : φKc

(w − c) = φKc
(y − c)} =

c+ φKc
(y − c)(∂K − c). Then by the metric triangle inequality we can write

dubK(x, y) ≤ dubK(x, y(x)) + dubK(y(x), y) . (2.5)

Concerning the first summand on the right-hand side, since y(x) ∈ [c, x∂K ]

dubK(x, y(x)) ≤ dub[c,x∂K](x, y(x)) = dub[0,1](φKc
(x− c), φKc

(y(x)− c))

= dub[0,1](φKc
(x− c), φKc

(y − c)) , (2.6)

where the inequality comes from the nonincreasing monotonicity of the Dubiner
distance with respect to set inclusion and the first equality from its affine invariance
(cf. (1.6)). Notice that dub[0,1](s, t) = |arccos(2s− 1)− arccos(2t− 1)| since the
Dubiner distance on [−1, 1] is known to be the arccos distance in view of the Van
der Corput-Schaake inequality, cf. e.g. [3].

We have then to estimate the second summand in the right-hand side of (2.5).
Let K(y) = c+φKc

(y− c)(K− c) be the convex subset whose boundary is the level
set Sy, which is clearly an affine transformation of K (being the composition of a
translation with an homothetic transformation ofK−c). Again by set monotonicity
and affine invariance of the Dubiner distance

dubK(y(x), y) ≤ dubK(y)(y(x), y) = dubK(x∂K , y∂K) ≤ dub∂K(x∂K , y∂K) , (2.7)

which together with (2.5)-(2.6) gives (2.4). Focusing on starlike polygons, notice
that if x∂K , y∂K are in the same polygon side we have the further estimate

dub∂K(x∂K , y∂K) ≤ dub[vi,vi+1](x∂K , y∂K) , x∂K , y∂K ∈ [vi, vi+1] .

Now, fix x ∈ K. Observing that the boundary point x∂K belongs to a side
[vi, vi+1] for a certain i (at least one and at most two if it is a vertex), let ξis be
the closest point to x∂K in the Dubiner distance on [vi, vi+1]. Moreover, let tj be
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the closest Chebyshev level to φKc
(x − c) in the Dubiner distance on [0, 1]. Since

nm (with m > 1) Chebyshev points of any segment have covering radius π/(2m)
in the Dubiner distance of such a segment (by affine invariance, such a property
being valid on [−1, 1]), we finally get

dubK(x, c+ tj(ξis − c)) ≤ |arccos(2φKc
(x− c)− 1)− arccos(2tj − 1)|

+dub[vi,vi+1](x∂K , ξis) ≤
π

2m
+

π

2m
=

π

m
,

from which (2.3) follows for m > 2 by Lemma 1. �

Remark. Observe that Znm ⊂ int(K) (with c 6∈ Znm) and card(Znm) = ℓn2m2.
A similar construction can be made also with nm + 1 Chebyshev-Lobatto points
instead of nm Chebyshev points on sides and rays. In such a case there are mesh
points on ∂K, the origin is a mesh point and the cardinality is slightly bigger,
namely ℓn2m2 +O(nm).

It is also worth observing that in the case of centrally symmetric starlike poly-
gons, with an even number of sides, all the construction can be repeated exploiting
the symmetry, by working with “diameters” instead of rays. In such a way the
mesh cardinality is essentially halved and the points do not cluster at the center
(see Figure 1 for an example with a regular octagon).

From Proposition 1, we obtain the following corollary on polynomial optimiza-
tion.

Corollary 2.2. Let K ⊂ R
2 be a simple polygon, starlike with respect to a center

point c ∈ int(K). For any fixed ε ∈ (0, 1), K possesses a Chebyshev-Dubiner web
{Xn(ε)} such that (1.2) and (1.3) hold, with card(Xn(ε)) = O(n2/ε).

Proof. In view of (1.9) and (1.10), take m = m(ε) in (2.3) such that

π

m(ε)
≤

√

2ε

1 + ε
,

i.e. m(ε) = ⌈
√
1+ε

π
√
2ε
⌉ = O(1/

√
ε). Then, Xn(ε) = Znm(ε) fulfills (1.2) and (1.3), and

has cardinality ℓn2m2(ε) = O(n2/ε), where ℓ is the number of polygon vertices. �

Observe that our approach is tailored to the geometry of polygons. On gen-
eral bidimensional convex bodies, we can construct norming grids for polynomial
optimization having O(n4/ε2) cardinality, with a constant of the O-symbol inde-
pendent of the body aspect ratio (diameter/width), by resorting to Markov poly-
nomial inequality together with two cornerstones of convex geometry, Bieberbach
and Leichtweiss inequalities. On the other hand, a sampling cardinality O(n2/ε)
(like that in Corollary 1) can be obtained on smooth bidimensional convex bodies,
by resorting again to the notion of Dubiner distance and to another cornerstone of
convex geometry, the Rolling Ball Theorem; cf. [11] for the detailed constructions.

In order to illustrate the present construction, in Figure 1 we show two examples,
a 14-side nonconvex starlike polygon and a regular octagon, with the corresponding
Chebyshev-Dubiner webs for degree n = 4 and ε = 0.05. As discussed in Remark
1, on the octagon we have exploited the symmetry, working by diameters instead
of rays.
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In Table 1 we display the average range-relative errors (100 trials) of approx-
imate minimization by Chebyshev-Dubiner webs of a random combination of the
Chebyshev bivariate basis for degree n = 4 (15 basis polynomials, with variables
scaled to the minimal rectangle containing the polygon), on the starlike polygons of
Figure 1 for some values of the tolerance ε in the range [10−3, 10−1]. The reference
values of the minimum and maximum have been computed on the intersection with
a uniform grid of 108 points in the quoted minimal rectangle.

We see that the error behavior is consistent with Corollary 1 and quite satisfac-
tory. In particular, the tolerance ε turns out to be an overestimate of the actual
error by at least two orders of magnitude (a phenomenon that has been already
observed in other numerical examples on polynomial optimization by polynomial
meshes, cf. e.g. [10, 15]).

Table 1. Average range-relative errors (100 trials) for Chebyshev-
Dubiner web minimization of a random combination of the Cheby-
shev bivariate basis for degree n = 4 on the starlike polygons of
Fig. 1.

ε 1.0e-1 5.0e-2 1.0e-2 5.0e-3 1.0e-3
14-sides avg err 2.4e-4 1.5e-4 2.0e-5 3.9e-5 3.8e-6
octagon avg err 1.0e-3 3.3e-4 7.9e-5 5.3e-5 9.7e-6
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Figure 1. Chebyshev-Dubiner webs for polynomial minimization
of degree n = 4 with a range-relative error less than 5%, on a
14-side starlike polygon (around 21000 points) and on a regular
octagon (around 7700 points).
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