
Meshless cubature by Green’s formula ∗

Alvise Sommariva and Marco Vianello †

Department of Pure and Applied Mathematics
University of Padova

via Belzoni 7, 35131 - Padova (Italy)

Abstract

By coupling the flexibility of Thin-Plate Splines interpolation with
Green’s integral formula, we obtain a meshless cubature method from
scattered samples of small/moderate size, on convex as well as nonconvex
and even multiply connected polygonal domains.

2000 AMS subject classification: 65D05, 65D32.

1 Introduction.

Green’s integral formula [8, 1], which in one of its formulations is written as
∫

Ω

f(P) dP =

∮

∂Ω

F(P) dy , f =
∂F
∂x

, P = (x, y) , (1)

gives in principle an appealing tool for numerical cubature, since it transforms a
2-dimensional into a 1-dimensional problem. Its practical use, however, requires
the knowledge of a primitive of the integrand, which seems to restrict the field
of application to a subclass of analytically known functions. In this paper,
we try to exploit the potentialities of Green’s formula via RBF (Radial Basis
Functions) interpolation, obtaining simultaneously the capability to work with
scattered samples and to manage integration on “difficult” geometries, in a
meshless fashion.

The general basic idea is simple. Given an interpolation/approximation of a
continuous function f on a bounded bivariate domain Ω with piecewise smooth
boundary, in some function space span(φ1, . . . , φn),

n
∑

j=1

cj φj(P) = s(P) ≈ f(P) , (2)

∗Work supported by the “ex-60%” funds of the University of Padova, by the INdAM
GNCS, and by the ARC MASCOS (research assistantship of A. Sommariva at the School of
Mathematics, UNSW Sydney, Australia, 2004-2005).

†Corresponding author: e-mail: marcov@math.unipd.it

1

we can approximate the integral of f on Ω via Green’s formula as

∫

Ω

f(P) dP ≈
∫

Ω

s(P) dP =
n

∑

j=1

cj

∫

Ω

φj(P) dP =
n

∑

j=1

cj

∮

∂Ω

Φj(P) dy , (3)

provided that the primitives Φj(P) =
∫

φj(P) dx are explicitly computable and
easily integrated along the boundary ∂Ω.

Dealing with scattered data, polynomials (which would have this latter fea-
tures) are unsuitable, whereas piecewise polynomial functions require the gen-
eration and managing of a mesh. In order to obtain a truly meshless cubature
formula, RBF, MLS (Moving Least Squares) and PU (Partition of Unity) meth-
ods, see e.g. [16], are potentially attractive. However, typical MLS and PU
basis functions seem difficult to integrate explicitly, especially if a second level
primitive along the boundary is seeked. On the contrary, first level primitives of
most classical radial basis functions are easily computed, and with TPS (Thin-
Plate Splines, which are a good choice for cubature, cf. [14]), even second level
primitives along piecewise linear boundaries (arbitrary polygons) are explicitly
computable via symbolic integration tools.

In the next section we give a brief survey on cubature by RBF, and in section
3 we show how to construct TPS cubature formulas via Green’s formula and
symbolic integration. In section 4, finally, we test TPS cubature with scattered
data on nonconvex polygons, and we show how to improve efficiency by data
splitting.

2 A survey of RBF cubature.

In a recent paper [14], we ventured the little explored territory of numerical
cubature from scattered data by RBF (this approach has then been extended
to integration over the sphere in [15]). Indeed, the problem itself of cubature
on scattered points has received much less attention in the numerical literature,
with respect to construction of cubature formulas on nodes with a predefined
distribution; see, e.g., [3, 6, 10]. On the other hand, RBF give a well studied
and effective tool for the reconstruction of functions from scattered data: we
refer the reader to the recent monographs [5, 9, 16] and to the survey papers
[4, 13].

Consider the problem of evaluating the integral of a continuous function f
on a bivariate compact domain Ω

I(f) =

∫

Ω

f(P) dP , Ω ⊂ R
2

, (4)

from a scattered sample of size n

f = {f(Pi)} at X = {Pi} = {(xi, yi)} ⊂ Ω , i = 1, . . . , n . (5)

As it is well-known, given a suitable radial function φ(r), φ : [0, +∞) → R, we
can construct the RBF interpolant s(P) in the form (2), where s(Pi) = f(Pi),

2

i = 1, . . . , n, as a linear combination of (scaled) translates of φ(| · |)

φj(P) = φj(P ; δ) = φ(|P − Pj |/δ) , (6)

by solving the linear system

Ac = f , A = AX,φ = [φj(Pi)] , 1 ≤ i, j ≤ n , (7)

in the case that the function φ is positive definite, i.e., the collocation matrix
A is positive definite for every occurrence of the interpolation nodes. In (6),

| · | denotes the euclidean norm in R
2
, and δ a scaling parameter (which can be

related to the data density).
When the radial function is only conditionally positive definite (of order

m + 1), like e.g.

• Duchon’s Thin-Plate Splines (TPS): φ(r) = r2 log (r)

(which are a good choice for cubature, cf. [14]), as it is well known the RBF
interpolant is seeked in the form

s(P) =

n
∑

j=1

cj φj(P) + π(P) , (8)

where π ∈ P
2
m is a suitable bivariate polynomial of degree ≤ m (m = 1 for TPS).

The coefficients of the RBF and of the polynomial term are then obtained by
solving the augmented system of dimension n + µ, µ = (m + 1)(m + 2)/2,

AC = F , with A =

[

A B
BT 0

]

, B = [πk(Pi)] ,

C =

[

c

d

]

, F =

[

f

0

]

, (9)

cf. (5), where {π1, . . . , πµ} is a basis of P
2
m.

An interpolatory cubature formula is immediately obtained by

I(f) ≈ I(s) =

n
∑

j=1

cj I(φj) + I(π) , (10)

which can be rewritten in vector form as

I(s) = 〈C, I〉 , I =

[

IR

Iπ

]

with IR = {I(φj)} , Iπ = {I(πk)} . (11)

Recalling that C = A−1
F and the symmetry of the system matrix A, we get

the usual form of weighted sum of the sampling values (here 〈· , ·〉 denotes the
scalar product in the corresponding dimension)

I(s) = 〈A−1
F, I〉 = 〈A−1

I,F〉 = 〈W,F〉 = 〈w, f〉 =

n
∑

j=1

wj fj , (12)

3

where the weights are obtained as solution of the linear system

AW = I , W =

[

w

z

]

(weights equations) . (13)

The derivation of the cubature formula in the positive definite case is completely
analogous, with small substituting capital letters for the vectors, and the original
collocation matrix A substituting the augmented matrix A.

In [14], we gave some convergence and stability estimates for RBF cuba-
ture, where two basic parameters in RBF interpolation appear, the fill distance

(the radius of the largest inner empty disk) and the separation distance of the
cubature points

• fill distance: h = maxP∈Ω min1≤j≤n |P − Pj |

• separation distance: q = mini6=j {|Pi − Pj |} ≤ 2h

Here we report only one of such estimates, which tries to take into account also
the effect of the errors made in evaluating the integrals of the RBF (we use Ĩ ≈ I

and compute perturbed weights W̃ and w̃ by (13)), as well as of possible noise
in the sample, f̃ ≈ f . Such an estimate is

|I(f) − 〈w̃, f̃〉| ≤ |I(f) − I(s)| + |〈W − W̃,F〉| + |〈W̃,F− F̃〉|

≤
√

meas(Ω) ‖f − s‖L2(Ω) + ‖A−1‖2 ‖f‖2 ‖I − Ĩ‖2 + ‖f − f̃‖∞ ‖w̃‖1

= O
(

√

Fφ(h)

)

+ O
(

1

Gφ(q)

)

‖I − Ĩ‖2 + ‖f − f̃‖∞
n

∑

j=1

|w̃j | , (14)

where Fφ(h) ↓ 0 as h → 0 and Gφ(q) ↓ 0 as q → 0, and thus as h → 0, see
[5, 9, 16] (in the positive definite case, (14) holds again with small substituting
capital letters, and A substituting A). We recall that, technically, this estimate
is valid for functions belonging to the so-called “native space” of the radial func-
tion φ. A more complete error analysis, which discusses also the connection of
RBF cubature formulas with optimal recovery in the corresponding reproducing
kernel Hilbert spaces, can be found in [14].

The simultaneous appearance of the terms
√

Fφ(h) ↓ 0 and 1/Gφ(q) ↑ +∞
in (14) is an occurrence, in the context of numerical cubature, of the well-known
“uncertainty principle” in RBF interpolation, which can be summarized directly
with R. Schaback’s words [12]: “There is no case known where the errors and

the sensitivity are both reasonably small”. In practice, however, there are two
distinct situations: for smooth RBF, like Gaussians and (inverse) multiquadrics,
the rates of Fφ(h) and Gφ(q) are both exponential , while for less regular RBF,
like TPS, the rates are both algebraic.

The situation seems hopeless concerning the use of smooth RBF like Gaus-
sians for numerical cubature, in view of the expected exponential magnification
of the integration errors, especially with scattered data where typically q � h.
However, the numerical experiments in [14] have shown that (14) is largely an

4

Table 1: RBF cubature with sets of n = 50 and n = 100 uniform random points
in [0, 1]2: spectral norm of the inverses of the collocation matrices and 1-norm of
the computed weights vectors (average values on 50 independent trials, rounded
to the first significant digit).

] of rnd pts norms MQ IMQ G W2 TPS

n = 50 ‖A−1‖2 2E+12 3E+11 5E+15 5E+03 6E+03
‖w̃‖1 7E+01 9E+01 3E+02 2E+00 1E+00

n = 100 ‖A−1‖2 2E+16 6E+15 3E+17 5E+04 8E+03
‖w̃‖1 8E+02 5E+02 1E+03 2E+00 1E+00

overestimate. In any case, it turns out that smooth RBF are much more sensi-
ble to integration errors, increase of data density and perturbations in the data,
while TPS give reasonably accurate and much more stable cubature formulas.
Moreover, the quality of cubature by TPS is weakly sensible to the scaling
parameter, a phenomenon which can be related to the well-known scale inde-
pendence of the condition number of interpolation by polyharmonic splines (cf.
[9]). Clearly, this property makes TPS cubature very attractive for automatic
integration, since it avoids the complication of managing/optimizing the scaling
parameter.

In order to appreciate the possible magnitude of the important quantities
related to stability of the cubature formulas, in Table 1 we report from [14]
the values of ‖A−1‖2 (where A is the augmented collocation matrix for con-
ditionally positive definite φ and A = A in the positive definite case), and
of ‖w̃‖1 =

∑n
j=1 |w̃j |, for (inverse) multiquadrics (MQ and IMQ), Gaussians

(G), Wendland’s compactly supported (W2) and thin-plate splines (TPS). For
simplicity, we consider only unscaled RBF (δ = 1).

Now, even using TPS or W2 for the construction of cubature formulas, it
is intuitable from the table above that the numerical approximations of the
integrals of the RBF, Ĩ(φj) ≈ I(φj) (and of the polynomial part for TPS) have
to be computed with high accuracy, since a substantial loss of precision occurs.
Since the intensive use of a numerical integrator at high precision can become a
bottleneck of the implementation, in [14] we have derived explicit formulas for
the integrals of TPS and W2 on the unit square Ω = [0, 1]2 (which we do not
report for brevity), by exploiting radial symmetry and symbolic integration.

Albeit such formulas could be extended from the square to general convex
polygons, in the next section we show that with TPS a much simpler approach
is given by Green’s formula, which leads naturally via symbolic integration to
TPS cubature formulas on arbitrary polygons .

5

3 Implementing Green’s formula for TPS.

We focus now on the construction of cubature formulas by TPS, and in particular
on the evaluation of the integrals of the basis functions that are required in the
weights equations (13). All the symbolic integrations below have been performed
by the effective online integrator at [17].

From (2)-(6), it is clear that the core of the Green’s formula approach is
given by computing

∫

Ω

φ(|P − Q|) dP =

∮

∂Ω

(
∫

φ(|P − Q|) dx

)

dy , P = (x, y) , Q = (u, v) ,

(15)
as a function of the point Q. We have put the scaling parameter δ = 1 for nota-
tion simplicity, but with TPS, as already observed, this is not really restrictive.
In the case of TPS the x-primitive above is (since φ(r) = r2 log r)

ΦQ(P) :=

∫

φ(|P − Q|) dx =
1

9
(u−x)3+

2

3
(u−x)(v−y)2−2

3
(v−y)3 arctan

(

u − x

v − y

)

−1

6
(u − x)((u − x)2 + 3(v − y)2) log

(

(u − x)2 + (v − y)2
)

. (16)

Now, suppose that the domain Ω is a polygon (convex or nonconvex, but sim-
ply connected), whose boundary is described counterclockwise by a sequence of
vertices Vj = (ξj , νj), j = 1, . . . , p with p ≥ 3,

∂Ω = [V1, V2] ∪ [V2, V3] ∪ . . . ∪ [Vp, Vp+1] , Vp+1 = V1 . (17)

Then, we get the integral (15) as a sum of line integrals along the sides

∫

Ω

φ(|P − Q|) dP =

p
∑

j=1

∫

[Vj ,Vj+1]

ΦQ(P) dy

=
∑

ξj 6=ξj+1

∆νj

∆ξj

∫ ξj+1

ξj

ΦQ

(

x,
∆νj

∆ξj

x + νj

)

dx +
∑

ξj=ξj+1

∫ νj+1

νj

ΦQ(ξj , y) dy ,

(18)
where ∆ denotes the forward difference operator. Assume that the side [Vj , Vj+1]
is not parallel to the y-axis. By putting u− x = t, so that v − y = at + b along
the side for a = −∆νj/∆ξj and b = νj − v + (u − ξj)∆νj/∆ξj , the problem is
eventually reduced to computing explicitly a second level primitive like

∫

ΦQ(u − t, v − at − b) dt = A(t) + B(t) + C(t) , (19)

where by [17] we get

A(t) =

∫
(

1

9
t3 +

2

3
t(at + b)2

)

dt =
t2

9

(

3b2 + 4abt + (6a2 + 1)
t2

4

)

, (20)

6

B(t) = −2

3

∫

(at + b)3 arctan

(

t

at + b

)

dt =

4
∑

i=1

Bi(t) , (21)

with

B1(t) = − t

6
(4b3 + 6ab2t + 4a2bt2 + a3t3) arctan

(

t

at + b

)

,

B2(t) =
abt

18(1 + a2)3
(3b2(6 + 3a2 + a4) + 3ab(2 + 3a2 + a4)t + a2(1 + a2)2t2) ,

B3(t) = − b4(a2 − 1)

3(1 + a2)4
log (b2 + 2abt + (1 + a2)t2) ,

B4(t) = − ab4

6(1 + a2)4
(10 + 5a2 + 4a4 + a6) arctan

(

ab + (1 + a2)t

b

)

,

and finally

C(t) = −1

6

∫

t(t2 + 3(at + b)2) log
(

t2 + (at + b)2
)

dt =

4
∑

i=1

Ci(t) , (22)

with

C1(t) =
2
√

3ab4

(1 + 3a2)3
arctan

(

3ab + (1 + 3a2)t√
3b

)

,

C2(t) = −t

(

a(5 + 3a2)b3

3(1 + 3a2)2
+

(1 + a2)b2

6(1 + 3a2)
t +

5ab

36
t2 +

(1 + 3a2)

38
t3

)

,

C3(t) =
9b4(−1 + 6a2 + 3a4)

13(1 + 3a2)3
log (3b2 + 6abt + (1 + 3a2)t2) ,

C4(t) = − t2

24
(6b2 + 8abt + (1 + 3a2)t2) log (3b2 + 6abt + (1 + 3a2)t2) .

When the side [Vj , Vj+1] is parallel to the y-axis (i.e., ξj = ξj+1, cf. (18)),
the problem is completely analogous, since by the substitution v − y = t it
is reduced to compute symbolically

∫

ΦQ(ξj , v − t) dt (we do not report the
formulas, for brevity). Observe also that when the side is parallel to the x-axis,
the corresponding integral in (18) is clearly null, since ∆νj = 0. We do not even
describe integration of the polynomial part in (10), which is trivial via Green’s
formula.

Remark 3.1 The TPS cubature formula can be extended easily to multiply

connected domains, via the corresponding extension of Green’s theorem. Indeed,
assume that the boundary of Ω be the union of an external boundary Γext with a
finite number of internal boundaries Γint

k , k = 1, . . . , m (describing holes). Then
we have

∫

Ω

φ(|P − Q|) dP =

∮

Γext
ΦQ(P) dy −

m
∑

k=1

∮

Γint
k

ΦQ(P) dy , (23)

where all line integrals are taken counterclockwise and can be computed as in
(18)-(22).

7

Remark 3.2 It is worth observing that the cubature formulas above can be
used also when f has been sampled in a larger domain, {Pj} ⊂ Ω′, Ω′ ⊇ Ω. This
could be of some interest in applications, for example when, given a sample of
a density function in some region, one is interested in evaluating the “mass” of
a specific subregion. Moreover, albeit obvious it is worth stressing the following
fact, which can be very useful in practical applications: when one has samples
of different functions at a fixed set of scattered points on a polygonal domain,
the weights of TPS cubature can be computed “a priori” once and for all. This
could be important, for example, in the presence of a fixed net of sampling
points for a density function which varies in time, and the problem is that of
computing the integral of the density on the given domain at several different
times.

4 Numerical results.

In this section we present several numerical tests of cubature from scattered data
by the formulas obtained in section 3 (TPS-Green cubature). First, we show
the behavior of the formulas by three test functions on two test polygons with
“difficult” geometry. Then, we show how to improve efficiency of TPS-Green
cubature by splitting the data into rectangular subcells.

All the tests have been done in Matlab (version 6.1), with an Intel-Centrino
1.4 processor and 512 Mb RAM.

4.1 TPS-Green cubature over difficult geometries.

We have considered the following test functions

f1(x, y) = exp (x − y) , f2(x, y) = exp (5(x − y)) ,

f3(x, y) =
√

(x − 0.5)2 + (y − 0.5)2 , (24)

and the two nonconvex polygons in Figure 1 (both with area 1/2). Observe that
f1 and f2 are C∞ (with f2 varying more rapidly), whereas f3 has a singularity
of the gradient in (0.5, 0.5).

In Tables 2-3 we show the errors of TPS interpolation (in the max norm
on a suitable control grid) and of TPS-Green cubature, corresponding to a
sequence of scattered samples obtained by the uniform random distribution.
The displayed values are the averages on 50 independent trials. In addition,
we report also the error of Monte Carlo (MC) integration on the same data.
For TPS interpolation and cubature equations (cf. (9)-(13)) we have used the
standard direct solver of Matlab (ultimately Gaussian elimination).

The reference integrals have been computed by the Matlab dblquad function
(adaptive cubature routine) for the integrand multiplied by the characteristic
function of the domain (which can be implemented via the Matlab inpolygon

function, cf. [11]). This works, however, only by a suitable splitting of the
enclosing square into subsquares. In fact, the procedure applied directly to

8

the whole enclosing square gives unsatisfactory results: even with an input
tolerance of 1E-10 for dblquad, one obtains cubature errors of 2E-03, 2E-02,
5E-04 (polygon in Figure 1-left) and of 4E-02, 1E+00, 2E-02 (polygon in Figure
1-right), for f1, f2, f3, respectively. The same happens trying to compute simply
the polygons area by integrating the constant 1. This unreliability seems to be
a consequence of the shape of the polygons, which causes manifest difficulties
to the dblquad function (release 1.13).

It is worth stressing that our Matlab implementation of TPS-Green cubature
is truly meshless, since it needs only the scattered sample and the sequence of
vertices of the polygon, in counterclockwise order. This works even in the case
of the polygon in Figure 1-right, whose boundary has two “double” points.

Observe that TPS-Green cubature is quite accurate, with errors that are
up to three orders of magnitude smaller than those of TPS interpolation, and
about two orders of magnitude below those of Monte Carlo integration. The
function f2 is surprisingly the “hardest”, whereas f3 is integrated satisfactorily
in spite of the singularity. Higher accuracy of TPS cubature with respect to
interpolation is natural (as with other interpolatory formulas), and has already
been mentioned in [14]. Higher accuracy with respect to Monte Carlo is also
remarkable, especially thinking to practical applications where sampling is very
costly or even cannot be refined, and thus one has to compute integrals from
small/moderate size samples.

In Table 4 we display two important quantities related to stability of cubature
by RBF, cf. estimate (14): the spectral norm of the inverse of the collocation
matrix, and the sum of the weights absolute values. It is worth recalling (cf.
[14]) that the weights are not all positive, but with TPS the negative ones are
few and “small”. Indeed, the sum of the weights absolute values remains always
around 0.6, i.e. close to the area of the corresponding polygon which is 0.5 in
the examples.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Two nonconvex polygons with a sample of 800 random points.

9

Table 2: Errors of TPS interpolation and TPS-Green compared to Monte Carlo
cubature with n = 100, 200, 400, 800 uniform random points on the nonconvex
polygon in Fig. 1-left (average values on 50 independent trials, rounded to the
1st significant digit).

function formula 100 pts 200 pts 400 pts 800 pts
f1 TPS intp 5E-02 3E-02 2E-02 1E-02

TPS Green 1E-04 4E-05 2E-05 8E-06
MC 1E-02 9E-03 8E-03 5E-03

f2 TPS intp 8E+00 5E+00 3E+00 1E+00
TPS Green 2E-02 8E-03 3E-03 9E-04

MC 2E-01 1E-01 9E-02 7E-02
f3 TPS intp 4E-02 2E-02 1E-02 8E-03

TPS Green 2E-04 7E-05 2E-05 6E-06
MC 4E-03 3E-03 2E-03 2E-03

Table 3: As in Table 2 for the nonconvex polygon in Fig. 1-right.

function formula 100 pts 200 pts 400 pts 800 pts
f1 TPS intp 1E-01 5E-02 3E-02 2E-02

TPS Green 3E-04 7E-05 2E-05 1E-05
MC 2E-02 1E-02 7E-03 6E-03

f2 TPS intp 2E+01 2E+01 2E+01 2E+01
TPS Green 2E-02 7E-03 4E-03 8E-04

MC 4E-01 4E-01 2E-01 2E-01
f3 TPS intp 5E-02 2E-02 2E-02 9E-03

TPS Green 2E-04 8E-05 3E-05 9E-06
MC 6E-03 5E-03 3E-03 2E-03

Table 4: TPS-Green cubature with n = 100, 200, 400, 800 uniform random
points on the nonconvex polygons in Fig. 1: spectral norm of the inverses of
the collocation matrices and 1-norm of the computed weights vectors (average
values on 50 independent trials, rounded to the 1st significant digit).

polygon norms 100 pts 200 pts 400 pts 800 pts

Fig.1-left ‖A−1‖2 2E+05 1E+06 3E+06 2E+07
‖w̃‖1 6E-01 6E-01 6E-01 6E-01

Fig.1-right ‖A−1‖2 2E+05 1E+06 2E+06 2E+07
‖w̃‖1 6E-01 6E-01 6E-01 6E-01

4.2 Improving efficiency by data splitting.

Our tests with TPS-Green cubature have shown that it provides a flexible,
reasonably accurate and stable meshless method, which gives good results even
with relatively small scattered samples (say a size of the hundreds of points).

10

Already with “moderate” size samples (say a size of the thousands), however,
we face the classical complexity problem of globally supported RBF with direct
solvers.

Dealing with interpolation, a number of fast methods have been developed
to accelerate the solution of the collocation equations, typically within the frame
of iterative solvers; cf., e.g., [5, 16] and references therein. In the case of numer-
ical cubature on polygons, however, there is a simple alternative for improving
efficiency, still using a direct solver. Due to additivity of the integral, we can
split the polygonal domain into subdomains, obtained by subdividing the least
enclosing rectangle into non-overlapping rectangular subcells and then intersect-
ing each subcell with the domain. This entails a splitting of data among the
corresponding polygonal subdomains . The integral on each subdomain can be
computed with TPS-Green cubature, where each local system of weights equa-
tions can be much smaller than the original global one, depending on the number
of subcells, the distribution of the sampling nodes and the shape of the domain.

This approach can be even improved with a little additional cost, by using
not only the nodes of a subcell for computing the weights pertaining to the
corresponding subpolygon, but also those belonging to a slightly larger sub-
cell (overlap approach: the rectangular subcell sides are expanded by a small
percentage). In such a way we can partially recover the information lost with
data splitting, for example because we reduce the effect of boundaries (cf. [7]).
This is reminiscent of a well-known domain decomposition method for RBF
interpolation [2], but without the nontrivial complication of interfacing the ap-
proximations.

All the procedure is simple to implement in Matlab, by resorting to the
already quoted function inpolygon and to another computational geometry
tool within the Mapping Toolbox [11], polybool (a function which computes the
vertices of polygons intersections). In Tables 5-6 we show the behavior of TPS-
Green cubature with the data splitting technique just described, correspondingly
to subdivisions of the least enclosing square for the polygon in Figure 1-left into
4, 9 and 16 equal subsquares, with and without overlap. Overlap percentages
refer to the corresponding expansion of the subsquares side. The sample consists
of 3000 points, generated with the uniform random distribution.

Observe that with no splitting, the bulk of the computational process is
clearly given by the construction and solution of the weights equations. When
the number of subsquares increases this cost decreases, but not quadratically
as one could expect in principle, also due to the effect of the original polygon
shape in the nonuniform distribution of the nodes among the subcells. In fact,
if the splitting produces p subpolygons Ωi containing ni nodes respectively,
i = 1, . . . , p, with n1 + . . . + np = n, the speed-up with respect to the global
construction is roughly given by that of the Gaussian elimination process

speed-up for the weights ≈ n3

∑p
i=1 n3

i

,

which is less than p2 (the equality holds when the denominator is minimum, i.e.
with ni = n/p for every i).

11

The cost of integration of the radial basis functions, which is roughly pro-
portional to the average number of sides of a subpolygon, is negligible with
coarse splittings, and in any case is quite stable compared to the other costs.
The cost of the geometrical part (managing of subpolygons) seems to increase
linearly with the number of subsquares, as somehow expected. On the other
hand, too fine splittings would cause a severe loss of precision, for example when
subpolygons begin to appear that do not contain nodes of the sample. These
observations suggest that there is an “optimal” splitting, which minimizes CPU
time at a given error tolerance. We have not been able to perform further sub-
divisions, since the release of the polybool function at our disposal (release
1.3) gives wrong results when the subcells become too small (e.g., already with
25 subsquares in the example). This bug should have been eliminated in more
recent releases of the Mapping Toolbox, see [11].

In any case the cubature errors and total timings show that with a suitable
number of subsquares and using a modest overlap, we get an approximation
close to and often even better than that of the global method, with a much

smaller computational cost . For example, with 9 and 16 subsquares, and 10%
overlap, we get speed-ups of about 11 and 16 times, respectively.

Table 5: Errors of TPS-Green cubature with a sample of 3000 uniform random
points on the nonconvex polygon in Fig. 1-left, by splitting into subsquares,
with and without overlap.

subsqs overlap f1 f2 f3

1 2E-07 3E-05 1E-06
0% 1E-06 8E-05 6E-06

4 10% 8E-08 2E-05 7E-07
20% 3E-08 4E-06 8E-07
0% 1E-06 4E-05 3E-06

9 10% 2E-07 3E-05 3E-07
20% 5E-08 1E-06 7E-07
0% 3E-06 4E-05 8E-06

16 10% 2E-07 1E-04 7E-08
20% 2E-07 4E-05 5E-07

References

[1] T.M. Apostol, Calculus , vol. II, 2nd edition, Blaisdell, 1969.

[2] R.K. Beatson, W.A. Light and S. Billings, Fast solution of the radial basis

function interpolation equations: domain decomposition methods . SIAM J.
Sci. Comput. 22 (2000), 1717–1740.

[3] A.Yu. Bezhaev, Cubature formulae on scattered meshes , Soviet J. Numer.
Anal. Math. Modelling 6 (1991), 95–106.

12

Table 6: Partial and total CPU times (seconds) of TPS-Green cubature for
the example in Table 5: construction and solution of the weights equations,
cubature of the RBF, managing of subpolygons.

subsqs overlap weights basis cub geometry tot
1 22.68 0.20 0.00 22.88

0% 3.14 0.14 0.08 3.36
4 10% 3.74 0.15 0.08 3.97

20% 4.40 0.16 0.09 4.65
0% 1.47 0.15 0.16 1.88

9 10% 1.75 0.16 0.16 2.07
20% 2.11 0.18 0.16 2.45
0% 0.82 0.12 0.30 1.24

16 10% 0.99 0.12 0.30 1.41
20% 1.19 0.13 0.30 1.62

[4] M.D. Buhmann, Radial basis functions , Acta Numer. 9 (2000), 1–38.

[5] M.D. Buhmann, Radial Basis Functions: Theory and Implementation,
Cambridge Monographs on Applied and Computational Mathematics, vol.
12, Cambridge University Press, 2003.

[6] R. Cools and D. Laurie (Eds.), Numerical evaluation of integrals , J. Com-
put. Appl. Math. 112 (1999), no. 1-2.

[7] B. Fornberg, T.A. Driscoll, G. Wright and R. Charles, Observations on the

behavior of radial basis function approximations near boundaries , Comput.
Math. Appl. 43 (2002), 473–490.

[8] G. Green, An Essay on the Application of Mathematical Analysis to the

Theories of Electricity and Magnetism, Nottingham, 1828.

[9] A. Iske, Multiresolution Methods in Scattered Data Modelling , Lecture
Notes in Computational Science and Engineering, vol. 37, Springer, 2004.

[10] D. Levin, Stable integration rules with scattered integration points . Numer-
ical evaluation of integrals. J. Comput. Appl. Math. 112 (1999), 181-187.

[11] The MathWorks, MATLAB Documentation Set , 2006 version (available
online at http://www.mathworks.com).

[12] R. Schaback, Error estimates and condition numbers for radial basis func-

tion interpolation, Adv. Comput. Math. 3 (1995), 251-264.

[13] R. Schaback and H. Wendland, Kernel Techniques: From Machine Learning

to Meshless Methods , Acta Numer., 2006, to appear.

[14] A. Sommariva and M. Vianello, Numerical cubature on scattered data by

radial basis functions , Computing 76 (2005), 295-310.

13

[15] A. Sommariva and R. Womersley, Integration by RBF over the sphere,
2005, submitted (preprint UNSW AMR05/17, available online at
http://www.maths.unsw.edu.au).

[16] H. Wendland, Scattered Data Approximation, Cambridge Monographs on
Applied and Computational Mathematics, vol. 17, Cambridge University
Press, 2005.

[17] Wolfram Research, Inc., The Wolfram Integrator , 2005 version (available
online at http://integrals.wolfram.com).

14

