
Homogenization of composite materials reinforced

with unidirectional fibres with complex

curvilinear cross section: a virtual element

approach

E. Artioli 1, G. Elefante 2 A. Sommariva2 and M. Vianello 2

1 Engineering Department “Enzo Ferrari”

University of Modena and Reggio Emilia

edoardo.artioli@unimore.it
2 Department of Mathematics “Tullio Levi-Civita”

University of Padova

{elefante, alvise, marcov}@math.unipd.it

June 3, 2024

Abstract

The paper presents an augmented curvilinear virtual element method
to determine homogenized in-plane shear material moduli of long-fibre
reinforced composites in the framework of asymptotic homogenization
method. The new virtual element combine an exact representation of the
curvilinear computational geometry for complex fibre cross section shapes
through an innovative two-dimensional cubature suite for NURBS-like
polygonal domains. A selection of representative numerical tests supports
the accuracy and efficiency of the proposed approach for both doubly
periodic and random fibre arrangement with matrix domain.
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1 Introduction

The use of composite materials for engineering applications is a continuously
broadening field, due to their high performances under several points of view.
Many are in fact the advantages offered by such materials, as for instance lighter
weight, the ability to tailor layup for optimum strength and stiffness, improved
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fatigue life, corrosion resistance, and, through good design practice, reduced
assembly costs due to fewer detail parts and fasteners. For these reasons these
composites are used in several fields of engineering, for example in civil engi-
neering are used for strengthening of reinforced concrete columns, in mechanical
engineering in high performance racing cars, aerospace and biomechanical ap-
plications being as well a growing network in this regard. A special class in
this realm is represented by fibre-reinforced composite materials. The specific
strength of superior quality material fibres (especially carbon, glass, metal al-
loy, just to mention a few types) are higher than those of embedding matrices
making these materials an interesting option for the construction of numer-
ous technical devices. Being intrinsically heterogeneous, deriving homogenized
equivalent material properties is mandatory in design practice. Amongst the
many different methods developed in recent years, asymptotic homogenization
has become widely known and quite popular due to the versatility in application
with respect to material configuration of fibre and matrix arrangements. The
method nonetheless requires a numerical approximation whenever the geometry
of fibres or their disposition within the surrounding matrix becomes complex,
being classical FE methods the usual tool in this context.

A powerful alternative to FEM and inherent limitations, is offered by the
Virtual Element Method (VEM), a recently introduced numerical method for
approximation of PDEs [8, 7] which can be viewed as an extension of Finite
Element Methods to general polygonal and polyhedral elements. The strongest
aspects in favor of the VEM are its firm mathematical foundations, simplicity in
implementation, and efficiency and accuracy in computations, as well as mesh
adaptivity together with the possibility of having curvilinear polygonal meshes.
The latter aspect in particular results quite efficient in the study of the overall
mechanical behavior of fibre-reinforced composite materials through homoge-
nization since the ensuing boundary value (cell) problem is posed, in general,
on curvilinear domains bounded by material interfaces identified on the cross
section orthogonal plane [5].

This work presents a curvilinear VEM approach for the computational ho-
mogenization of in-plane shear moduli for unidirectional fibre reinforced materi-
als having inclusions with complex shape profiles. A key point of the procedure
relies on an efficient 2D cubature algorithm for NURBS boundary polygons
which grants positive weights and interior nodes. An extensive campaign of nu-
merical applications illustrate accuracy and convergence patterns of the method,
both for doubly periodic regular arrangements of fibres and for randomly dis-
tributed fibres within the matrix phase.

The paper is organized as follows: Section 2 presents the governing equations
of the considered homogenization problem, Section 3 introduces the curvilinear
VEM approximation space and the discretized form of the problem. Sections 4-
7 are devoted to the cubature formula for NURBS-shaped curvilinear polygons.
Last, Section 8 presents a set of selected numerical tests supporting the accuracy
and efficiency of the proposed methodology. Conclusions are drawn in Section
9.
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2 Asymptotic homogenization of fibre-reinforced
composite: the anti-plane problem

Figure 1: Stochastic realization of a square-shaped repeating unit cell (RUC) of
a composite with volume fraction f = 0.2 and four circular fibres (left panel).
Conforming curvilinear quadrilateral mesh (right panel).

This section is devoted to a unified compact presentation of the so called
computational asymptotic homogenization of antiplane shear moduli for both a
doubly-period or a random fibre-reinforced composite. We consider a composite
material, reinforced with long, parallel fibres, distributed in the material with
a statistically homogeneous microstructure, given either by a doubly periodic
or a random spatial arrangement. Fibres have all same cross section with a
possibly complex shape: in the present context we assume that the curvilinear
curve defining the boundary for a given cross section is described through a sigle
NURBS or a C0 regular blend of subsequent NURBS curves.

In either case, at microscale, the section orthogonal to fibres is represented
by a doubly-periodic arrangement of repeating unit cells (RUC). A RUC is a
parallelogram, having edges L1, L2, and an angle φ, containing a given number
F of fibres, as represented in Fig. 1 for the two exemplary cases of doubly
periodic and random type of composite. A given material setup is characterized
by the so called volume fraction, denoted by f =

∑F
j=1 fj which rapresents the

ratio between fibre material area and RUC total area.
The case studied in this communication refers to effective in-plane elastic

shear moduli, which are computed applying computational asymptotic homoge-
nization through Virtual Element Method, due to a lack of closed-form solutions
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of the aforementioned problem for fibres with complex cross section boundary.
Statement of the problem is given by the following set of boundary value prob-
lems of equilibrium over the composite cross section domain:

div(G∇wε) = 0 , in ∪jΩ
f
jε ∪ Ωm

ε ; (1)

[[G∇wε · ν]] = 0 , on ∪jΓjε ; (2)

G∇wε · ν =
1

ε
Dj [[wε]] , on ∪jΓjε . (3)

indexed by a parameter ε. In the above, wε denotes the displacement field in
the fibre axes direction, and ∪jΩ

f
jε and Ωm

ε indicate fibres and matrix domains,
respectively, while∪jΓjε is defined as the set of all fibre/matrix interfaces, and
ν represents the unit normal to ∪jΓjε towards Ωm

ε . The double square brackets
operator [[ · ]] denotes jump across the fibre interface, defined as extra-minus-
intra difference. Parameter ε is a scaling factor for the microstructure, such
that ε = 1 corresponds to the actual composite material, while homogenization
limit is reached for the limit of ε approaching zero.

The physical meaning of the above set of governing equations is as follows:
Equation (1) represents translational equilibrium along fibre axis direction; Eq.
(2) represents in-plane equilibrium at fibre/matrix interface i.e. continuity of
the normal-to-interface shear stress component; Eq. (3) is actually a consti-
tutive equation, also known as linear spring-layer model [23, 21], ruling the
zero-thickness imperfect interface behavior in terms of displacement jump [[wε]]
and normal traction G∇wε · ν at the interface in such a way that parameter(s)
Dj are selected to represent the level of interface degradation [12]. Lastly, factor
ε−1 providess the right scaling for the homogenization limit [23].

Assuming homogeneous isotropic linear elastic fibre and matrix material
behavior, the in-plane effective shear moduli, which are collected by the consti-
tutive tensor G, are given by:

G = Gf
j = Gf I in Ωf

jε , j = 1 . . .F , (4)

G = Gm = GmI in Ωm
ε . (5)

where I is the unit tensor. An interesting generalization for fibres to incorporate
cylindrical orthotropy, with material grading along the radial direction, could
be also taken into account for the particular case of circular fibres (see [3] for
more details), but it is here omitted for simplicity.

Well posedness of the homogenization problem requires the following condi-
tions to hold:

Gm > 0 , Gf > 0 , Dj > 0 , j = 1 . . . F. (6)

where Gm, Gf are shear moduli, for the matrix and the fibre, respectively, Dj

is the fibre/matrix interface elastic stiffness parameter (see Eq. (3)).

2.1 Homogenization of in-plane shear moduli

To derive the homogenized or effective in-plane shear moduli of the composite
material, asymptotic homogenization shall be employed herein. With reference
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to a given RUC, the procedure identifies two characteristic separate length scales
for the spatial domain under consideration, i.e. two different space variables:
a macroscopic one, x, and a microscopic one, y = x/ε, y ∈ D, being D the
RUC (see Fig. 1), whose extra-fibre space, intra-fibre space and fibre-matrix
interface are denoted by Dm, Df

j and Γj , for j = 1 . . . F , respectively. Thence,
an asymptotic expansion of the primary variable, the axial displacement field,
is considered with respect to powers of ε:

wε(x, y) = w0(x, y) + εw1(x, y) + ε2w2(x, y) + . . . , (7)

where w0, w1, w2 are doubly periodic functions over the RUC domain, with
w1, w2 having zero integral average over D. Substituting this expansion in the
equilibrium form Eqs. (1)–(3) and equating the power-like terms of ε, a set of
three differential problems for w0, w1 and w2, respectively are obtained, which
in turn lead (see [11, 29]) to the homogenized equilibrium equation for the so
called macroscopic displacement w0:

divx(G
#∇xw0) = 0 . (8)

where ∇xw0 is a macroscopic shear strain, and

G# =
1

|D|

∫
D

G(I−∇t
yχ) da (9)

is the effective constitutive tensor. In the above, the superscript t stands for a
transpose, da is the area element on D, | · | the Lebesgue measure. Function
χ(y) which is introduced as the cell function has components χs, s = 1, 2, which
represents the unique, null average, D-periodic solutions of the cell problem:

divy[G(∇yχs − es)] = 0 , in Df ∪ Dm ; (10)

[[G(∇yχs − es) · ν]] = 0 , on ∪jΓj ; (11)

G(∇yχs − es) · ν = Dj [[χs]] , on ∪jΓj , (12)

where es is the unit vector parallel to the ys axis.
Using Gauss-Green Lemma and introducing an auxiliary cell function:

χ̃(y1, y2) = χ(y1, y2)− (y1e1 + y2e2) , (13)

the following expression for the effective material moduli is obtained:

G# = Gm +
1

|D|

F∑
j=1

∫
Df

j

(divyG
f)⊗ χ̃da+

1

|D|

F∑
j=1

∫
Γj

[[Gν ⊗ χ̃]] dl , (14)

with dl line element on Γj . Eq. (14) is indeed applied to compute G# in terms
of χ̃.
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2.2 Weak form

The cell problem (10)-(12) is usually rephrased in weak form through virtual
work fundamental identity:{

Find χ̃s ∈ Ṽ such that

a(χ̃s, δχs) = 0 ∀ δχs ∈ V, s = 1, 2
(15)

where Ṽ := H1
sp(D) is the space of admissible auxiliary cell functions χ̃ which

are RUC-shifted D-periodic vector valued functions satisfying: (13))

χs(y1 + L1, y2) = χs(y1, y2) = χs(y1 + L2 cosφ, y2 + L2 sinφ) . (16)

In a functional space setting:

Ṽ =
{
χ̃ ∈ L2(D) such that χ̃|Df

j
∈ H1(Df

j) for j = 1, 2, .., F,

χ̃|Dm ∈ H1(Dm), χ̃(y1, y2)+ys satisfies (16), s = 1, 2
}
.

Indicating V the space of the admissible D-periodic variations of Ṽ, the bilinear
form associated with the stress divergence term results:

a(χ̃s, δχs) = −
∫
D

divy[G(∇yχ̃s)] δχs dx (17)

which, applying Gauss-Green lemma, using the interface elastic law (12) and
observing the outward normals to fibre and matrix domains at their interface
are mutually opposite, becomes:

a(χ̃s, δχs) =

∫
Dm

∇yδχs · Gm(∇yχ̃s)dx+

F∑
j=1

∫
Df

j

∇yδχs · Gf
j(∇yχ̃s)dx

+

F∑
j=1

∫
Γj

[[δχs]]Dj [[χ̃s]] dl.

(18)

or, in a more general fashion:

a(χ̃s, δχs) =

∫
D

∇yδχs · G(∇yχ̃s)dx+

F∑
j=1

∫
Γj

[[δχs]]Dj [[χ̃s]] dl. (19)

The form a(·, ·) is symmetric, continuous and coercive on Ṽ, so that problem
(15) is well posed.

3 Lowest order augmented curvilinear virtual
element method

A virtual element discretization of problem (15) for curvilinear polygons is here
presented, much along the general idea outlined in [10]. Denote Th as a simple
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polygonal mesh on D, i.e. any decomposition of D in a finite set of simple
polygons E, without holes and with boundary given by a finite number of edges.
In this realm, and for the forthcoming application, we will primarily focus on
meshes of quadrilaterals, given their simplicity, efficiency and wide possibility
of generation through conventional mesh generators. For a curvilinear element
with one or more edges lying on a fibre/matrix interface Γj , we shall describe its
geometry in exact form as long as it can be recovered by a NURBS representation
(cf. Section 4). Hence, the proposed methodology offers a wide feasibility in
terms of fibre cross section boundary shapes allowing for complex profiles in this
regard. Any given interface Γj is then intended as a NURBS parametrization i.e.
an invertible C1 mapping with proper weights and control points or a C1 blend
of NURBS curves such that any portion is explicitly computable. Dropping
index j to lighten up notation, we simply indicate

γ : [0, L] −→ Γ

to indicate a generic curved part of the fibre/matrix interface Γ with the relevant
NURBS representation.

Remark 3.1 In what follows we denote with e any edge of the mesh and with ν
a generic vertex. The symbol h will be associated with a length quantity, hence
hE denotes the diameter of element E and he the length of a (possibly curved)
edge e. As usual, the maximum mesh element size is indicated by h with no
subscripts.

3.1 The augmented virtual element space

For the discretization of the cell problem which is required to compute the effec-
tive shear moduli, we propose a simple, computationally efficient enrichment of
the VEM space proposed in [10], for lowest order discretization k = 1, coupled
with a NURBS like representation of curvilinear polygons abutting the material
interfaces between fibres and matrix. Given a (curvilinear) polygon E ∈ Th with
some edge laying on a curved interface Γj (j ∈ {1, 2, .., F}), for any such curved
edge e, we denote with γe : [a, b] → e the restriction of the parametrization for
Γj to edge e. Then we indicate the standard space of R2 polynomials of degree
k restrictions on edge e as

P̃k(e) =
{
p(γe) : p ∈ Pk(R2)

}
.

The local virtual element space on E is then defined introducing the space
of traces on a curved edge as follows. For a given integer k ≥ 1, on a given
element E with a curved edge γ, we consider the trace space

Bh(∂E) =
{
v ∈ C 0(∂E) such that : v|e ∈ Pk(e) ∀ straight edge e ⊂ ∂E,

and v |γ ∈ P̃k(e) ∀ curved edge e ⊂ ∂E
}
.

(20)
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Then, for every integer k ≥ 1 the local virtual element space is defined as

Vh(E) =
{
v such that v |∂E ∈ Bh(∂E), ∆v ∈ Pk−2(E)

}
. (21)

For k = 1, which is the primarily investigated case of the present contribution,
the selected degrees of freedom of the local space are (cf. [10])

� pointwise evaluation at each vertex of E;

� one extra single degree of freedom for any given curved edge.

Note that the investigated case k = 1 amounts to a number of local degrees
of freedom which equates the classical curvilinear case (cf. [5]) plus only one
extra dof for the curved edge on the polygon. Fig. 2 illustrates the choice of the
additional node on the curved edge, associated to the extra degree of freedom
in the augmented form for the relevant case k = 1 which simply amounts to
adding an extra node for any given curvilinear element edge. In passing we
note that, owing to interelement continuity, this node is shared by both curved
elements abutting such an edge. The global conforming space is obtained by a

Figure 2: Typical curvilinear virtual element (case k = 1) at fibre matrix curved
interface boundary. Case with cirved edge no. 5 equipped with additional degree
of freedom (node vextra).

standard identification of degrees of freedom, i.e. as the unique values at the
interelement, gluing local spaces with C0 regularity:

Ṽh =
{
v ∈ Ṽ : v|E ∈ Vh(E) ∀E ∈ Th

}
,

The same holds for the spaces of discrete variations:

Vh =
{
v ∈ V : v|E ∈ Vh(E) ∀E ∈ Th

}
.
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3.2 Discretization of the problem

The discretization of the problem is an augmented combination of the scheme
proposed in [10] for the case with straight and curvilinear edges and the original
method introduced in [9] for curvilinear VEM; the projection space for virtual
cell functions is here augmented with an additional deformation mode at no
extra cost in terms of local degrees of freedom.

We propose here an augmented projection operator, local to element E,
which represents an approximated cell function component χs (s = 1, 2) which is
explicitly computable. Denote with (x̃, ỹ) the usual shifted centroidal Cartesian
coordinates at element level. Let [Paug(E)] be the set of polynomials spanned
by the monomials {1, x̃, ỹ, x̃ỹ} (hence linears augmented by the skew-symmetric
monomial x̃ỹ) restricted to E. Given E ∈ Th and any vh ∈ Vh(E), the operator
Π∇ : Vh(E) → [Paug(E)] is defined by

∫
∂E

Π∇(vh)ds =

∫
∂E

vhds∫
E

∇Π∇(vh) · ∇paug dE =

∫
E

∇(vh) · ∇paug dE ∀paug ∈ [Paug(E)] ,

where ∇(vh) denotes the gradient of vh with respect to ys (s = 1, 2) at the
microscale. Hence, the augmented projector Π∇(vh) is an extension of the
standard L2 projection of vh on [P1(E)] since, at the price of the same number
of local degrees of freedom of the standard k = 1 case, the approximated cell
function belongs to a polynomial space which is larger than the standard one,
encompassing also the quadratic skew-symmetric monomial term x̃ỹ. This case
is indeed quite relevant from the point of view of accuracy, since many RUC
geometrical and material arrangements lead to a skew-symmetric solution of the
homogenized equilibrium problem in terms of cell function χs. It is immediate to
check that the above operator Π∇(vh) is readily computable through integration
by parts and using the adopted degrees of freedom, see [8, 7, 10] for the relevant
standard derivations.

The aforementioned integrals and all the quantities relevant to post process-
ing of the solution (namely the homogenized material moduli) are computed for
NURBS curvilinear polygons with the efficient quadrature formula outlined in
Section 4.

Once the projector is defined, the development of the VEM method proceeds
by deriving the local discrete counterpart of the bulk term in the bilinear form
(19) as follows. For an E ∈ Th, for all vh, wh ∈ Vh(E), we define:

aEh (vh, wh) =

∫
E

∇Π∇(wh) ·G∇Π∇(vh) dE + sE((I − πΠ∇)vh, (I − πΠ∇)wh)

(22)
where the first term is a direct approximation of

∫
E
∇wh·G(∇vh) by substituting

∇ with ∇Π∇, and the second term is a stabilization term of the dofi − dofi
type (see [24] for a thorough discussion of the subject and possible variants).
To this end, an additional operator π : Vh(E) → P1(E) on linear monomials
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is introduced (given the relevant simplicity in coding), defined as the unique
minimizer of the euclidean norm distance of the degrees of freedom values with
respect to such polynomial space canonical basis. The stabilization form is then
taken as:

sE((I−πΠ∇)vh, (I−πΠ∇)wh) = αE

#dofs∑
i=1

(
dofi(wh−πΠ∇wh)

)(
dofi(vh−πΠ∇vh)

)
(23)

where the dofi symbol denotes evaluation at the ith local degree of freedom and
the positive scalar αE is introduced to ensure physical dimension consistency
with the previous term. The present choice is indeed αE = trace(G)/2. More
details on the stabilization can be found for instance in [24].

The global discrete equilibrium equation at microscale over a RUC domain
then reads:

ah(vh, wh) =
∑
E∈Th

aEh (vh, wh) +

F∑
j=1

∫
Γj

[[wh]]Dj [[vh]] dl

for any vh, wh in Ṽh or Vh. Note that the jumps in the above expression do not
imply any computational issue since the virtual cell function and their variations
are explicit at the element boundaries.

The proposed Virtual Element Method then reads{
Find χ̃hs ∈ Ṽh such that

ah(χ̃hs, δχhs) = 0 ∀δχhs ∈ Vh, s = 1, 2.
(24)

The above construction and the ensuing post-processing heavily relies on inte-
grating known functions over the polygonal domain which can present NURBS-
like curved edges. In the following section we detail the proposed efficient
quadrature formula adopted throughout our numerical simulation campaign.

4 Numerical cubature over rational spline curvi-
linear polygons

In this section we sketch the details on the computation of numerical rules over
piecewise rational spline curvilinear polygons, following the details introduced
in [35].

In particular we consider Jordan domains S ⊂ R2

1. whose boundary ∂S is described by parametric equations x = x̃(t), y =
ỹ(t), t ∈ [a, b], x̃, ỹ ∈ C([a, b]), x̃(a) = x̃(b) and ỹ(a) = ỹ(b);

2. for which there are partitions {I(k)}k=1,...,M of [a, b], and {I(k)j }j=1,...,mk

of each I(k) ≡ [t(k), t(k+1)], such that the restrictions of x̃, ỹ on each closed

interval I(k) are rational splines, w.r.t. the subintervals {I(k)j }j=1,...,mk
.
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We adopt as notation

x̃(t) =
uk,1(t)

vk,1(t)
, ỹ(t) =

uk,2(t)

vk,2(t)
, t ∈ I(k), (25)

being uk,1, uk,2, vk,1, vk,2 splines on I(k), sharing the same knots and having
degree, respectively, ηk,1, ηk,2, δk,1, δk,2, k = 1, . . . ,M .

Notice, that since x̃, ỹ ∈ C([a, b]), we are assuming that the denominators
vk,1, vk,2, k = 1, . . . ,M are everywhere not null in the closed interval I(k).

In what follows we intend to show some examples of domains that fulfill
these requests.

First, this is the case of a spline curvilinear region as those presented in [36].

Indeed, let Vk = (x̃(tk), ỹ(tk)) ∈ R2, k = 1, . . . ,M , VM+1 = V1, be the ver-
tices of such a Jordan domain S, then ∂S := ∪M

k=1Vk ⌢ Vk+1 and each curvi-
linear side Vk ⌢ Vk+1 can be tracked by a parametric spline of degree δk, inter-
polating an ordered subsequence of knots P1,k = Vk, P2,k, . . . , Pmk−1,k, Pmk,k =

Vk+1 with a suitable parametrization determining each I
(k)
j (and thus each I(k)).

Another large family of domains S belonging to the class defined above is
when ∂S is a composite Bezier closed curve, whose k-th component is of the
form

B(t̃) = B(ωk(t)) =

mk−1∑
i=0

bi,mk−1(t)Pi+1,k,

where t̃ = t(k+1)+t(k)

2 + t(k+1)−t(k)

2 t := ωk(t), t ∈ [0, 1] and

bi,l(t) =

(
l
i

)
ti(1− t)l−i, i = 0, . . . , l − 1, t ∈ [0, 1]

are the Bernstein polynomials.

The framework also includes domains whose boundary ∂S is locally a p-th
degree NURBS curve [26, p.117], where the k-th curvilinear side Vk ⌢ Vk+1

takes the form

C(t) =

∑mk

i=1 Bi,p(t)λi,kPi,k∑mk

i=1 Bi,p(t)λi,k
, t ∈ [t(k), t(k+1)]

where

� {Pi,k}mk
i=1 are the control points,

� {λi,k}mk
i=1 are the weights,

� {Bi,p}mk
i=1 are the p-th degree B-spline basis functions [14, p.87] defined on

the nonperiodic (and nonuniform) knot vector

U = {t(k), . . . , t(k)︸ ︷︷ ︸
p+1

, t
(k)
p+1, . . . , t

(k)
mk−(p+1), t

(k+1), . . . , t(k+1)︸ ︷︷ ︸
p+1

}.

with t
(k)
p+j ≤ t

(k)
p+j+1, j = 1, . . . ,mk − 1.
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Some classical examples are domains whose boundary is given by a polygon
in which a side is substituted by a circular or ellipse arc (see Fig. 3).

Figure 3: Some domains S of polygonal type in which a side is substituted by
a circular arc. In all these examples ∂S is locally a p-th degree NURBS curve.

5 The Tchakaloff-Davis-Wilhelmsen approach

In this paper we consider a technique based on an approach that dates back
to Davis (1967) and Wilhelmsen (1976) in its general formulation, giving a
constructive proof of the well-known Tchakaloff existence theorem for positive
quadratures (1957).

Our strategy is based on a theorem in [38] that says the following.

Theorem 5.1 Let be F ⊂ C(S) a function space of dimension k on a multi-
dimensional compact set S ⊂ Rd (such that F contains functions that do not
vanish on S), X = {xi}i≥1 ⊂ S an everywhere dense point sequence, and L
a strictly positive linear functional on F , i.e. L(f) > 0 for every f ∈ F not
vanishing everywhere in S.

Then, for sufficiently large m, the set Xm = {x1, ..., xm} is a “Tchakaloff
set” in S, which means that, for every f ∈ F , L(f) can be represented as the
integral with respect to a discrete positive measure with finite support in Xm of
cardinality not exceeding k (i.e. as a linear combination with positive coefficients
of at most k values of f in Xm).

Direct applications of the previous theorem regard the case in which L(f) is
an integral functional with respect to an absolutely continuous measure w(x)dx,
i.e.

L(f) =

∫
S
f(x)w(x)dx , (26)

as well as w.r.t. discrete measure with support of large cardinality (for example,
a positive algebraic quadrature formula or a QMC formula),

L(f) =

M∑
s=1

λs f(zs) , λs > 0 , s = 1, ...,M , (27)

where ZM = {z1, . . . , zM} ⊂ S with M > k.

12

3 Jun 2024 01:29:49 PDT
231207-Artioli Version 2 - Submitted to Math. Eng.



In both instances, Theorem 5.1 ensures that for sufficiently large m there ex-
ist nodes {ξ1, . . . , ξν} ⊂ Xm ⊂ S and corresponding positive weights {w1, . . . , wν}
such that

L(f) =

ν∑
j=1

wj f(ξj) , ν ≤ k , ∀f ∈ F . (28)

i.e. Xm is a Tchakaloff set.
In our examples, having in mind to determine algebraic rules with a fixed

degree of exactness n, we set F = Pn(S), the space of multivariate polynomials
of total-degree not exceeding n on S. We also denote by N = (n+ 1)(n+ 2)/2
the dimension of the vector space Pn(S).

Aiming to a practical implementation of Tchakaloff-Davis-Wilhelmsen the-
orem, we proceed as follows

TDW measure compression algorithm
via moment-matching on the polynomial space Pn(S)

(i) set the moment residual tolerance tol, the starting cardinality m and the
cardinality increase factor θ > 1;

(ii) select a basis {φ1, . . . , φN} of Pn(S) and compute the moments bj :=∫
S φjdx, j = 1, ..., N ;

(iii) generate a (quasi)-uniformly distributed sequence Xm = {x1, . . . , xm} in
S (via an implementation of an in-domain routine over S);

(iv) compute the Vandermonde-like matrix

V = V (Xm) = [vij ] := [φj(xi)] ∈ Rm×N ;

(v) compute the factorization V = QR with Q ∈ Rm×N , R ∈ RN×N , and the
modified moments β such that Rtβ = b ;

(vi) solve the underdetermined system Qtu = β as a Non-Negative Least
Squares problem

u∗ = argmin∥Qtu− β∥2 , u ≥ 0

by Lawson-Hanson active-set method (see, e.g. [22] and its Matlab imple-
mentation via lsqnonneg, as well as its alternatives [16], [17], [18], [31]);

(vii) if ∥V tu∗ − b∥2 > tol then goto (iii) with m := θm;

(viii) select the active weights and nodes:

J := {i : u∗
i > 0} , w := u∗(J) , T := Xm(J) .

A careful read of the algorithm shows that its implementation requires some
key ingredients.
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Figure 4: Rules having algebraic degree of exactness equal to 5, obtained by
means of TDW measure compression algorithm, over NURBS based curvilinear
polygons.

1. In (ii), once a suitable basis {φ1, . . . , φN} of Pn(S) is considered, we have
to determine the moments bj :=

∫
S φjdx, j = 1, ..., N ;

2. in (iii), it is necessary to develop an in-domain routine for Jordan domains
S taken in consideration.

We will develop these demands in the next sections, showing in Fig. 5 the results
obtained for two not trivial geometries.. For practical aspects about the choice
of m and θ in (i) see [35].

6 On the moments computation

In the TDWmeasure compression algorithm, we have shown that once a suitable
basis {φ1, . . . , φN} of Pn(S) is considered, we have to determine its moments
bj :=

∫
S φjdx, j = 1, ..., N .

In this section we develop these details, following the lines introduced in [36]
and generalised in [35] to the Jordan domains mentioned above.

To this purpose, let R∗ = [a1, b1]× [a2, b2] be the bounding box of S, i.e.the
smallest cartesian rectangleR ⊇ S with sides parallel to the axes. As polynomial
basis {φj}1≤j≤N , we adopt the shifted lexicographically ordered total-degree
product Chebyshev basis

φj(x, y) = Th1
(α1(x)) · Th2

(α2(y)), 0 ≤ h1 + h2 ≤ n

(where j is the position of (h1, h2) in such ordering) where

� Th(·) = cos(h arccos(·)) is the h-degree Chebyshev polynomial of first kind;

� αi(s) = (2s− bi − ai)/(bi − ai), s ∈ [ai, bi], i = 1, 2.

The use of this basis comes from the necessity of mitigating the possible
extreme ill-conditioning of Vandermonde matrices in the standard monomial
basis. By Gauss-Green theorem (see e.g. [1]),

γj =

∫
S
φj(x, y) dx dy =

∮
∂S

Ψj(x, y) dy (29)
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where

Ψj(x, y) =

∫
φj(x, y) dx = Th2

(α2(y))

∫
Th1

(α1(x)) dx

It is easy to achieve that∫
T0(α1(x)) dx = x,∫
T1(α1(x)) dx =

b1 − a1
4

· α2
1(x),∫

Th(α1(x)) dx =
b1 − a1

2
·
(

h

h2 − 1
Th+1(α1(x))−

x

h− 1
Th(α1(x))

)
, h ≥ 2.

If Pk,s := (x̃(t
(k)
s ), ỹ(t

(k)
s )) and Pk,s ⌢ Pk,s+1 is the arc of ∂S joining Pk,s with

Pk,s+1, we obtain

γj =

∮
∂S

Ψj(x, y) dy =
∑
k,s

∫
Pk,s⌢Pk,s+1

Ψj(x, y) dy

=
∑
k,s

∫ t
(k)
s+1

t
(k)
s

Ψj(x̃(t), ỹ(t)) ỹ
′(t)dt . (30)

The evaluation of the integrals on the r.h.s. of (30) is a delicate matter. Since
x̃ and ỹ are in general rational functions one can use high order Gauss-Legendre
rules [20], or adaptive routines as the MATLAB built-in routine integral, or
the Extended Rational Fejèr Quadrature Rules proposed in [15].

7 The in-domain routine

In the previous section we have shown that the application of the TDW measure
compression algorithm requires an in-domain algorithm for the Jordan domains
S taken under consideration, i.e. an algorithm that determines if P ∈ R2 is
inside (or not inside) such a S. This problem has been analysed in [34] and [35]
and for the sake of the reader, we sketch its details below.

A well-known strategy is based on the Jordan curve theorem that states that
a point P belongs to a Jordan domain S if and only if, having taken a point
P ∗ /∈ S then the segment P ∗P crosses ∂S an odd number c(P ) of times.

In spite of its simplicity, there can be pathological cases, e.g. when P ∗P
crosses a vertex or when includes a segment of ∂Ω.

Another problematic situation holds when the boundary ∂S has a critical
point S = (x̃(γ), ỹ(γ)) where

lim
t→γ−

ỹ′(t) lim
t→γ+

ỹ′(t) < 0,

i.e. there is locally a vertical turn of boundary from left to right (or conversely
from right to left). If we consider vertical segments P ∗P then the Jordan theo-
rem cannot be directly applied.
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Figure 5: Critical situations for the the application of the Jordan curve theorem
on curvilinear polygons.

These special cases, illustrated in Fig. 5, after some effort, can be classified
by an algorithm, and thus we start from the most common situation that P ∗P
does not contain any critical point or vertical side.

Under these assumptions, let R be a rectangle, often called box, with sides
parallel to the cartesian axes, whose interior contains S, and suppose that we
have to establish if P = (Px, Py) belongs to S.

Let P ∗ = (P ∗
x , P

∗
y ) be the point in R not internal to S, such that P ∗

x = Px

and P ∗
y < Py. Geometrically it means that P ∗ is not internal to S, shares the

same abscissa of P , but is vertically below P .
In what follows we compute the crossing number c(P ), i.e. the number of

times in which the vertical segment P ∗P crosses ∂S.
First, we cover ∂S with the union of possibly overlapping rectangles, each

one containing a portion of ∂S that has no vertical turning points and is
parametrized by two rational functions, i.e. locally (x̃(γ), ỹ(γ)) are the ratio of
two polynomials (see Fig. 6).

Figure 6: A Jordan domain of curvilinear type and its possibly overlapping
monotone boxes.

To this purpose, we observe that since x̃, ỹ are rational splines in each
element I(k), k = 1, . . . ,M , that takes part to the partitioning of [a, b], then

there are I
(k)
j = [t

(k)
j , t

(k)
j+1] ⊆ I(k), k = 1, . . . ,M, j = 1, . . . ,mk − 1, where the
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restriction of x̃, ỹ to I
(k)
j are rational functions, i.e.

x̃(t) =
uk,j,1(t)

vk,j,1(t)
, ỹ(t) =

uk,j,2(t)

vk,j,2(t)
, t ∈ I

(k)
j

with uk,j,1, uk,j,2, vk,j,1, vk,j,2 polynomials on the interval I
(k)
j , with degree,

respectively, ηk,1, ηk,2, δk,1, δk,2 (notice that they do not depend on j but just
on the local degree of the splines uk,1, uk,2, vk,1, vk,2 in I(k)).

If x̃ ≡ c in I
(k)
j = [t

(k)
j , t

(k)
j+1], we set

B(j,k)
1 := c× [ min

t∈I
(k)
j

ỹ(t), max
t∈I

(k)
j

ỹ(t)].

In other words, B(j,k)
1 is a box that actually consists of a vertical segment.

If x̃′ has variable sign in (t
(k)
j , t

(k)
j+1), let N (k)

j = {t(j,k)i }i=1,...,lj,k the set of

t
(j,k)
i ∈ (t

(k)
j , t

(k)
j+1) such that x̃′(t

(j,k)
i ) = 0 (as observed before, the restriction

of x̃ to I(j,k) is a rational function with the denominator nowhere null, and

consequently x̃′ exists), otherwise let N (k)
j = ∅. Next, set T (j,k) = {t(k)j , t

(k)
j+1} ∪

N (k)
j , where we suppose that its elements, say T

(j,k)
i , are in increasing order.

Since x̃(t) = uk,j,1(t)/vk,j,1(t), t ∈ I
(k)
j , from

x̃′(t) =
u′
k,j,1(t)vk,j,1(t)− uk,j,1(t)v

′
k,j,1(t)

v2k,j,1(t)
, t ∈ I

(k)
j ,

and v2k,j,1(t) ̸= 0 for each t ∈ I
(k)
j , we have that x̃′(t) = 0 if and only if

u′
k,j,1(t)vk,j,1(t)− uk,j,1(t)v

′
k,j,1(t) = 0,

and consequently N (k)
j is available just solving a polynomial equation of degree

ηk,1 + δk,1 − 1.

Now define as monotone boxes the rectangles B(j,k)
i ,

B(j,k)
i := [ min

t∈I
(j,k)
i

x̃(t), max
t∈I

(j,k)
i

x̃(t)]× [ min
t∈I

(j,k)
i

ỹ(t), max
t∈I

(j,k)
i

ỹ(t)].

where I
(j,k)
i := [T

(j,k)
i , T

(j,k)
i+1 ]. By definition, if N (k)

j = ∅, necessarily there is

only the monotone box B(j,k)
1 . Since ỹ is a rational function in [T

(j,k)
i , T

(j,k)
i+1 ],

the evaluation of

min
t∈[T

(j,k)
i ,T

(j,k)
i+1 ]

ỹ(t), max
t∈[T

(j,k)
i ,T

(j,k)
i+1 ]

ỹ(t)

can be explicitly determined computing the derivative of the polynomial ỹ′, its

zeros in [T
(j,k)
i , T

(j,k)
i+1 ] and the evaluation of ỹ at T

(j,k)
i and T

(j,k)
i+1 .

At this point, we have determined I
(j,k)
i , such that
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� the restriction of x̃, ỹ to each interval I
(j,k)
i ⊆ [a, b] are rational functions,

� x̃ is a monotone function (with no turning points of ∂S in the interior of

each B(j,k)
i ),

and we are ready to apply the crossing theorem to see if P = (Px, Py) is inside
the Jordan domain S.

Let

B(P ) = {B = [α1, β1]× [α2, β2] ∈ B : Px ∈ [α1, β1], Py ≥ α2}.

be the set that contains all the monotone boxes Bl such that P ∗P ∩Bl ̸= ∅, and
that consequently are the only ones that may contribute to the evaluation of
the crossing number c(P ).

Figure 7: In magenta, the two monotone boxes useful to determine whether or
not P ∈ S. It is immediate to observe that the segment P ∗P intersects the
boundary ∂S just once. The monotone box below gives contribution 1, while
the monotone box above gives contribution 0.

Consider one of these monotone boxes Bl = [α
(l)
1 , β

(l)
1 ]× [α

(l)
2 , β

(l)
2 ] ∈ B(P ).

If Py > β
(l)
2 then the point is above the box, and thus the segment P ∗P surely

crosses ∂S once in Bl and below P , due to the monotonicity of x̃ in Bl.
Otherwise, P ∈ Bl. As assumed before, P ∗P is free of critical points and

vertical segments of the boundary, thus Bl includes a certain portion of ∂S
described parametrically by two rational functions, say x̃vBl

, ỹvBl
, with argu-

ments in the interval IvBl
⊆ [a, b], in which x̃vBl

is monotone and such that
Px ∈ x̃vBl

(IvBl
). This entails that necessarily there is a unique root t∗ ∈ IvBl

of the polynomial equation x̃vBl
(t) = Px. Since x̃vBl

(t) = u(t)
v(t) , for suitable

polynomials u, v, then t∗ is the unique solution of the polynomial equation
u(t)− Py · v(t) = 0 in IvBl

.
We also observe that,
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� if ỹ(t∗) < Py then the segment P ∗P crosses the boundary ∂S once in the
monotone box, below P ;

� if ỹ(t∗) > Py then the segment P ∗P does not cross the boundary ∂S once
in B, below P ;

� if ỹ(t∗) = Py then P is on the boundary ∂S.

After counting all the crossings, we determine whether a point P is inside or
not inside the domain S, by means of Jordan theorem. In Fig. 7 we illustrate by
an example the contribution given by monotone boxes, while in Fig. 8 we show
the results given by our procedure when applied to two complicated geometries.

When the previous assumptions do not hold, i.e. the vertical segment P ∗P
contains a critical point or a portion of a vertical side of ∂S, one can use an
algorithm based on the well-known winding theorem to determine if P belongs to
S. To this purpose, one can compute numerically the so called winding number
wind(P, x̃, ỹ) ∈ Z,

wind(P, x̃, ỹ) :=
1

b− a

∫ b

a

ỹ′(t)(x̃(t)− Px)− x̃′(t)(ỹ(t)− Py)

(x̃(t)− Px)2 + (ỹ(t)− Py)2
dt.

If the quantity wind(P, x̃, ỹ) is odd then the point belongs to S otherwise is not
inside such domain.

Figure 8: In-domain routine applied to grid of 10000 points on two NURBS
based Jordan domains. The CPU time required for the process is respectively
2 · 10−2 and 5 · 10−2 seconds.

In our numerical tests, on a cloud of points, this approach is slower than the
evaluation of the crossing numbers. Our experience is that for general domains
the winding number strategy will only seldomly called by the in-domain routine
proposed here.

In [34] the authors take into account techniques to make the implementation
efficient and safe from numerical issues. The numerical codes regarding this in-
domain routine have been implemented in Matlab and are freely available at
[32].
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8 Numerical tests

This section presents numerical tests to validate the proposed curvilinear VEM
methodology for the homogenization of fibre-reinforced composite materials. In
particular, in Section 8.1 we show a set of simple patch tests on a fictitious
square domain with a minimal mesh comprising variously distorted curvilinear
polygons. In Section 8.2 we perform asymptotic homogenization for the basic
case of doubly periodic composite materials with complex fibre shapes. Finally,
in Section 8.3 we address a real scale engineering problem i.e. computational ho-
mogenization of composite materials with randomly distributed highly complex
unidirectional fibres, applying Monte Carlo simulations to obtain statistically
averaged effective properties.

8.1 Patch test

In this section we assess accuracy and robustness through representative bound-
ary value problems on a unit square domain with known solution i.e. patch tests
with a linear solution in terms of the cell function χ. The domain is represented
by a unit square and meshes with the lowest number of curvilinear quadrilaterals
both convex and concave (see Fig. 9 and Fig. 10) which are also progressively
distorted by moving the inner curvilinear polygon which is characterized by hav-
ing the whole boundary as a sequence of circular arches. The problem is split in
two cases for each examined mesh configuration, namely applying a unit shear
strain es (s = 1, 2) along the y1 and y2 direction (see Eq. (10)), respectively,
and solving the ensuing homogenized equilibrium equation, Eq. (24), for each
loading condition.

Numerical results in terms of H1 error measure on the cell function are
reported in Table 1, which shows that the proposed methodology exactly solve
a general P1-type patch test with no major sensitivity to mesh distortion.

8.2 Doubly periodic composites

In order to verify the capability of the method to tackle complex curvilinear
fibre shape in efficient manner, we here study doubly periodic fibre-reinforced
composites for different fibre arrangements and material setups. A given doubly
periodic composite unit cell is identified through the geometrical features φ,
κ = L2/L1, f , and the following dimensionless material parameters:

� fibre/matrix stiffness ratio (contrast factor) ξ = Gf/Gm;

� dimensionless interface parameter δ = D/(GmL1);

The simulations refer to square RUC for simplicity i.e. φ = π/2, and κ = 1.
The first benchmark corresponds to elliptic cross section inclusions for f =
0.1, 0.2, 0.4, respectively, as can be see in Fig. 11, perfect interfaces i.e. δ =
∞ and a contrast factor ξ = 50. The inclusions scale homothetically, with a
constant ratio between semi-axes fixed at 2/3. For each computational domain
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geometry, quadrilateral mesh discretizations are still adopted. Representative
meshes of a quarter of the domain are portrayed in Fig. 11, in view of the
double symmetry offered by all three cases. Presented results are obtained for
five mesh sizes applying uniform refinement. Lacking a closed form or semi-
analytical solution for the case under investigation, as reference results we use
standard Lagrangian quadrilateral quadratic finite elements with an overkilling
mesh resolution.

In Fig. 12 we report h−convergence plots for the cell function χ(y) in the
H1−error norm for uniform mesh refinement, for the set of examined volume
fractions.

The expected convergence rate is linear which is obtained for all examined
patterns. We notice that the exact geometric representation of the curved in-
terface produce accurate results in conjunction with the implemented NURBS
quadrature formula. It is moreover observed that progressively higher volume
fractions of fibres require higher computational cost to reach a given accuracy
level. The second doubly periodic composite under investigation still regards
a complex fibre boundary which, differing from the previous case, exhibits a
re-entrant sharp corner. The RUC domain is represented in Fig. 13 indicating
still a square RUC which lodges a bilobe-type inclusion made of two circular
fibres with the same radius fused together with an overlapping of a third of the
radial length. Due to symmetry a quarter of the domain is meshed as can be in-
spected in Fig. 13. We examine two sets of problems for a fixed volume fraction
f = 0.2. First, we consider perfect interfaces (δ = ∞) and values of stiffness
ratio ξ = 10, 100, 1000, respectively. Subsequently, we fix ξ = 100 and analyze
the following values for the interface integrity indicator: δ = 10, 100, 1000,∞.

Optimal (linear) convergence rate for all cases is observed in Fig. 14 where
H1−error plots are obtained through uniform mesh refinement sequence. This
further set of results confirms method consistency and capability of exactly rep-
resenting the curvilinear interface geometry. An additional improvement which
would furtherly enhance the computational performance of the methodology is
adaptive mesh refinement, guided by an efficient and reliable error estimator
procedure, which in principle would indicate localization of the error (hence lo-
cal refinement) at fibre/matrix interface, and at unit cell boundary edges (see
[5] for a thorough presentation of the method).

8.3 Random composites with stocastically distributed in-
clusions

The engineering relevant case of random composites relies on a statistical ho-
mogenization approach which for instance amounts to solving for large number
of RUC random realizations and subsequently infer homogenized material prop-
erties through statistical averaging of the results [25, 19]. In this context, one
key assumption is to consider statistically homogeneous randomly generated
microstructures, yielding an isotropic effective behaviour [19]. It is known that
with this aim, quantitative estimation of the RUC size plays an important role
from accuracy and computational cost point of view, since the effective mod-
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ulus G#, obtained by Eq. (14) is actually a random variable depending on
the realizations of the RUC D examined throughout the statistical homogeniza-
tion procedure. The main problem is then to determine a proper RUC size to
guarantee a prescribed accuracy on the effective material moduli. The idea is
then not to use too large RUCs requiring heavy computational effort, instead,
sampling a higher number of smaller RUCs setups to get a prefixed accuracy
[19]. To this end, in this context where we focus specifically on solving complex
curvilinear fibre cross sections, we apply the statistical homogenization proce-
dure presented recently in [5] in a simplified form, i.e. with standard uniform
mesh refinement.

As a manufactured benchmark we present numerical simulations on four
geometrical arrangements of square RUCs with equal, homogeneous isotropic
trilobe-shaped fibres with volume fraction f = 0.2, stiffness ratio ξ = 1000,
δ = ∞. The RUC-to-fibre number ratio ranges from 2 to 16, see Fig. 15 for
a pictorial representation of such four typical realizations and relevant quadri-
lateral meshes. Fibre cross section profiles are no more axis-symmetric, and
are obtained blending three elliptical arcs with as many circular fillets granting
smoothness of the overall boundary. Each ellipse has semi-axes ratio 2/5, while
the ratio between circular arcs radius and minimal elliptical semi-axis is fixed
in order to match the prescribed volume fraction of the composite.

The idea is then to solve a sufficiently large number n of realizations with a
standard uniform mesh refinement strategy and numerically assess the statistics
of result distribution. We refer to [5] for a more detailed description of the
computational homogenization procedure based on Monte Carlo simulations.

Fig. 16 shows the normalized mean value µG#/Gm and the dispersion of G#

as a function of the number of trilobe inclusions per RUC. As it is expected,
larger RUCs are associated to higher accuracy and lower dispersion and hence
can be used to obtain a fair estimate of µG# .

9 Conclusion

In this communication, we have addressed the computational asymptotic ho-
mogenization of reinforced composite materials with long parallel fibres having
a complex curvilinear cross section. An augmented VEM formulation, based on
the conjoined use of an efficient quadrature formula for NURBS-type curvilin-
ear polygons and an augmented projection space, has been developed for the
effective computational analysis of the above class of heterogeneous materials in
the framework of antiplane deformation. VEM has been recently developed as
a generalization of the Finite Element Method (FEM) and it allows the use of
curvilinear polygonal elements of general, including non-convex elements. The
proposed method has been validated through en extensive numerical campaign
showing its generality for modelling accurately multiphase complex material.
Further research aims at extending the method to include material non-linear
behaviour and damage.
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Table 1: Curvilinear VEM patch tests H1-error measures on χ.

shear dir. sym rot trsl dist

mesh S-cnv −y1 1.6710e-15 1.4492e-15 2.7327e-15 2.0848e-15
−y2 7.3042e-15 1.3048e-14 2.1801e-15 7.7697e-15

mesh S-cnc −y1 2.7826e-15 1.7097e-15 1.4332e-15 2.0231e-15
−y2 2.5073e-15 5.3894e-15 4.3447e-15 1.8341e-14
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Figure 9: Patch test on a unit square domain. Minimal curvilinear polygon
meshes comprising a quadrilateral with four convex circular edges with same
radius and four quadrilaterals with one concave circular edge. Meshes are pro-
gressively distorted through shift and rotation of inner polygon.
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Figure 10: Patch test on a unit square domain. Minimal curvilinear polygon
meshes comprising a quadrilateral with four concave circular edges with same
radius and four quadrilaterals with one convex circular edge. Meshes are pro-
gressively distorted through shift and rotation of inner polygon.
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Figure 11: Asymptotic homogenization of doubly periodic composite material
with elliptical inclusions. Square RUC, volume fraction f = {0.1, 0.2, 0.4} (upper
panel), stiffness contrast factor ξ = 50, perfect interface s.t. δ = ∞. Curvilinear
quadrilateral meshes of a relevant quarter of domain due to double symmetry
with respect to (y1, y2) axes (lower panel). Elliptical inclusion semi-axis ratio
equal to 2/3.
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Figure 12: Asymptotic homogenization of doubly periodic composite material
with elliptical inclusions. h−convergence in the H1 error norm on the cell
function χ.

Figure 13: Asymptotic homogenization of doubly periodic composite material
with complex bi-lobe inclusions. Square RUC, volume fraction f = 0.2 (left
panel), stiffness contrast factor ξ = {10, 100, 1000}, interface parameter δ =
{10, 100, 1000,∞}. Curvilinear quadrilateral meshes of a relevant quarter of
domain due to double symmetry with respect to (y1, y2) axes (right panel).
Bilobed inclusion made up of two circular fibres with a geometric overlapping
of a third of radius.
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Figure 14: Asymptotic homogenization of doubly periodic composite material
with complex bi-lobe inclusions. h−convergence in the H1 error norm on the
cell function χ for varying stiffness contrast factor ξ (left panel), and varying
interface parameter δ (right panel).

31

3 Jun 2024 01:29:49 PDT
231207-Artioli Version 2 - Submitted to Math. Eng.



Figure 15: Statistic homogenization of a composite with randomly distributed
fibres with complex curvilinear cross section geometry. Stochastic realization
of a square RUC of a composite with prescribed volume fraction f = 0.2 and
respectively 2, 3, 4, 16 complex shaped trilobed fibres: conforming curvilinear
quadrilateral meshes.
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Figure 16: Statistic homogenization of a composite with randomly distributed
fibres with complex curvilinear cross section geometry. Mean value µG# and dis-
persion of G#, normalized by Gm as a function of the number of trilobe inclusion
per RUC obtained through Monte Carlo simulation; fibre/matrix stiffness ratio
ξ = 1000. , perfect interface (δ = ∞).
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