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Abstract. In a recent paper, Y. Xu proposed a set of Chebyshev-like points for polynomial
interpolation on the square [−1, 1]2. We have recently proved that the Lebesgue constant of these
points grows like log2 of the degree (as with the best known points for the square), and we have
implemented an accurate version of their Lagrange interpolation formula at linear cost. Here we
construct non-polynomial Xu-like interpolation formulas on bivariate compact domains with various
geometries, by means of composition with suitable smooth transformations. Moreover, we show
applications of Xu-like interpolation to the compression of surfaces given as large scattered data sets.
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1. Introduction. The problem of choosing good nodes on a given compact set is
a central one in polynomial interpolation. Besides unisolvence, which is by no means
an easy problem (see, e.g., [6, 13]), for practical purposes one needs slow growth of
the Lebesgue constant, together with computational stability and efficiency.

Suppose that K ⊂ Rd is a compact set with non-empty interior. Let V be a
subspace of Πd

n, the polynomials of degree n in d variables, of dimension dim(V ) =: N.
Then given N points X := {xk}Nk=1 ⊂ K, the polynomial interpolation problem
associated to V and X is to find for each f ∈ C(K) a polynomial p ∈ V such that

p(xk) = f(xk), k = 1, . . . , N .

If this is always possible the problem is said to be unisolvent. And if this is indeed the
case we may construct the so-called Lagrange fundamental polynomials `j(x) with
the property that

`j(xk) = δjk,

the Kronecker delta. Further, the interpolant itself may be written as

(Lf)(x) =
N

∑

k=1

f(xk)`k(x) .

The mapping f 7→ Lf may be regarded as an operator from C(K) (equipped with
the uniform norm) to itself, and as such has an operator norm ‖L‖. Classically, when
K = [−1, 1] and V = Π1

n, this norm is known as the Lebesgue constant and it is
known that then ‖L‖ ≥ C logn and that this minimal order of growth is attained, for
example, by the Chebyshev points (see e.g. [7]).
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In the multivariate case much less is known. From Berman’s Theorem (cf. [18,
Thms. 6.4 and 6.5]) it follows that for K = Bd, the unit ball in Rd, d ≥ 2, and
V = Πd

n, the Lebesgue constant has at least a rate of growth of O(n(d−1)/2). In the

tensor product case, when K = [−1, 1]d and V =
⊗d

k=1 Π1
n, then ‖L‖ ≥ C(logn)d

and this minimal rate of growth is attained for the tensor product of the univariate
Chebyshev points. However, even for the cube and the polynomials of total degree n,
i.e., for K = [−1, 1]d and V = Πd

n, the minimal rate of growth is not known.
Recently Y. Xu [25] introduced a set of Chebyshev-like points for the square

K = [−1, 1]2, and V = Vn a certain subspace of polynomials such that

Π2
n−1 ⊂ Vn ⊂ Π2

n, N = dim(Vn) = dim(Π2
n−1) +

⌊n

2

⌋

.(1.1)

It should be remarked that Vn, although not a total degree space of polynomials,
is much closer to Π2

n−1 than to the corresponding tensor-product space
⊗2

k=1 Π1
n−1

which has dimension n2.
In [3] we investigated numerical aspects of the Xu polynomial interpolation for-

mula in the square. The numerical experiments gave us good evidence that the
Lebesgue constant for these Xu points has growth of the order (log n)2 (just as in
the tensor product case, and in contrast to the case of the ball where the minimal
growth would be of order

√
n). This has been rigorously proved in [4]. Moreover,

we have been able to implement the Xu interpolation formula in a stable way, with
a computational cost which is in practice linear in the number N of interpolation
points. From this we may conclude that the Xu points are excellent points for prac-
tical polynomial interpolation.

In the present paper, we first give a survey of the known results on polynomial
interpolation at the Xu points. Then, we extend the interpolation method to bivariate
compact domains, which are smooth transformations of the square. This leads to
non-polynomial Xu-like interpolation formulas, which work on domains with quite
different geometries, like generalized rectangles (in cartesian coordinates), generalized
sectors and starlike domains (in polar coordinates). Finally, we show an application
of Xu-like interpolation to the compression of sufficiently regular surfaces, given as
large scattered data sets. Remarkable compression ratios are obtained, simply by
interpolating a suitable Shepard-like interpolant at the Xu points.

2. A survey on polynomial interpolation at Xu points. We start by re-
calling briefly the construction of the Xu interpolation formula of degree n on the
square [−1, 1]2. In what follows we restrict, for simplicity’s sake, to even degrees n.
Considering the Chebyshev-Lobatto points on the interval [−1, 1]

ξk = ξk,n = cos
kπ

n
, k = 0, . . . , n, n = 2m ,(2.1)

the Xu interpolation points on the square are defined as the two dimensional Cheby-
shev array XN = {zr,s} of dimension N = n(n+ 2)/2

z2i,2j+1 = (ξ2i, ξ2j+1), 0 ≤ i ≤ m, 0 ≤ j ≤ m− 1 ,(2.2)

z2i+1,2j = (ξ2i+1, ξ2j), 0 ≤ i ≤ m− 1, 0 ≤ j ≤ m .

The Xu interpolant in Lagrange form of a given function f on the square [−1, 1]2 is

LXu

n f(x) =
∑

zr,s∈XN

f(zr,s)`n(x, zr,s), `n(x, zr,s) :=
K∗

n(x, zr,s)

K∗
n(zr,s, zr,s)

,(2.3)
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where the polynomials K∗

n(·, zr,s) are given by

K∗

n(x, zr,s) :=
1

2
(Kn(x, zr,s) +Kn+1(x, zr,s)) +(2.4)

− 1

2
(−1)r(Tn(x1)− Tn(x2)) ;

here x1, x2 are the coordinates of the generic point x = (x1, x2) and Tn is the Cheby-
shev polynomial of the first kind of degree n, Tn(x) = cos(n arccosx). In particular
when x = zr,s (cf. [25, p. 229, (2.18)])

K∗

n(zr,s, zr,s) =
1

2
(Kn(zr,s, zr,s) +Kn+1(zr,s, zr,s))− 1 .(2.5)

The polynomials Kn(x,y) can be represented in the form

Kn(x,y) = Dn(θ1 + φ1, θ2 + φ2) +Dn(θ1 + φ1, θ2 − φ2)(2.6)

+ Dn(θ1 − φ1, θ2 + φ2) +Dn(θ1 − φ1, θ2 − φ2) ,

x = (cos θ1, cos θ2), y = (cosφ1, cosφ2) ,

where the function Dn is defined by

Dn(α, β) =
1

2

cos((n− 1/2)α) cos(α/2)− cos((n− 1/2)β) cos (β/2)

cosα− cosβ
.(2.7)

As shown in [25], the values K∗

n(zr,s, zr,s) are explicitly known in terms of the degree
n, that is

K∗

n(zr,s, zr,s) =







n2

{

r = 0 or r = n, s odd
s = 0 or s = n, r odd

n2/2 in all other cases .
(2.8)

Observe that this constructive approach immediately yields unisolvence of the
interpolation problem, since for any given basis of the underlying polynomial space
Vn the corresponding Vandermonde system has a solution for every N -dimensional
vector {f(zr,s)}, and thus the Vandermonde matrix is invertible.

2.1. Computational aspects. Rearranging (2.7) in the case that cos(α) =
cos(β) allows us to give a form of the interpolation formula with pointwise evaluation
cost O(N). However, the interpolation formula (2.3)-(2.6) evaluated via (2.7) turns
out to be severely ill-conditioned, as has been shown in [3]. Stabilization can be
obtained by rewriting Dn by simple trigonometric manipulations

Dn(α, β) =
1

4
(Un−1(cosφ)Un−1(cosψ) + Un−2(cosφ)Un−2(cosψ)) ,(2.9)

where φ = (α−β)/2, ψ = (α+β)/2, and Un denotes the usual Chebyshev polynomial
of the second kind. Now, computing the polynomials Un by the well-known three-term
recurrence relation

{

U0(cos θ) = 1, U1(cos θ) = 2 cos θ,
Un(cos θ) = 2 cos θ Un−1(cos θ)− Un−2(cos θ), n ≥ 2 ,

(2.10)

the evaluation of Dn(α, β) becomes stable, but the computational cost is O(n) instead
of O(1). Then, it is not difficult to see that the dominant term in the final complexity
for the pointwise evaluation of LXu

n f(x) is 8nN ∼ 8
√

2N3/2 ∼ 4n3 flops.
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An effective way to reduce the computational cost of the stabilized formula (2.9),
still preserving high accuracy, is to compute the Chebyshev polynomials of the second
kind Un by the three-term recurrence relation (2.10) only when the representation
Un(cos θ) = sin(n + 1)θ/ sin θ (whose cost is O(1) in n and θ) is ill-conditioned, say
when |θ − kπ| ≤ ε for a “small” value of ε. In this case, it is important to estimate
the average use percentage of the recurrence in evaluating all the Lagrange basis
polynomials. In [3], we resorted to some probabilistic considerations. Indeed, taking
random, uniformly distributed evaluation points, such a percentage becomes a random
variable (function of a uniform random variable), whose expectation, say η, depends
on the threshold ε but not on the degree n. This is clearly seen in Tables 2.1 and 2.2,
where it is shown that the averages up to one million random points converge to a
value that does not depend on the degree n.

Table 2.1

Averages of the use percentage of recurrence relation (2.10), up to one million uniform random
points, in evaluating all the Lagrange basis polynomials at degree n = 20.

# of random % recurr. (averages)
points ε = 0.01 ε = 0.1

1.0E+01 0.50 7.00
1.0E+02 0.75 6.25
1.0E+03 0.69 6.27
1.0E+04 0.63 6.34
1.0E+05 0.64 6.36
1.0E+06 0.64 6.37

Table 2.2

Average use percentage η of recurrence relation (2.10), in evaluating all the Lagrange basis
polynomials at different degrees.

degree percentage η
n ε = 0.01 ε = 0.1
20 0.64 6.37
40 0.64 6.37
80 0.64 6.37

Now, the evaluation of K∗

n(x, zr,s) using only the trigonometric representation
of Un(cos θ) costs about 8 × 4 = 32 evaluations of the sine function, recalling that
Dn and Dn+1 appear with the same arguments in (2.4), (2.6). Denoting by csin the
average evaluation cost of the sine function (which actually depends on its internal
implementation), the average complexity for the evaluation of the Xu interpolant
LXu

n f(x) is of the order of

C(n, ε) := 8nτN + 32csin(1− τ)N ∼ 4n3τ + 16csin(1− τ)n2 flops ,(2.11)

where τ = η/100. Using the experimental value csin = 10 (obtained with GNU
Fortran, but consistent with the usual implementations), we can conclude that, for
ε ≤ 0.01 (i.e., τ ≤ 0.0064), the size of the ratio C(n, ε)/N remains constant up to
degrees of the order of hundreds, that is in practical applications the computational
cost can be considered linear in the number N of Xu points.

A more sophisticated implementation may take into account that, for low degrees,
the recurrence relation costs less than the trigonometric representation in evaluating
Un(cos θ). Comparing the dominant costs, the former should be used when 4n3 <
16csinn

2, i.e., n < 4csin. Our Fortran implementation of the Xu interpolation formula
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resorts to all the tricks just described, in particular the last one with the experimental
value csin = 10, i.e., a threshold degree n = 40; see [9].

2.2. The Lebesgue constant of the Xu points. In this section we report
some numerical and theoretical results, concerning another key feature of the Xu
interpolation formula, that is the behavior of its Lebesgue constant; see [3, 4]. First, it
comes easy to bound the Lebesgue constant linearly in the dimension of the polynomial
space Vn, which already shows that the Xu points are good candidates for interpolation
purposes. Indeed, from the well-known bound for Chebyshev polynomials of the
second kind |Un(cos θ)| ≤ n+ 1, we get easily

|`n(x, zr,s)| =
∣

∣

∣

∣

K∗

n(x, zr,s)

K∗
n(zr,s, zr,s)

∣

∣

∣

∣

≤ (n+ 1)2 + 2n2 + (n− 1)2

n2
= 4 +

2

n2
.(2.12)

Defining, in the usual way, the Lebesgue function for the Xu interpolation points

λXu

n (x) :=
∑

zr,s∈XN

|`n(x, zr,s)| ,(2.13)

we finally obtain the following bound of the Lebesgue constant

ΛXu

n := ‖LXu

n ‖ = max
x∈[−1,1]2

λXu

n (x) ≤
(

4 +
2

n2

)

N ∼ 4N ∼ 2n2 .(2.14)

However, (2.14) is a substantial overestimate of the actual Lebesgue constant. In fact,
the Lebesgue function turns out to be symmetric and seems to attain its maximum
at the four vertices of the square. A wide set of large-scale numerical experiments
on the maximization of the Lebesgue function, performed in [3], confirmed this fact
and gave the results summarized in Fig. 2.1 (right), where we compare the Lebesgue
constant of Xu points up to degree n = 100 with the least-square fitting function
(0.95 + (2/π) log(n+ 1))

2
and the theoretical bound for tensor-product Chebyshev-

Lobatto interpolation of degree n (cf. [7]), i.e., (1 + (2/π) log(n+ 1))2. These com-
putations gave a sound basis for the following

Conjecture. The Lebesgue function λXu

n of the Xu interpolation points can be

bounded as

max
x∈[−1,1]2

λXu

n (x) = ΛXu

n ≤ An ∼ ((2/π) log(n+ 1))2, n→∞ .(2.15)

Moreover, the maximum is attained at the four vertices of the square.

The conjecture has been partially proved in [4], at least concerning the actual
order of growth of the Lebesgue constant of the Xu points. Indeed, we have obtained
the following rigorous estimate

Theorem 2.1. The Lebesgue constant of the Xu interpolation points, ΛXu

n , is

bounded by

ΛXu

n ≤ 8

(

2

π
logn+ 5

)2

+ 4 .(2.16)

This means that the Lebesgue constant of the Xu points has the same order of
growth as that of the best known interpolation nodes for the square, namely the
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“Padua points” recently introduced in [8] (for which, however, only numerical results
are known). Such points, as another important nodal set for polynomial interpolation
and cubature on the square, the Morrow-Patterson points [17, 24], are equally spaced
with respect to the Dubiner metric ([10], see also [5]), which on the squareK = [−1, 1]2

turns out to be δK(x,y) = max{| arccosx1− arccosy1|, | arccosx2− arccosy2|}. Now,
it is worth stressing that also the Xu points are equally spaced in the Dubiner metric.
This fact confirms once more the conjecture stated in [8] concerning near-optimality
of nodal sets: “Nearly optimal points for polynomial interpolation on a compact K
are asymptotically equidistributed with respect to the Dubiner metric on K”.
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Lebesgue constant of Xu points
(0.95+2/π log(n+1))2

(1+2/π*log(n+1))2

Fig. 2.1. Left: the distribution of N = 144 Xu-like points (degree n = 16) in the square [−1, 1]2.
Right: the Lebesgue constant of the Xu points up to degree n = 100.

2.3. Convergence and approximation. The above results about the Lebesgue
constant of the Xu interpolation points, allow us to immediately derive convergence
estimates for the corresponding interpolation formula. Recall that the reference poly-
nomial space for the Xu points, Vn in (1.1), is not a total degree space of polynomials;
see [25] for its rigorous definition, which is strictly related to the construction of
minimal cubature formulas for the product Chebyshev measure on [−1, 1]2.

From (1.1), however, we get trivially that En(f) ≤ infp∈Vn
‖f−p‖∞,K ≤ En−1(f),

En(f) denoting as usual the best uniform approximation error to f on K = [−1, 1]2

by polynomials in Π2
n, and thus the convergence estimate

‖f − LXu

n f‖∞,K ≤ (1 + ΛXu

n ) inf
p∈Vn

‖f − p‖∞,K ≤ (1 + ΛXu

n )En−1(f) .(2.17)

The rate of decay of En(f) as n → ∞ depends on the degree of smoothness of f , in
view of multivariate generalizations of Jackson’s theorem (cf. [1]). In particular, from
(2.17) and [1] we obtain the convergence estimate

‖f − LXu

n f‖∞,K = O(n−α log2 n) , f ∈ Cα(K) , 0 < α <∞ .(2.18)

The actual approximation behavior of the Xu interpolation formula has still to be
investigated thoroughly. Theoretical results and numerical tests, however, have shown
that it can be considered among the best approximation tools with polynomials on
the square, especially if one considers its low computational cost.

For the purpose of illustration, we report some numerical results taken from [8].
In Table 2.3, we display the Lebesgue constants (rounded to the nearest integer) of
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several nodal sets at a sequence of degrees. The degrees have been chosen in such
a way that the dimension N of polynomial spaces, and thus the number of function
evaluations in the interpolation process, is as close as possible to the dimension of some
tensor-product polynomial spaces. As already observed, PD (Padua) and Xu points
have the smallest Lebesgue constants, which are very close to (1+2/π log(n+1))2. In
Table 2.4, we compare interpolation at Xu points with the other nodal sets and with
tensor-product Chebyshev-Lobatto interpolation, in the recovery of the well-known
Franke test function [12]. Notice that Xu interpolation errors are very close to those
at Padua points, and much smaller than the errors given by the other sets of points
(except for the highest degree). But it is also important to recall that, with the present
state of the art, the computational complexity is O(N) for the Xu points, whereas
it is O(N3) for the Padua points (due to direct solution of a suitable Vandermonde
system).

Table 2.3

Lebesgue constants (rounded to the nearest integer) of different nodal sets: Morrow-Patterson
(MP), Extended Morrow-Patterson (EMP), Padua points (PD), Xu points.

interp. pts. Λ34 Λ48 Λ62 Λ76

MP 649 1264 2082 3102
EMP 237 456 746 1106
PD 11 13 14 15
XU 10 12 13 14

3. Beyond the square: extension to other domains. In this section, we
construct non-polynomial (but polynomial based) interpolation formulas at Xu-like
points on bivariate domains with different geometric structures, by means of suitable
transformations. A similar approach has already been used, e.g., in [22] concerning
the extension of adaptive approximation with bivariate Chebyshev series.

Consider a sufficiently regular function f defined on a bivariate compact domain
K, that corresponds to the square [−1, 1]2 through a smooth surjective transformation

σ : [−1, 1]2 → K , t = (t1, t2) 7→ x = (x1, x2) .(3.1)

Moreover, even though σ is not one-to-one in general, assume that we can define a
global “inverse-like” mapping (which for convenience we shall still denote by σ−1)

σ−1 : K → [−1, 1]2 , σ−1(x) = t(x) ∈ ←−σ (x) ,(3.2)

where t(x) denotes a point selected in some manner from the inverse image ←−σ (x).
The latter choice will be made explicit, in instances of non-injective transformations
(see below, e.g., the case of polar coordinates).

Now, by interpolating the composition g = f ◦ σ at the Xu points in [−1, 1]2, we
get a (in general) non-polynomial interpolation formula

LXu

n f(x) = LXu

n g(σ
−1(x)) , g = f ◦ σ , x ∈ K ,(3.3)

cf. (2.3). This means that f will be sampled at the Xu-like points (cf. (2.2))

K 3 xr,s = σ(zr,s) .(3.4)

Observe that theoretically, in view of multivariate extensions of Jackson’s theorem
(cf., e.g., [1]), when the function f is globally Hölder-continuous in K, a Hölder-
continuous transformation suffices to ensure convergence of Xu-like interpolation. On
the other hand, singularities of σ lead in general to nonconvergence.
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Table 2.4

Interpolation errors for the Franke test function on [0, 1]2, by different nodal sets (n is the
degree, N the number of nodes): Tensor Product Chebyshev (TPC), Morrow-Patterson (MP), Ex-
tended Morrow-Patterson (EMP), Padua points (PD), Xu points.

TPC 1E-03 3E-06 1E-09 2E-13
n, N = (n+ 1)2 24, 625 34, 1225 44, 2025 54, 3025

MP 1E-03 3E-06 1E-09 2E-13
n, N = (n+ 1)(n+ 2)/2 34, 630 48, 1225 62, 2016 76, 3003

EMP 6E-04 1E-06 5E-10 5E-14
n, N = (n+ 1)(n+ 2)/2 34, 630 48, 1225 62, 2016 76, 3003

PD 4E-05 3E-08 5E-12 2E-14
n, N = (n+ 1)(n+ 2)/2 34, 630 48, 1225 62, 2016 76, 3003

XU 3E-05 5E-08 8E-12 2E-13
n, N = n(n+ 2)/2 34, 612 48, 1200 62, 1984 76, 2964

However, a key point in order to avoid loss of smoothness in this process and thus
an artificial slowing down of convergence, is to choose a transformation as smooth as
possible, and in any case with at least the same degree of regularity as the function f .
This role of the transformation will be clarified in the examples below. We stress that,
whereas the smoothness of σ is a key feature for the effectiveness of the interpolation
method, the regularity of σ−1 plays practically no role (indeed σ−1 can be singular
without problems, see again the case of polar coordinates).

Now we are ready to describe three important classes of domain geometries, with
corresponding transformations (the terminology being usual in the field of numerical
cubature). In all the tables below the interpolation errors have been computed in the
max-norm, on the σ-image of a 50 × 50 control grid in [−1, 1]2, and are rounded to
the first significant digit. In all the figures, together with the Xu-like interpolation
points, we show how the grid of lines (in grey) where the original Xu points lie in the
square (see Fig. 2.1) is deformed by the transformation σ.

3.1. Generalized rectangles (Cartesian coordinates). The domain K is
defined by

K = {x = (x1, x2) : a ≤ x1 ≤ b , φ(x1) ≤ x2 ≤ ψ(x1)} ,(3.5)

φ and ψ being suitable functions (so that double integrals can be iterated). Here the
transformation σ can be defined as

σ(t1, t2) = (x1(t1, t2), x2(t1, t2))(3.6)

with

x1(t1, t2) = a+ (t1 + 1)
b− a

2
,(3.7)

x2(t1, t2) = φ(x1) + (t2 + 1)
ψ(x1)− φ(x1)

2
,

and “inverse” given by

t1(x1, x2) = −1 + 2
x1 − a
b− a ,(3.8)

t2(x1, x2) =

{

−1 + 2 x2−φ(x1)
ψ(x1)−φ(x1)

ψ(x1) 6= φ(x1)

−1 ψ(x1) = φ(x1)

The regularity of this transformation is clearly determined by the regularity of
φ and ψ. Notice that when ψ(x1) = φ(x1) at some abscissa x1, the transformation
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σ is non-injective, but with the (arbitrary) choice made in the inverse image of such
points the method works without problems. In Fig. 3.1 we show the distribution
of N = 144 Xu-like points (corresponding to polynomial degree n = 16) for two
generalized rectangles K1 and K2 as in (3.5) (both with singular points for σ−1,
where φ(x1) = ψ(x1))

K1 : a = 0, b = 1, φ(x1) = x4
1, ψ(x1) = log(1 + 4x1)/ log 5 ,(3.9)

K2 : a = 0, b = 1, φ(x1) ≡ 0, ψ(x1) = 4(x1 − 0.5)2(1 + sin 4x1) .

In Tables 3.1–3.2, finally, we report the interpolation errors on such domains for two
functions with different degree of regularity, correspondingly to a sequence of Xu-like
nodal sets.

0 0,2 0,4 0,6 0,8 1
0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1
0

0,2

0,4

0,6

0,8

1

Fig. 3.1. The distribution of N = 144 Xu-like points (degree n = 16) in the generalized
rectangles K1 (left) and K2 (right) defined in (3.9).

Table 3.1

Xu-like interpolation errors of f(x1, x2) = sin (x2

1
+ x2

2
) on the generalized rectangles K1 and

K2 of Fig. 3.1; n is the underlying polynomial degree, N = n(n + 2)/2 the corresponding number of
Xu-like interpolation points (3.4).

n 8 16 24 32 40
N 40 144 312 544 840
K1 1E-2 2E-5 1E-8 4E-12 5E-14
K2 3E-2 2E-4 2E-6 4E-9 3E-11

Table 3.2

As in Table 3.1 for the function f(x1, x2) = |x1 − x2|3.

n 8 16 24 32 40
N 40 144 312 544 840
K1 3E-4 5E-5 1E-5 5E-6 3E-6
K2 4E-2 3E-3 9E-4 4E-4 2E-4

3.2. Generalized sectors (polar coordinates). The domain K is defined by

K = {x = (ρ cos θ, ρ sin θ) : θ1 ≤ θ ≤ θ2 , ρ1(θ) ≤ ρ ≤ ρ2(θ)} ,(3.10)
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and the transformation is the composition of one analogous to (3.7) with obvious
adjustments from Cartesian to polar coordinates, with inverse

t1(x1, x2) = −1 + 2
θ − θ1
θ2 − θ1

, t2(x1, x2) = −1 + 2
ρ− ρ1(θ)

ρ2(θ) − ρ1(θ)
,(3.11)

where

ρ = ρ(x1, x2) =
√

x2
1 + x2

2 , θ = θ(x1, x2) = arctan (x2/x1) .

Observe that in practice we interpolate the function F (ρ, θ) = f(ρ cos θ, ρ sin θ) at
Xu-like points on a generalized rectangle in polar coordinates. The special case of the
origin is managed by choosing θ(0, 0) = 0, while the angles where ρ1 = ρ2 are treated
as above. Again, the regularity of the transformation is determined by the functions
ρ1 and ρ2.

The simplest case is that of a disk of radius r centered at the origin, i.e. 0 ≤ θ ≤
2π, 0 ≤ ρ ≤ r. Notice that the transformation is analytic in this case, whereas that
corresponding to the disk represented directly in Cartesian coordinates is not even C1,
since we have φ(x1) = −

√

r2 − x2
1, ψ(x1) =

√

r2 − x2
1, which are Hölder-continuous

but have singular derivatives at x1 = ±r. We stress this fact by showing Table 3.3,
which illustrates the importance of choosing the right transformation. Notice that,
whereas the function is extremely smooth, the choice of representing the unit disk
in Cartesian coordinates leads to computational failure, since the singularity of the
transformation entails very slow convergence.

3.3. Starlike domains in polar coordinates. An important subclass of gen-
eralized sectors is given by starlike domains around a given center, i.e., up to a trans-
lation,

K = {x = (ρ cos θ, ρ sin θ) : 0 ≤ θ ≤ 2π , 0 ≤ ρ ≤ r(θ)} ,(3.12)

Here a different transformation can be defined, which allows a better (more symmetric)
distribution in comparison to standard polar coordinates of the Xu-like points, which
now cluster at both θ = 0 and at θ = π instead of only at θ = 0, and do not cluster
at the origin. This is obtained using diameters instead of rays, by varying the angle
θ in [0, π] and by allowing negative values of ρ, in the following way

K = {x = (ρ cos θ, ρ sin θ) : 0 ≤ θ ≤ π , −r(θ + π) ≤ ρ ≤ r(θ)} .(3.13)

We note that these nonstandard polar coordinates are used, for example, with pseu-
dospectral methods on the disk [11]. Now, we have a different generalized rectangle
in (ρ, θ) coordinates. The transformation σ in (3.1) is defined via

θ(t1, t2) =
π

2
(t1 + 1) , ρ(t1, t2) = (t2 + 1)

r(θ) + r(θ + π)

2
− r(θ + π) ,(3.14)

and its “inverse” by

t1(x1, x2) = −1 +
2 θ

π
, t2(x1, x2) = −1 + 2

ρ− r(θ + π)

r(θ) + r(θ + π)
,(3.15)

where

ρ = ρ(x1, x2) = sign(x2)
√

x2
1 + x2

2 , θ = θ(x1, x2) = arctan (x2/x1) .
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See Fig. 3.2 for a comparison of distributions of Xu-like points in the case of the unit
disk, and Fig. 3.3 for Xu-like points in starlike-polar coordinates, in the case of the
cardioid r(θ) = (1− cos θ)/2, and of the “four-leaf clover” r(θ) = cos 2θ.

The advantage of using the transformation (3.14) for a starlike domain (“starlike-
polar” coordinates) instead of standard polar coordinates, is illustrated by Table 3.3.
In Tables 3.4–3.5, we give the interpolation errors for two functions with different
degrees of regularity on the domains of Fig. 3.3, at a sequence of Xu-like nodal sets.

-1 -0,5 0 0,5 1
-1

-0,5

0

0,5

1

-1 -0,5 0 0,5 1
-1

-0,5

0

0,5

1

Fig. 3.2. The distribution of N = 144 Xu-like points (degree n = 16) in the unit disk in polar
(left) and starlike-polar (right) coordinates.

Table 3.3

Xu-like interpolation errors of f(x1, x2) = cos (x1 + x2) on the unit disk in Cartesian, standard
polar and “starlike polar” coordinates; n is the underlying polynomial degree, N = n(n + 2)/2 the
corresponding number of Xu-like interpolation points (3.4).

n 8 16 24 32 40
N 40 144 312 544 840

Cartesian 6E-2 2E-2 6E-3 3E-3 4E-3
polar 1E-1 3E-3 2E-5 1E-7 3E-10

starlike 1E-2 1E-5 4E-9 5E-13 2E-14

Table 3.4

Xu-like interpolation errors of f(x1, x2) = cos (x1 + x2) on the cardioid and the four-leaf clover
of Fig. 3.3; n is the underlying polynomial degree, N = n(n + 2)/2 the corresponding number of
Xu-like interpolation points (3.4).

n 8 16 24 32 40
N 40 144 312 544 840

cardioid 2E-2 3E-5 3E-8 1E-11 5E-14
4-leaf 2E-1 1E-2 9E-4 1E-5 8E-7

4. Surface compression from scattered data by “interpolated interpola-
tions”. We consider the problem of compressing a surface, given as a large scattered
data set. This problem can be addressed in several ways, for example by multires-
olution methods using splines or radial basis functions; see [14, 15] and references
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Fig. 3.3. The distribution of N = 144 Xu-like points (degree n = 16) in starlike-polar coordi-
nates: cardioid (left), four-leaf clover (right).

Table 3.5

As in Table 3.4 for the function f(x1, x2) = (x2

1
+ x2

2
)5/2.

n 8 16 24 32 40
N 40 144 312 544 840

cardioid 1E-2 1E-4 2E-5 3E-6 1E-6
4-leaf 4E-1 7E-2 1E-3 2E-4 5E-5

therein.

Here, we adopt a very simple global strategy, based on the fact that the informa-
tion content of a sufficiently regular function on one of the domains described in the
previous sections, is contained, up to the interpolation error, in its values at relatively
few Xu points. Since the function is assumed to be known only as a large scattered
data set, its values at Xu points have to be computed through an auxiliary function.

In our application, we have chosen the cubic Shepard-like interpolant implemented
in the ACM Algorithm 790 (CSHEP2D) by R.J. Renka [19]. As is known, for reason-
ably dense data sets CSHEP2D is among the most accurate and efficient scattered
data algorithms available [20]. It constructs a C2 interpolant in a moving least-square
fashion [16, 23], with a mean complexity which is linear in the cardinality of the data
for the preprocessing stage (computation of the parameters defining the interpolant),
and O(1) for each pointwise evaluation (the basis functions being locally supported).

In practice, the surface compression algorithm (interpolated interpolation) can be
summarized as follows:

• Encoding stage: construction of the parameters defining the Shepard-like
interpolant, say S(x), by subroutine CSHEP2 of ACM 790; evaluation of
S(x) at a sequence of Xu nodal sets by subroutine CS2VAL of ACM 790,
testing the reconstruction error of the Xu-like interpolant on the original
data set, until such an error goes below a given tolerance or stagnates, or the
compression ratio becomes unacceptable. The array of values {S(xr,s)} at the
resulting Xu nodal set represents the compressed surface, and is accompanied
by an estimated compression error.
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• Decoding and reconstruction stage: simply the evaluation of the Xu-like in-
terpolant LXu

n S at any given set of target points, needed for the specific ap-
plication (e.g., plotting).

Notice that the Xu nodal set is completely known once the domain and the degree
are given, and thus there is no need to store and transmit the array of Xu points
(while the original scattered data set is an array of 3D points). This means that the
compression ratio is given by

compr. ratio = 3× numb. of scatt. pts.

numb. of Xu nodes
≈ 6× numb. of scatt. pts.

n2
,(4.1)

where n is the underlying polynomial degree.

4.1. Example 1: Compression of test functions on the unit square.
For the purpose of illustration, in Tables 4.1–4.3 we report the compression errors
obtained by Xu interpolation of the quoted Shepard-like interpolant, on the sampling
of three test functions at a sequence of large randomly generated point sets (from
5000 up to 40000 points). Since the domain is the unit square, the Xu interpolants are
polynomials, constructed at a sequence of degrees. The last column shows the actual
errors made by the Shepard-like interpolant on the underlying function, whereas the
last row displays the actual errors made by direct Xu interpolation of the underlying
function. In Table 4.4 we show the compression ratios, computed as in (4.1) and
rounded to the nearest integer, corresponding to the sequences of scattered point sets
and of interpolation degrees above.

Observe that the rows tend to stabilize around the underlying Shepard interpola-
tion error, whereas the columns around the underlying Xu interpolation error. This
can be easily explained by splitting the compression error as

S(x)− LXu

n S(x) = {S(x)− f(x)}+ {f(x)− LXu

n f(x)}+ LXu

n (f − S)(x) ,(4.2)

where S(x) is the Shepard-like interpolant [19] on the scattered point set. Recall that
S(x) has only C2 regularity, and thus quite slow convergence of its Xu interpolants
could be expected, in view of (2.18). Nevertheless, the Lebesgue constant of Xu
interpolation increases very slowly (cf. (2.15), (2.16)), hence from the splitting (4.2)
we can expect an initial convergence stage driven by f , followed by a stagnation
around the Shepard interpolation error, as the degree n increases. On the other hand,
for the same reasons, increasing the data density for a fixed n, it is natural that the
error stagnates around the Xu interpolation error of the underlying function, when
this error becomes dominant.

It is worth noticing that, if one is satisfied with an error in the max-norm below
0.1%, which can be considered more than acceptable in many practical applications
(e.g., quality plotting), the compression ratios corresponding to the largest scattered
data sets are on the order of the hundreds (see Table 4.4).

4.2. Example 2: Compression of a Finite Element PDE solution. An-
other interesting application of compression of regular surfaces via “interpolated in-
terpolations”, arises for example within the numerical solution of elliptic PDEs by
Finite Elements on large-scale meshes.

Again only for purpose of illustration, we consider the following Poisson equation
with Dirichlet boundary conditions

{

∆f(x) = −10 , x ∈ Ω
f(x) = 0 , x ∈ ∂Ω

(4.3)
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Table 4.1

Compression errors (in the max-norm) for the Franke test function on [0, 1]2, sampled at a
sequence of scattered (randomly generated) point sets, by Xu interpolation of a cubic Shepard-like
interpolant [19]; last row and column: actual errors of the Xu and Shepard-like interpolants on the
test function.

random pts. n = 16 n = 24 n = 32 n = 40 n = 48 “true” Shep.
5000 3E-2 2E-3 1E-4 7E-5 1E-4 2E-4
10000 3E-2 2E-3 1E-4 6E-5 4E-5 7E-5
20000 3E-2 2E-3 1E-4 1E-5 3E-5 3E-5
40000 3E-2 2E-3 1E-4 3E-6 8E-6 8E-6

“true” Xu 3E-2 2E-3 1E-4 3E-6 5E-8

Table 4.2

As in Table 4.1 for the “waterfall” shaped test function f(x1, x2) = (tanh (9x2 − 9x1) + 1)/9
taken from the testset in [12].

random pts. n = 16 n = 24 n = 32 n = 40 n = 48 “true” Shep.
5000 9E-3 2E-3 6E-4 2E-4 3E-4 5E-4
10000 9E-3 2E-3 5E-4 1E-4 6E-5 7E-5
20000 9E-3 2E-3 5E-4 1E-4 3E-5 2E-5
40000 9E-3 2E-3 5E-4 1E-4 3E-5 9E-6

“true” Xu 9E-3 2E-3 5E-4 1E-4 3E-5

Table 4.3

As in Table 4.1 for the oscillating test function f(x1, x2) = 2 cos (10x1) sin (10x2)+sin (10x1x2)
taken from the testset in [20].

random pts. n = 16 n = 24 n = 32 n = 40 n = 48 “true” Shep.
5000 4E-3 8E-4 1E-3 1E-3 2E-3 3E-3
10000 4E-3 1E-3 1E-3 1E-3 8E-4 2E-3
20000 4E-3 2E-4 2E-4 2E-4 2E-4 3E-4
40000 4E-3 3E-5 3E-5 5E-5 3E-5 9E-5

“true” Xu 4E-3 1E-7 2E-13 1E-14 3E-14

Table 4.4

The compression ratios in (4.1) (rounded to the nearest integer), corresponding to Tables 4.1–4.3.

random pts. n = 16 n = 24 n = 32 n = 40 n = 48
5000 104:1 48:1 28:1 18:1 13:1
10000 208:1 96:1 55:1 36:1 25:1
20000 416:1 192:1 110:1 71:1 50:1
40000 832:1 385:1 221:1 143:1 100:1

where Ω is the “lynx-eye” shaped domain, given by a horizontal elliptical domain
with a vertical elliptical hole; see Fig. 4.1. Both the ellipses are centered at the origin,
and have semi-axes a = 1 and b = 0.5 (external), a = 0.2 and b = 0.4 (internal).
The numerical solution has been computed by a standard Galerkin Finite Element
discretization with linear basis functions, on a Delaunay mesh with 81796 triangular
elements, 41402 nodes, and mesh parameter (maximum triangles side) h = 0.013; see
Fig. 4.1 (right) for a detail of the mesh. The resulting linear system has been solved in
a standard way, by the Conjugate Gradient method preconditioned with incomplete
Cholesky factorization [21].

Observe that K = Ω (which is not simply-connected) is a generalized sector (see
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Section 3.2), with boundaries defined by the polar equation of the ellipses

ρ(θ) = ab

√

1 + tan2 θ

b2 + a2 tan2 θ
, 0 ≤ θ ≤ 2π ,(4.4)

where a and b are the horizontal and vertical semi-axes, respectively; the distribution
of N = 312 Xu-like points in K (degree n = 24), is shown in Fig. 4.1 (left).

Table 4.5

Compression errors (in the max-norm) for the Finite Element solution of the Poisson equation
(4.3), by Xu-like interpolation of a cubic Shepard-like interpolant [19].

mesh size n = 8 n = 12 n = 16 n = 20 n = 24 n = 28 n = 32
41402 1E-1 3E-2 1E-2 5E-3 2E-3 1E-3 1E-3

-1 -0,5 0 0,5 1
-0,5

-0,25

0

0,25

0,5

Fig. 4.1. The distribution of N = 312 Xu-like points (degree n = 24) in the “lynx-eye” shaped
domain of the Poisson equation (4.3) (left), and a detail of the Finite Element mesh in the domain
above, near the internal boundary (right).

Fig. 4.2. Plot of the Xu-like interpolated solution at degree n = 24 (compression ratio ≈ 400 : 1,
compression error ≈ 2 · 10−3).

In Table 4.5 we report the compression errors, corresponding to Xu-like interpola-
tion of the Shepard-like interpolant quoted above, at a sequence of degrees. Notice the
expected stagnation of the error around the size of the Finite Element discretization
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error. It is worth stressing that we are then able to compress the 3× 41402 = 124206
Finite Element solution data into the array of N = 24× 13 = 312 values at Xu-like
points (n = 24), which means a compression ratio of about 400:1. See Fig. 4.2 for a
plot of the Xu-like interpolated solution at degree n = 24.
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