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Abstract

We present a numerical method (implemented in Matlab) for com-
puting an orthogonal polynomial basis on spherical triangles, via a
recent near-algebraic quadrature formula, and constructing the cor-
responding weighted orthogonal projection (hyperinterpolation) of a
function sampled at the quadrature nodes.

1 Introduction

In this note we present some numerical algorithms for the computation of
orthogonal polynomials on spherical triangles with respect to the surface
measure and for the construction of hyperinterpolation polynomials.

Despite of the relevance of spherical triangles in geomathematical mod-
elling, polynomial approximation on such regions of the sphere seems to
be little explored in the numerical literature. The topic itself of algebraic
quadrature, i.e. quadrature exact on polynomials up to a given degree,
has been extensively studied on the whole sphere as well as on special re-
gions such as spherical caps and spherical rectangles, whereas on spherical
triangles has been considered mainly with scattered data, and only quite
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recently faced by seeking low-cardinality formulas on special nodes; cf., e.g.,
[1, 14, 15, 19] with the references therein.

As it is well-known, as soon as an algebraic quadrature formula is at
hand, it is possible to reconstruct a continuous function from its values at
the quadrature nodes by hyperinterpolation, a technique that avoids the
inherent difficulties of multivariate polynomial interpolation (essentially the
need to find sets of unisolvent nodes, which is already a nontrivial problem,
with in addition a slowly increasing Lebesgue constant).

Introduced in a seminal paper by I.H. Sloan in 1995 [17] and initially
used mainly on the whole sphere [13], hyperinterpolation is essentially an
orthogonal (Fourier-like) projection on polynomial spaces, with respect to
the discrete measure associated with a positive algebraic quadrature formula,
or in other words a weighted least-squares polynomial approximation at the
quadrature nodes. In the last twenty years the subject has been developed
and extended to several 2-dimensional and 3-dimensional domains, such as
cubes and balls but also less standard ones, from both the theoretical and
the modelling/computational point of view; cf., e.g., [6, 11, 12, 5, 18, 21, 22]
with the references therein.

In the Section 2 we shall recall for the reader’s convenience some gen-
eral results about hyperinterpolation, while in Section 3 we shall focus on
quadrature and hyperinterpolation on spherical triangles, discussing their
implementation and presenting several numerical tests of function recon-
struction.

2 A little survey of hyperinterpolation

For the only purpose of completeness for nonexpert readers, we recall the
main features of hyperinterpolation. Given an orthonormal basis of Pd

n(Ω)
(the subspace of d-variate polynomials of total-degree not exceeding n, re-
stricted to a compact set or manifold Ω ⊂ R

d) with respect to a given
measure dµ on Ω, say {pj}, 1 ≤ j ≤ Nn = dim(Pd

n(Ω)), and a quadrature
formula exact for P

d
2n(Ω) (polynomials up to doubled degree) with nodes

X = {xi} ⊂ Ω and positive weights w = {wi}, 1 ≤ i ≤ M with M ≥ Nn,

∫

Ω
q(x) dµ =

M
∑

i=1

wi q(xi) , ∀q ∈ P
d
2n(Ω) , (1)

2



one can construct the discretized orthogonal projection (hyperinterpolation)
of f ∈ C(Ω)

(Lnf)(x) =
Nn
∑

j=1

〈f, pj〉ℓ2
w
(X) pj(x) =

Nn
∑

j=1

pj(x)
M
∑

i=1

wi f(xi) pj(xi) (2)

=
M
∑

i=1

wi f(xi)Kn(x, xi) =
M
∑

i=1

wi f(xi)
Nn
∑

j=1

pj(xi) pj(x)

≈ (Fnf)(x) =

Nn
∑

j=1

〈f, pj〉L2

dµ
(Ω) pj(x) =

∫

Ω
Kn(x, y) f(y) dµ ,

〈f, g〉ℓ2
w
(X) denoting the discrete scalar product generated by the quadrature

formula and 〈f, g〉L2

dµ
(Ω) the scalar product generated by dµ. The polynomial

Kn(x, y) =
∑Nn

j=1 pj(x) pj(y) is called the reproducing kernel of the measure
and as known does not depend on the orthonormal basis, cf. [10].

We recall that necessarilyM ≥ Nn since the quadrature nodes are Pd
n(Ω)-

determining (polynomials p ∈ P
d
n(Ω) vanishing there vanish everywhere on

Ω by (1) with q = p2), and that if M = Nn (in this special case the formula
is said to be minimal for P

d
n(Ω)) then the hyperinterpolation polynomial

Lnf is interpolant; however, minimal formulas are known only for very few
special domains and measures, cf. e.g. [23] with the references therein. We
also recall that if Ω is Pd

n-determining then Nn = dim(Pd
n) =

(

n+d
n

)

=
(

n+d
d

)

,
but the dimension can be lower when Ω lies on an algebraic variety, for
example

Nn = dim(P3
n(T )) = dim(P3

n(S
2)) = (n+ 1)2 (3)

for a spherical triangle T of the 2-sphere S2 in R
3 (one speaks of “spherical

polynomials” of degree not exceeding n in this case and is typically interested
in dµ = dσ, the standard surface measure on the sphere).

Concerning the reconstruction error estimates, one of the main results
in the original paper [17] is

‖f − Lnf‖L2

dµ
(Ω) ≤ 2

√

µ(Ω)En(f ; Ω) , En(f ; Ω) = min
p∈Pd

n(Ω)
‖f − p‖L∞(Ω) ,

(4)
to be compared with the analogue for the continuous orthogonal projec-
tion ‖f − Fnf‖L2

dµ
(Ω) ≤

√

µ(Ω)En(f ; Ω) which is only half. On the other

hand, using the well-known polynomial inequality involving the so-called
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“Christoffel polynomial” (the diagonal of the reproducing kernel) valid for
any p ∈ P

d
n(Ω)

‖p‖L∞(Ω) ≤
√

Cn ‖p‖L2

dµ
(Ω) , Cn = max

x∈Ω
Kn(x, x)

(observe that Cn ≥ Nn = 1
µ(Ω)

∫

ΩKn(x, x) dµ), one can easily estimate the

uniform operator norm of the discrete orthogonal projection operator (its
“Lebesgue constant” in the interpolation terminology, cf. [5])

‖Lnf‖L∞(Ω) ≤
√

Cn ‖Lnf‖L2(Ω) =
√

Cn ‖Lnf‖ℓ2
w
(X) ≤

√

Cn ‖f‖ℓ2
w
(X)

≤

√

√

√

√Cn

Nn
∑

i=1

wi ‖f‖ℓ∞(X) =
√

Cn µ(Ω) ‖f‖ℓ∞(X) ≤
√

Cn µ(Ω) ‖f‖L∞(Ω)

which gives immediately

‖Ln‖ = sup
f 6=0

‖Lnf‖L∞(Ω)

‖f‖L∞(Ω)
≤

√

Cn µ(Ω) , (5)

that is exactly what is obtained for the continuous orthogonal projection
operator, ‖Fn‖ ≤

√

Cn µ(Ω). From (5) one can obtain as for polynomial
interpolation operators a second reconstruction error estimate, now in the
sup-norm

‖f −Lnf‖L∞(Ω) ≤ (1 + ‖Ln‖)En(f ; Ω) ≤
(

1 +
√

Cn µ(Ω)
)

En(f ; Ω) , (6)

that is again exactly what is obtained for the continuous orthogonal projec-

tion operator, ‖f −Fnf‖L∞(Ω) ≤
(

1 +
√

Cn µ(Ω)
)

En(f ; Ω).

The error estimates reported above show that hyperinterpolation can be
considered as a reasonable alternative to continuous Fourier-like projection,
with the advantage of being much easier to compute, since it requires only
the availability of an algebraic quadrature formula as we shall see in the
next section.

3 Hyperinterpolation on spherical triangles

The key tool for hyperinterpolation of degree n is the availability of a positive
quadrature formula {(X,w)} like (1), exact up to degree 2n. The explicit
knowledge of an orthogonal polynomial basis by analytical formulas, often
not available, can indeed be bypassed numerically, computing the orthogonal
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polynomials by linear algebra techniques or in any case solving the weighted
least-squares problem

‖f − Lnf‖ℓ2
w
(X) = min

p∈Pd
n(Ω)

‖f − p‖ℓ2
w
(X)

or equivalently

‖
√
W (f − V c∗)‖2 = min

c∈RNn

‖
√
W (f − V c)‖2 , (7)

where W = diag(wi), f = {f(xi)} is a column vector and

Vn = Vn(X) ∈ R
M×Nn = (vij) = (φj(xi)) (8)

is a Vandermonde-like matrix in any given basis (φ1, . . . , φNn) of P
d
n(Ω).

In order to orthonormalize the basis with respect to the discrete measure
generated by the quadrature formula, which by polynomial exactness up to
degree 2n is orthonormal also with respect to dµ, one can compute the QR
factorization withQ ∈ R

M×Nn , R ∈ R
Nn×Nn , and construct the orthonormal

basis (p1, . . . , pNn) as

√
W Vn = QR , (p1, . . . , pNn) = (φ1, . . . , φNn)R

−1 , (9)

Un = Un(X) = VnR
−1 = (pj(xi)) becoming the Vandermonde-like matrix

in the orthonormal basis. Notice that R is invertible since Vn is full rank,
the quadrature nodes X being P

d
n(Ω)-determining.

At this point, the hyperinterpolation coefficients c∗ such that

Lnf(x) =

Nn
∑

j=1

c∗j pj(x)

are c∗j = 〈f, pj〉ℓ2
w
(X), 1 ≤ j ≤ Nn, and in view of (9) can be computed in

matrix form

c∗ = U t
nW f = (

√
W Un)

t
√
W f = Qt

√
W f . (10)

3.1 Near-algebraic quadrature on spherical triangles

Let us now focus on spherical triangles T =
⌢

abc of the 2-sphere, that is on
the case Ω = T ⊂ S2 and dµ = dσ (the surface measure on the sphere).
Recall that we seek a quadrature formula with positive weights and exactness
degree 2n on T .
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Figure 1: Quadrature nodes on a spherical triangle rotated with centroid at
the north pole, lifted from the projected elliptical triangle, before compres-
sion.

In [19] we have recently constructed a near-algebraic quadrature formula
on any spherical triangle that is not “too large”, in the sense that it is
completely contained in a hemisphere (not touching the base circle). By no
loss of generality we can consider up to a rotation a spherical triangle with
centroid (a+ b+ c)/‖a + b+ c‖2 at the north pole.

The method consists in projecting the spherical triangle on the equa-
torial plane, obtaining an “elliptical triangle” that can splitted into three
elliptical sectors, say S1, S2, S3; see Fig. 1. The surface integral of a trivari-
ate monomial xα yβ zγ , 0 ≤ α+β+γ ≤ 2n, becomes in cartesian coordinates
that for convenience we call (x, y, z)

∫

T
xα yβ zγ dσ =

3
∑

i=1

∫

Si

xα yβ g(x, y)γ−1 dx dy , g(x, y) =
√

1− x2 − y2 .

We then seek the degree m of a suitable bivariate polynomial that ap-
proximates 1/g at machine precision on the elliptical triangle, which can be
done via the univariate function 1/

√
1− t, 0 ≤ t = x2 + y2 ≤ ρ = r2, where

r is the minimal radius of an enclosing disk. In such a way the problem
is reduced to the computation of a quadrature formula of exactness degree
2n +m on each elliptical sector, a problem solved by subperiodic gaussian
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quadrature in [4]. Finally, we obtain a quadrature formula (Xbig,wbig) on
the spherical triangle, by lifting the collection of nodes (see Fig. 1, taken
from [19]) and scaling the weights by 1/g. Such a formula is only nearly
exact up to degree 2n, in the sense that the error size on spherical polyno-
mials remains close to machine-precision; see the error tables for spherical
harmonics in [19].

In practice however, a further step is usually necessary, since the cardi-
nality of the formula can be very high. Indeed, though the degree m is not
large unless ρ approaches 1 (for example, it is still between 50 and 60 for
a whole spherical octant, where ρ ≈ 0.67), the number of nodes increases
roughly like 1.5(2n +m)2 and becomes rapidly in the size of the thousands
(see again the tables in [19]).

In order to reduce the cardinality of the quadrature formula, one can re-
sort to what we have called “Caratheodory-Tchakaloff (CATCH) compres-
sion of discrete measures”; cf. [16] with the references therein on related
approaches in the recent literature. Indeed, Tchakaloff theorem ensures the
existence of an algebraic quadrature formula with positive weights for inte-
gration in any measure, with cardinality not exceeding the dimension of the
exactness polynomial space (cf. e.g. [3] for a general proof).

In the case of a discrete measure (here our high-cardinality quadrature
formula (Xbig,wbig) of degree 2n on the spherical triangle), such a result is
a direct consequence of Caratheodory theorem on conic linear combinations
in finite-dimensional spaces [2], applied to the columns of the transposed
Vandermonde-like matrix in the underdetermined moment-matching system

V t
2nu = V t

2nwbig , V2n = V2n(Xbig) ∈ R
card(Xbig)×N2n . (11)

By this theorem there exists a nonnegative solution u whose nonzero compo-
nents are at most the number of rows of V t

2n, that is N2n = dim(P3
2n(T )) =

(2n + 1)2. Such positive components, say w = {ui > 0}, identify a subset
X ⊂ Xbig and are the new weights of the compressed formula (X,w), with
card(X) ≤ N2n; see Fig. 2 for an illustration. We stress that the compres-
sion ratio, at least roughly 1.5(2n+m)2/(2n+1)2, is remarkable especially
at low degrees n and for large triangles (see [19] for a plot of m as a function
of ρ and for some tabulated compression ratios).

The computation of such a sparse nonnegative solution can be accom-
plished by the Lawson-Hanson active-set method for the NonNegative Least
Squares (NNLS) problem

min
u≥0

‖U t
2nu− U t

2nwbig‖2 , U2n = V2nR
−1 ,

√

Wbig V2n = QR , (12)
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Figure 2: The 121 quadrature nodes for degree 2n = 10 (hyperinterpolation
degree n = 5) on the spherical triangle after compression.

with an accelerated version that has shown experimentally a speed-up by
a factor from 2 to 5 with respect to standard implementations, cf. [8, 9].
In (12) the matrix U2n in the ℓ2wbig

(Xbig)-orthonormal basis (p1, . . . , pN2n
) is

preferred to V2n in order to control the conditioning.

3.2 Implementation and numerical results

We have implemented in Matlab the algorithms described above for quadra-
ture and hyperinterpolation on spherical triangles, creating a devoted pack-
age available at [20]. Concerning the computation of the initial quadrature
formula we resorted to our previous codes for subperiodic trigonometric
gaussian quadrature and algebraic quadrature on circular/elliptical sectors
discussed in [4], that have been inserted in the package.

For the implementation of the quadrature compression step in (12) and
the hyperinterpolation procedure (7)-(10), we adapted to the sphere some
routines of the recent general package dCATCH for discrete measure com-
pression and polynomial fitting in d-variables (here d = 3); cf. [7, 8].

The basic routine dCHEBVAND computes a starting Vandermonde-
like matrix in the 3-variate total-degree product Chebyshev basis of a carte-
sian box containing the spherical triangle, with a graded lexicographical

8



ordering. Such a basis turns out to give a much better conditioned ma-
trix with respect to both, the standard 3-variate monomial basis and the
spherical harmonics basis.

The kernel of the package is represented by five routines:

• the routine dORTHVANDsph performs the computation of an or-
thonormal basis with respect to a given discrete measure on the spher-
ical triangle and the corresponding Vandermonde-like matrix U , cf.
(12) for quadrature and (9) for hyperinterpolation, automatically adap-
tating the polynomial space to the sphere via a preliminary QR factor-
ization with column pivoting of the Chebyshev-Vandermonde matrix
to choose the basis elements;

• the routine dCATCHsph performs the compression of the high-cardinality
quadrature formula via NNLS, cf. (12), calling dORTHVANDsph and the
auxiliary routine LHDM (an accelerated version of Lawson-Hanson
algorithm by “Deviation Maximization”, cf. [9]);

• the routine dPOLYFITsph computes the hyperinterpolation coeffi-
cients as in (10), calling dORTHVANDsphwith the compressed formula; it
is accompanied by the routine dPOLYVAL that computes the hyper-
interpolation polynomial, given the coefficients and the transformation
matrix R to get the orthonormal basis in (9).

In Fig. 3 we show the reconstruction errors by hyperinterpolation of
some test functions with different regularity on a large spherical triangle,
namely the octant with vertices (1, 0, 0),(0,1,0), (0, 0, 1).

In view of (4) we have computed at degrees n = 1, 2, . . . , 15 the (approx-
imate) relative L2

dσ errors

‖f − Lnf‖ℓ2
ω
(Ξ)

‖f‖ℓ2
ω
(Ξ)

≈
‖f − Lnf‖L2

dσ
(T )

‖f‖L2

dσ
(T )

(where (Ξ,ω) is the uncompressed quadrature formula of degree 40), for the
following six test functions (where P = (x, y, z), P0 = (0, 0, 1) is the north
pole, a vertex of the octant, and Q0 = ( 1√

3
, 1√

3
, 1√

3
) is the centroid)

f1(x, y, z) = 1+x+y2+x2y+x4+y5+x2y2z2 , f2(x, y, z) = cos(10(x+y+z)) ,

f3(x, y, z) = exp
(

−‖P − P0‖22
)

, f4(x, y, z) = exp
(

−‖P −Q0‖22
)

f5(x, y, z) = ‖P − P0‖52 , f6(x, y, z) = ‖P −Q0‖52 .
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In particular, f1 is a polynomial of degree 6, f2, f3 and f4 are smooth,
while f5 and f6 are C4 with a singularity of the fifth derivatives at P0

and Q0. We observe that, as expected, the error on f1 goes down around
machine precision for n ≥ 6, and the convergence is slower for the less regular
functions f5 and f6; see Fig. 3-top. Similar results are obtained computing
the relative errors in the sup-norm, reported in Fig. 3-bottom.

It is also meaningful to compute the uniform norm of the hyperinterpo-
lation operator and to compare it with the upper estimate in (5), since the
former as known is related not only to convergence but also to stability with
respect to noise in the sampled function, by the estimate

‖Lnf − Lnf̃‖L∞(Ω) ≤ ‖Ln‖ ‖f − f̃‖ℓ∞(X) ≤ ‖Ln‖ ‖f − f̃‖L∞(Ω) .

Indeed, by (2) it can be proved that

‖Ln‖ = max
x∈Ω

M
∑

i=1

|gi(x)| , gi(x) = wiKn(xi, x) , (13)

where the {gi} are a set of generators (in general not a basis unlessM = Nn)
of Pd

n(Ω), that play a similar role to the cardinal Lagrange polynomials in
interpolation. Both ‖Ln‖ and

√

Cn µ(Ω) have been computed numerically
by maximing on a fine discretization of the spherical triangle and reported
for comparison in Fig. 4. We see that

√

Cn µ(Ω) is a large overestimate of
the actual norm, with a quadratic-like versus a linear-like growth.
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