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Abstract

We construct low cardinality admissible meshes for polynomials on
three classes of planar compact domains: cartesian graph domains,
polar graph domains, and domains with piecewise C2 boundary, that
satisfy a Markov polynomial inequality.
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1 Planar cartesian and polar graph domains

Let K ⊂ R
d be a polynomial determining compact domain (i.e., a polyno-

mial vanishing there vanishes everywhere). We term family of (polynomial)
norming sets for K any sequence of compact subsets Nn ⊆ K, n ∈ N, such
that the following polynomial inequality holds

‖p‖K ≤ C ‖p‖Nn
, ∀p ∈ P

d
n , (1)

where C > 0 is a constant and P
d
n denotes the space of real d-variate poly-

nomials of total degree at most n. Such a property is invariant under affine
transformations of K. Here and below, ‖f‖X denotes the sup-norm of a
function bounded on the set X.

When the norming setNn is discrete and finite, and has cardinality O(ns)
for some s ≥ d, the family is called an admissible mesh. An admissible mesh
with s = d is called optimal; see [6, 9]. If in (1) we have a sequence Cn instead
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of C, increasing at most polynomially with n, the mesh is called weakly
admissible [6]. Admissible and weakly admissible meshes are important
structures in multivariate polynomial approximation theory: for example, in
[6] it is shown that they are nearly optimal for least squares approximation,
and contain Fekete-like interpolation sets with a slowly increasing Lebesgue
constant. Computational techniques to extract approximate Fekete and Leja
points from polynomial meshes have been recently developed in [1, 2, 3,
15, 16], where the mesh cardinality control is an essential feature for the
effectiveness of the methods. Among the possible applications, we recall
that approximate Fekete points have been recently used in the numerical
PDEs context, see, e.g., [10, 18].

In the recent literature, some attention has been devoted to the con-
struction of admissible meshes for multidimensional compact sets. In [6,
Thm.5], it has been shown that any compact set which satisfies a Markov
polynomial inequality with exponent r has an admissible mesh with O(nrd)
cardinality. We recall that a Markov polynomial inequality is a polynomial
inequality of the form

‖∇p‖K ≤ Mnr‖p‖K , ∀n ∈ N, p ∈ P
d
n , (2)

where ‖∇p‖K = maxi ‖∂p/∂xi‖K , i = 1, . . . , d. A compact set that admits
an inequality like (2) is often termed a Markov compact.

On the other hand, the existence of optimal (or near-optimal) admissible
meshes has been proved constructively for several families of bidimensional
and multidimensional compacts, such as for example polygons and polyhe-
dra, euclidean balls, subanalytic sets, convex bodies and starlike domains
with smooth boundary; cf., [5, 9, 11, 14].

In this note we focus on three general classes of compact domains in the
bidimensional case (d = 2), namely cartesian graph domains, polar graph
domains (e.g., starlike domains), and domains with piecewise C2 boundary,
satysfying a Markov polynomial inequality with exponent r = 2. We prove
that they have admissible meshes with O(n3) cardinality, which is interme-
diate between optimality (s = 2) and the standard general construction by
Calvi and Levenberg (s = 4).

We begin by proving the following:

Proposition 1 Let K be a planar compact cartesian graph domain

K = {(x, y) : a ≤ x ≤ b , g1(x) ≤ y ≤ g2(x)} (3)

where g1 ≤ g2 are any two continuous functions defined in [a, b], or a planar
compact polar graph domain

K = {(x, y) = (x0 + ρ cos θ, y0 + ρ sin θ) : α ≤ θ ≤ β , r1(θ) ≤ ρ ≤ r2(θ)}
(4)

2



where (x0, y0) is any point, and 0 ≤ r1 ≤ r2 are any two continuous functions
defined in [α, β]. Moreover, assume that K satisfies a Markov polynomial
inequality with constant M and exponent 2.

Then, K has a norming set given by the union of O(n) curves and an
admissible mesh with O(n3) cardinality which lies on the norming curves.

Proof. By the arguments of [6, Thm.5], it is not difficult to show that K has
an admissible mesh with O(n4) points, which is a subset of a O(n2)×O(n2)
grid. Indeed, to be an admissible mesh with constant C = 1/(1 − λ), it is
sufficient that for any point P ∈ K there exists a point A of the mesh such
that

|P −A| ≤ δn =
2c

Mn2
, (5)

where 0 < c < c∗, λ = 4ce2c < 1, c∗ = 0.175... being the solution of the
equation 4te2t = 1.

We begin by considering a grid of equally spaced points, with suitable
O(1/n2) spacings in the projections of K on the cartesian axes. Take in
both directions a spacing smaller than δn/

√
2, so that (5) is satisfied by the

grid points. The compact K is now contained in the union of O(n2) vertical
strip segments.

On each strip, consider the “highest” and the “lowest” rectangle of the
grid which instersects K, fix a point of K in both, say (u, v) and (z, w),
and add to the mesh these two points together with the intersection points
of the vertical lines x = u and x = z with the horizontal lines of the grid
between y = w = g1(z) and y = v = g2(u) (observe that all such intersection
points belong necessarily to the graph domain K). The points obtained by
this construction clearly belong to a new (non equispaced) O(n2) × O(n2)
grid, say {(xi, yj)}, and form an admissible mesh for K, with constant C =
1/(1 − λ), since by construction they still satisfy property (5).

It is clear that the union of the segments {x = xi, g1(xi) ≤ y ≤ g2(xi)}
is a norming set for K, with the same constant C. Now, take for example
the Chebyshev points of degree mn on each segment, namely the points

{(xi, yik) = (xi, g2(xi)(1 + τk)/2 + g1(xi)(1 − τk)/2)}

where the {τk}, 1 ≤ k ≤ mn, are the zeros of Tmn(t), m > 1, in (−1, 1).
Since these points form an admissible mesh for the segment, with constant
1/ cos(π/2m), cf. [5], the union of the points of all the segments is then an
admissible mesh for K, say An, such that

‖p‖K ≤ 1

(1− λ) cos(π/2m)
‖p‖An

, ∀p ∈ P
2
n , (6)

with card(An) = O(n2)×mn = O(n3). Observe now that this mesh lies on
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the union of the mn curves

Γk = {(x, fk(x)) , x ∈ [a, b]} , fk(x) = g2(x)(1 + τk)/2 + g1(x)(1− τk)/2 ,
(7)

1 ≤ k ≤ mn, which thus form a norming set for K.
In the polar case, the proof is quite similar. We begin by considering,

instead of a rectangle, the smallest disk containing K. Then, we take a
suitably fine polar grid, where we have essentially to manage the diameter
of the grid curvilinear rectangles at the boundary of the disk, and proceed
exactly as above, where the role of the vertical lines is played by rays and
that of the horizontal lines by concentric circles.

Eventually, we get an admissible mesh of O(n4) points, which belong to
a new polar grid with O(n2) ray segments between r1(θ) and r2(θ). These
ray segments form a norming set for K. Taking the Chebyshev points of
degree mn on each segment, we construct an admissible mesh with O(n3)
cardinality, whose points lie on the set of norming curves ρ = rk(θ) =
r2(θ)(1 + τk)/2 + r1(θ)(1− τk)/2. �

Remark 1 Observe that a compact cartesian graph domain like (3) sat-
isfies a Markov inequality with exponent 2 if it is convex with nonempty
interior [17], i.e., g1 is a convex and g2 a concave function. Another suf-
ficient condition is that the functions g1 and g2 are Lipschitz continuous,
and g1(a) 6= g2(a), g1(b) 6= g2(b), since in this case the boundary of K is
locally the graph of a Lipschitz-continuous function, i.e., K is a Lipschitz
domain, and thus satisfies a uniform interior cone condition [8]. The same
holds true when g1(a) = g2(a) but g

′
1(a) 6= 0 or g′2(a) 6= 0, or g1(b) = g2(b)

but g′1(b) 6= 0 or g′2(b) 6= 0.
It is worth noticing, however, that the existence of a Markov polynomial

inequality is not necessary for a graph domain to possess an admissible
mesh. This has been shown by Example 3 in [9], where an admissible mesh
with cardinality O(n3) has been constructed in a cartesian graph domain
with an exponential cusp, that does not satisfy a Markov inequality for any
exponent.

When the conditions above are satisfied, our result improves that of
[9], in the case of planar graph domains with g1, g2 6∈ C4. Indeed, in [9]
it is proved that any planar graph domain with g1, g2 ∈ Ck possesses an
admissible mesh with O(n2+4/k) points.

In the polar case, sufficient conditions are the fact that the boundary
curve ρ = r(θ) is convex, or that the function r(θ) is C1 and the boundary
curve is regular (the tangent vector does not vanish and there are no cusps),
so that the domain is a Lipschitz domain [8].

Remark 2 The existence of a Markov polynomial inequality is not neces-
sary for a graph domain, to possess a norming set given by the union of O(n)

4



curves, and this can be proved with a reasoning similar to that developed
above. Indeed, consider a cartesian graph domain like (3), and any of the
segments I(z) = {(z, y) : g1(z) ≤ y ≤ g2(z)} for a fixed value of z ∈ [a, b].
The points An(z) = {(z, g2(z)(1 + τk)/2 + g1(z)(1 − τk)/2), 1 ≤ k ≤ mn}
form an admissible mesh for the segment, thus

⋃
z∈[a,b]An(z) is a norming

set for K with constant C = 1/ cos(π/2m), which concides with the union
of the mn curves (7).

The same observation applies in the polar case, considering the ray seg-
ments I(φ) = {(ρ, φ) : r1(φ) ≤ ρ ≤ r2(φ)} for a fixed value of φ ∈ [0, 2π], and
the points An(φ) = {(r2(φ)(1 + τk)/2 + r1(φ)(1 − τk)/2, φ), 1 ≤ k ≤ mn}.

2 Planar domains with piecewise C
2 boundary

In this section we show that admissible meshes with O(n3) cardinality can
be constructed, via polygonal approximation of the boundary, on any pla-
nar compact simply-connected domain whose boundary is a piecewise C2

generalized regular parametric curve. A preliminary version of this result in
the smooth case has been discussed in the unpublished thesis [13].

The proof is based on the perturbation result recently proved in [12],
which uses the notion of Hausdorff distance of two d-dimensional compact
sets, namely

δ(K,H) = inf {η > 0 : K ⊆ H +B∞[0, η] and H ⊆ K +B∞[0, η]}

where B∞[0, η] denotes the closed ball (in the max-norm) centered at 0 with
radius η.

For the reader’s convenience, we recall such a result in the real case.

Theorem 1 (see [12]) Let K ⊂ R
d satisfy a Markov polynomial inequality

with constant M and exponent r, cf. (2). Assume that there exists a compact
Kn, n ∈ N, such that the polynomial inequality

‖p‖Kn
≤ Cn ‖p‖Nn

, ∀p ∈ P
d
n (8)

is satisfied for a suitable finite subset Nn ⊂ Kn, and δ(K,Kn) ≤ en in the
Hausdorff distance δ, with

en = en(θ) =
θ

(1 + Cn)Mnr
(9)

for a fixed θ ∈ (0, θ∗/d), where θ∗ = 0.703 . . . solves the equation

t exp (t/2) = 1 . (10)

Consider a small perturbation of Nn, say Ñn ⊂ K, constructed by choosing
a point ξ̃ ∈ B∞[ξ, en] ∩K for every ξ ∈ Nn.
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Then, the following polynomial inequality holds

‖p‖K ≤ Cn

1− dθ exp (dθ/2)
‖p‖

Ñn

, ∀p ∈ P
d
n . (11)

This result has several applications. For example, it shows that (weakly)
admissible meshes are “stable” under small perturbations on Markov com-
pacts (in this case one takes Kn ≡ K). On the other hand, it provides
a tool for constructing a (weakly) admissible mesh on a Markov compact
by suitable “simpler” approximating compacts. This is just the approach
pursued in the following:

Proposition 2 Let K be a planar simply-connected compact domain (the
closure of a bounded simply-connected open set in R

2), with boundary

∂K = γ([a, b]) , (12)

where γ(t) = (x(y), y(t)), t ∈ [a, b], is a closed (continuous) piecewise C2

parametric curve, simple and generalized regular, i.e., it has no multiple
points, no singular points (points where the tangent vectors vanish) and no
cusps (points where the left and right tangent vectors have opposite direc-
tions).

Then, K has an admissible mesh with O(n3) cardinality.

Proof. For the relevant geometric notions concerning the boundary curve
(generalized regularity, ...), we refer the reader to [4] and references therein.
We observe thatK satisfies a Markov polynomial inequality with exponent 2,
since it is a Lipschitz domain, the boundary curve being simple and regular
(cf. [8]).

Now, consider a piecewise linear interpolation with stepsize h of γ, made
on each subinterval of the parameter interval determined by a pair of con-
secutive breakpoints (the finite number of points where C2 regularity does
not hold but left and right first and second derivatives exist). Let us term
γh(t), t ∈ [a, b], the corresponding polygonal path. The global uniform error
of such an approximation, is

‖γ − γh‖∞ = ε(h) = O(h2) .

We recall that by triangulation and finite union, any polygon has an admis-
sible mesh with the same constant of a triangle, namely C = 1/ cos2(π/2m),
and cardinality mn2 times the number of triangles; cf. [5, 7]. For example,
for m = 2 the constant is C = 2. Hence we have ε(h) ≤ en, where en
is defined in (9) with Cn ≡ C = 1/ cos2(π/2m) and r = 2, by a stepsize
h = O(1/n). This means that the interpolating polygonal path γh is formed
by O(n) linear segments.

6



Consider the polygon Kn whose boundary is given by the polygonal
path γh. Using the fact that ‖γ′ − γ′h‖∞ = O(h) (the derivative of γh being
piecewise constant), by a slight modification of the arguments in [4], one
can prove that the polygonal path remains simple, provided that h ≤ h∗

(for a suitable h∗ which is independent of n). Then the polygon Kn is a
simple polygon with µ = O(n) sides, and can be splitted into ν = µ − 2
triangles {Tj}, K =

⋃
j Tj . Since, as already recalled above, any triangle

has an admissible mesh with mn2 points, say Aj,n, we eventually get an
admissible mesh for the polygon Kn, say Nn =

⋃
j Aj,n, with card(Nn) =

νmn2 = O(n3) and constant C = 1/ cos2(π/2m), m > 1.
By construction, the symmetric set difference K△Kn is covered by the

union of the segments sγ(t) + (1− s)γh(t), s ∈ [0, 1], t ∈ [a, b], whose length
is not greater than en, i.e., any point of K△Kn is at a distance not greater
than en from a point of ∂K, which implies that δ(K,Kn) ≤ en. Applying
Theorem 1 we can then construct, by a small perturbation of the possible
points of Nn that are not in K, an admissible mesh Ñn for K such that

‖p‖K ≤ 1

(1− 2θ exp(θ)) cos2(π/2m)
‖p‖

Ñn

, ∀p ∈ P
2
n , (13)

where card(Ñn) ≤ card(Nn) = O(n3). �

Remark 3 In the recent literature, the notion of weakly admissible mesh
play also a relevant role. The definition is like that of an admissible mesh,
but instead of a constant C in (1) a sequence of constants Cn is allowed,
provided that these increase at most polynomially with n.

In many cases weakly admissible meshes are known with cardinality
O(nd) and sequence of constants increasing logarithmically. For example,
since the Chebyshev-Lobatto points of degree are a weakly admissible mesh
for the interval with Cn = O(log n), we could restate Proposition 1 in terms
of existence of a weakly admissible mesh for a graph domain, with constants
C ′
n = O(log n).
On the other hand, in the case of Proposition 2 resorting to weakly

admissible meshes is not convenient. In fact, it is known (again by poly-
gon triangulation) that any polygon has a weakly admissible mesh with
Cn = O(log2 n) (cf. [7]), but then these would enter the definition (9) of en,
leading to a stepsize for the piecewise linear approximation of the bound-
ary h = O(1/(n log n)), and eventually to a cardinality O(n3 log n) for the
polynomial mesh.

Remark 4 The assumptions on the boundary curve ensure that the domain
is a Lipschitz domain (which satisfies a uniform interior cone condition and
thus a Markov polynomial inequality with exponent 2) and that the approx-
imating polygonal path is simple. However, these conditions can hold also
in the presence of a nonregular boundary.
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Consider for example the cardioid whose boundary is given by the para-
metric curve (x(t), y(t)) = ((1− cos(t)) cos(t), (1− cos(t)) sin(t)), t ∈ [0, 2π].
This domain clearly satisfies an interior cone condition. Moreover, any piece-
wise linear interpolating path is simple, so that following the construction
in the proof of Proposition 2, by the same perturbation argument we obtain
an admissible mesh with O(n3) cardinality, even though the boundary curve
is singular at the origin.
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