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Abstract

We show that hyperinterpolation at Xu cubature points for the product Chebyshev
measure, along with Xu compact formula for the corresponding reproducing kernel,
provide a simple and powerful polynomial approximation formula in the uniform
norm on the square. The Lebesgue constant of the hyperinterpolation operator
grows like log2 of the degree, as that of quasi-optimal interpolation sets recently
proposed in the literature. Moreover, we give an accurate implementation of the
hyperinterpolation formula with linear cost in the number of cubature points, and
we compare it with interpolation formulas at the same set of points.
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1 Introduction.

Hyperinterpolation of multivariate continuous functions on compact subsets or
manifolds, originally introduced by I.H. Sloan in [16], is a discretized orthog-
onal projection on polynomial subspaces, which provides an approximation
method more general (in some sense) than interpolation. Its main success up
to now has been given by the application to polynomial approximation on the
sphere; see, e.g., [13,17,11]. Indeed, the effectiveness of hyperinterpolation in
the uniform norm requires three basic ingredients, which are seldom at dis-
posal all together: a “good” cubature formula (i.e., positive weights and high
algebraic degree of exactness), a “good” (i.e., accurate and efficient) formula
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for the reproducing kernel, and “slow” increase of the Lebesgue constant (the
operator norm).

These requirements can be easily recognized, by summarizing briefly the struc-
ture of hyperinterpolation. Let Ω ⊂ R

d be a compact subset (or lower dimen-
sional manifold), and µ a positive measure such that µ(Ω) = 1 (i.e., a nor-
malized positive and finite measure on Ω). For every function f ∈ C(Ω) the
µ-orthogonal projection of f on Πd

n(Ω) (the subspace of d-variate polynomials
of degree ≤ n restricted to Ω) can be written as

Snf(x) =
∫

Ω

Kn(x, y) f(y) dµ(y) , x ∈ Ω , with Snp = p for p ∈ Πd
n(Ω) ,(1)

where the so-called reproducing kernel Kn is defined by

Kn(x, y) =
n

∑

s=0

Pt
s(x)Ps(y) , x, y ∈ R

d , (2)

the sequence of polynomial arrays (P0, . . . ,Pn) being any µ-orthonormal basis
of Πd

n(Ω); cf. [9, §3.5].

Now, given a cubature formula for µ with N = N(n) nodes ξ ∈ XN ⊂ Ω and
positive weights {wξ}, which is exact for polynomials of degree ≤ 2n,

∫

Ω

p(x) dµ =
∑

ξ∈XN

wξ p(ξ) , ∀p ∈ Πd
2n(Ω) , (3)

we obtain from (1) the polynomial approximation of degree n

f(x) ≈ Lnf(x) =
∑

ξ∈XN

wξ Kn(x, ξ) f(ξ) (hyperinterpolation) . (4)

It is known that necessarily N ≥ dim(Πd
n(Ω)), and that (4) is a polynomial

interpolation at XN whenever the equality holds; cf. [16,11].

The hyperinterpolation error in the uniform norm, due to the exactness on
Πd

2n(Ω), can be easily estimated as

‖f − Lnf‖∞ ≤ (1 + Λn)En(f) , Λn = ‖Ln‖ = max
x∈Ω







∑

ξ∈XN

wξ |Kn(x, ξ)|






,(5)

where Λn is the operator norm of Ln : (C(Ω), ‖·‖∞) → (Πd
n(Ω), ‖·‖∞), usually

termed the “Lebesgue constant” in the interpolation framework.
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2 Hyperinterpolation at Xu points on the square.

In the paper [20], Y. Xu introduced a set of Chebyshev-like points in the square
[−1, 1]2, which generate a (near) minimal degree cubature for the normalized
product Chebyshev measure,

dµ =
1

π2

dx1 dx2
√

1 − x2
1

√

1 − x2
2

, Ω = [−1, 1]2 . (6)

For even degrees such points and the corresponding minimal cubature ap-
peared already in [12]; see also [7,6]. In addition, Xu proved that these points
are also suitable for constructing polynomial interpolation, in a polynomial
subspace Vn, Π2

n−1 ⊂ Vn ⊂ Π2
n.

Interpolation at the Xu points, recently studied thoroughly in [1,2], exhibits
some very appealing features: there is a compact formula for the Lagrange
polynomials, which must be stabilized but nevertheless leads to linear com-
plexity in the evaluation of the interpolant; the Lebesgue constant of the in-
terpolation is O(log2 n), n being the degree, i.e. the polynomial approximation
is “quasi-optimal” (cf. [4]).

Here we show that hyperinterpolation at the Xu points, even though is not
interpolant, shares the same good computational features of Xu-like interpo-
lation. In what follows we restrict, for simplicity’s sake, to odd degrees n: the
case of even degrees can be treated in a similar fashion, cf. [20].

Considering the n+ 2 Chebyshev-Lobatto points on the interval [−1, 1]

zk = zk,n+1 = cos
kπ

n + 1
, k = 0, . . . , n+ 1, n = 2m− 1 , m ≥ 1 , (7)

the Xu points on the square Ω are defined as the two dimensional Chebyshev-
like set

XN = A ∪ B , of cardinality N = (n+ 1)(n+ 3)/2 ,

where

A= {(z2i, z2j+1), 0 ≤ i ≤ m, 0 ≤ j ≤ m− 1} , (8)

B= {(z2i+1, z2j), 0 ≤ i ≤ m− 1, 0 ≤ j ≤ m} .

These points generate a minimal cubature formula, that is

∫

Ω

p(x) dµ =
∑

ξ∈XN

wξ p(ξ) , ∀p ∈ Π2
2n+1 , (9)
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where the weights are simply wξ = 2(n+1)−2 for ξ ∈ XN∩
◦

Ω (interior points),
(n+1)−2 for ξ ∈ XN ∩∂Ω (boundary points); cf. [12,20]. Hence, in view of (3)
we can construct the hyperinterpolation formula (4), which is not interpolant,
since N = (n + 1)(n + 3)/2 > dim(Π2

n) = (n + 1)(n + 2)/2. In any case, its
uniform approximation error can be estimated as in (5).

Moreover, the reproducing kernelKn(x, y) has an explicit and compact trigono-
metric representation (obtained by Y. Xu in [19])

Kn(x, y)=Dn(θ1 + φ1, θ2 + φ2) +Dn(θ1 + φ1, θ2 − φ2) + (10)

+Dn(θ1 − φ1, θ2 + φ2) +Dn(θ1 − φ1, θ2 − φ2) ,

where x = (cos θ1, cos θ2), y = (cosφ1, cosφ2), and the bivariate function Dn

is defined for every n > 0 by

Dn(α, β) =
1

2

cos((n+ 1/2)α) cos(α/2) − cos((n+ 1/2)β) cos (β/2)

cosα− cos β
. (11)

(note: the definitions ofKn andDn have been changed w.r.t. [20], in such a way
that the index is exactly the degree of hyperinterpolation). This representation
allows an efficient implementation (after some nontrivial stabilization), and the
possibility of estimating analitically the Lebesgue constant, as we shall see in
the following subsections.

2.1 Estimating the Lebesgue constant.

First, it is convenient to rewrite Dn(α, β). By simple trigonometric manipula-
tions, we obtain

Dn(α, β) =
1

4
(Un(cosφ)Un(cosψ) + Un−1(cosφ)Un−1(cosψ)) , (12)

where φ = (α − β)/2, ψ = (α + β)/2, and Un denotes the usual Chebyshev
polynomial of the second kind. This rewriting is also very useful for stabilizing
the computation of Dn, as it is outlined in the next subsection.

With (12) at hand, it comes easy to bound the Lebesgue constant of hy-
perinterpolation linearly with N , the number of Xu points. Indeed, from the
well-known bound for Chebyshev polynomials of the second kind |Un(cos θ)| ≤
n + 1, we get immediately wξ |Kn(x, ξ)| ≤ 2 ((n+ 1)2 + n2)/(n + 1)2 ≤ 4, for
any x ∈ Ω, ξ ∈ XN . Then, from (5) we get the estimate Λn ≤ 4N ∼ 2n2.
This already shows that hyperinterpolation at the Xu points is not a bad
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choice for approximation in the uniform norm. However, the latter is a sub-
stantial overestimate of the actual Lebesgue constant. In fact, we can prove
the following

Theorem 1 The Lebesgue constant of hyperinterpolation at the Xu points can

be bounded as

Λn ≤ 8
(

2

π
log (n+ 1) + 5

)2

+ 5
(

2

π
log (n+ 1) + 5

)

+ 2 . (13)

PROOF. We give only the first step, because then the proof is very close to
that in [2]. By using the trigonometric identity Un−1(cos θ) = Un(cos θ) cos θ−
cos (n + 1)θ, from the representation (12) we get immediately the estimate
|Dn(α, β)| ≤ 1

2
|Un(cosφ)Un(cosψ)| + 1

4
(|Un(cosφ)|+ |Un(cosψ)|) + 1

4
. We can

now proceed following the lines of [2], where the peculiar structure of the Xu
points is nontrivially exploited, obtaining (13).

2.2 Implementing hyperinterpolation.

Rearranging (11) in the case that cos(α) = cos(β), allows us to give a version of
the hyperinterpolation formula with pointwise evaluation cost O(N). However,
the hyperinterpolant at the Xu points evaluated via (11) (which is like a
first divided difference) turns out to be severely ill-conditioned, and must be
stabilized.

To this purpose it is convenient to use the rewriting (12) of (11), and to com-
pute the polynomials Un by their three-term recurrence relation. The evalu-
ation of Dn(α, β) becomes stable, paying the price of a computational cost
O(n) instead of O(1). Then, it is not difficult to see that the dominant term
in the final complexity for the pointwise evaluation of the hyperinterpolation
polynomial Lnf(x), is (2n× 4)N ∼ 8

√
2N3/2 ∼ 4n3 flops.

An effective way to reduce the computational cost of the stabilized formula
(12), still preserving high accuracy, is to compute the Chebyshev polynomials
of the second kind Un by the three-term recurrence relation only when the
trigonometric representation Un(cos θ) = sin(n+1)θ/ sin θ (whose cost is O(1)
in n and θ) is ill-conditioned, say when |θ − kπ| ≤ ε for a “small” value of
ε. In this case, it is important to estimate the average use percentage of the
recurrence relation in evaluating the hyperinterpolation polynomial.

As in [1] concerning interpolation at the Xu points, we can resort to some prob-
abilistic considerations. Indeed, taking random, uniformly distributed evalua-
tion points in the square, such a percentage becomes a random variable (func-
tion of a uniform random variable), whose expectation, say η, depends on the
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threshold ε but not on the degree n. This is clearly seen in Tables 1 and 2,
where it is shown that the averages up to one million random points converge
to a value, that does not depend on the degree n.

Table 1
Average use percentage η of the recurrence relation for Un, in evaluating the hyper-
interpolation polynomial at degree n = 19, up to 106 uniform random points.

# of random percentage η

points ε = 0.01 ε = 0.1

1.0E+02 0.75 6.25

1.0E+03 0.69 6.27

1.0E+04 0.63 6.34

1.0E+05 0.64 6.36

1.0E+06 0.64 6.37

Table 2
Average use percentage η of the recurrence relation for Un, in evaluating the hyper-
interpolation polynomial at different degrees.

degree percentage η

n ε = 0.01 ε = 0.1

19 0.64 6.37

39 0.64 6.37

79 0.64 6.37

Now, the evaluation of Kn(x, ξ) using only the trigonometric representation of
Un(cos θ) costs about 6× 4 = 24 evaluations of the sine function. Denoting by
csin the average evaluation cost of the sine function (which actually depends
on its internal implementation), the average complexity for the evaluation of
the hyperinterpolation polynomial Lnf(x) at the Xu points is of the order of

C(n, ε) := 8nτN + 24csin(1 − τ)N ∼ 4n3τ + 12csin(1 − τ)n2 flops , (14)

where τ = η/100. Using the experimental value csin = 10 (obtained with
GNU Fortran, but consistent with usual implementations, cf. [18]), we can
conclude that, for ε ≤ 0.01 (i.e., τ ≤ 0.0064), the size of the ratio C(n, ε)/N
remains constant up to degrees of the order of hundreds, that is in practical
applications the computational cost can be considered linear in the number
N of Xu points.

2.3 Comparison with Xu-like interpolation.

It is worth comparing interpolation with hyperinterpolation at the same set of
Xu points. Given XN = A ∪B defined as in (8), we have two choices. On one
hand, we can use Xu interpolation formula [20,1], which gives a polynomial
of degree n + 1, say pXu

n+1 ∈ Vn+1, where Π2
n ⊂ Vn+1 ⊂ Π2

n+1. As shown
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in [1], the dominant cost in the pointwise evaluation of such a polynomial
is 32csinN flops (since both Kn and Kn+1 are involved in the definition of
the Lagrange polynomials), where csin represents the average evaluation cost
of the sine function. The uniform approximation error can be estimated as
‖f − pXu

n+1‖∞ ≤ (1 + ΛXu

n+1) infp∈Vn+1
‖f − p‖∞ ≤ (1 + ΛXu

n+1)En(f), where
ΛXu

n+1 denotes the Lebesgue constant of Xu-like interpolation. Then, using the
estimate of ΛXu

n+1 given in [2], we get

‖f − pXu

n+1‖∞ ≤
(

8a2
n + 5

)

En(f) (interpolation) , (15)

where we have defined

an =
2

π
log (n+ 1) + 5 . (16)

On the other hand, hyperinterpolation at XN gives a polynomial of degree
n, which is not interpolant. The dominant cost in its pointwise evaluation is
24csinN flops, and the uniform approximation error is estimated via (5) and
(13), i.e.,

‖f − Lnf‖∞ ≤
(

8a2
n + 5an + 3

)

En(f) (hyperinterpolation) . (17)

In view of the error estimates above we can expect, in practice, close approx-
imation errors by the two methods, as is confirmed by the numerical tests of
the next section.

3 Numerical tests.

In order to show the efficiency and robustness of our implementation of hyper-
interpolation at the Xu points [5], we made some comparisons with Xu-like in-
terpolation (as implemented in [1,5]), and with the MPI package by T. Sauer,
one of the most effective implementations of Multivariate Polynomial Inter-
polation (via finite differences and the notion of blockwise interpolation, cf.
[14,15]).

We compared the CPU times necessary to build and evaluate the interpolant,
as well as the approximation errors, on a grid of 100 × 100 control points in
the reference square, with hyperinterpolation at Xu points (HYP-XU), and
interpolation at the same points (MPI, and Xu-like interpolation INT-XU).
Clearly, both INT-XU and HYP-XU can be extended to arbitrary rectangles
by an obvious change of variables. The tests were performed on a AMD Athlon
2800+ processor machine. Our numerical results on several test functions with
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different degree of regularity, some of which are collected in the tables below,
show that:

• MPI works quite well for small degrees, but becomes useless for higher
degrees, even when one tries to stabilize it by a Leja-like reordering of the
interpolation points (cf. [1,8]);

• both INT-XU and HYP-XU are accurate and robust, and can suitably man-
age very high degrees (up to the order of the hundreds, without problems);

• in practice, HYP-XU approximates like INT-XU, but has slightly lower
computational cost.

From the observations above, we can draw the conclusion that hyperinterpola-
tion at Xu points might be considered a valid alternative to interpolation, for
polynomial approximation of bivariate functions that can be sampled without
restrictions on rectangles.

Table 3
CPU times (in seconds) and approximation errors on [0, 1]2 for the classical

Franke test function f(x1, x2) = 3
4 e−

1

4
((9x1−2)2+(9x2−2)2)+ 3

4 e−
1

49
(9x1+1)2− 1

10
(9x2+1)+

1
2 e−

1

4
((9x1−7)2+(9x2−3)2) − 1

5 e−((9x1−4)2+(9x2−7)2), using N = (n + 1)(n + 3)/2 Xu
points with interpolation of degree n + 1 (MPI, stabilized MPI, Xu interpolation
formula) and hyperinterpolation of degree n.

n 19 29 39 49 59

N 220 480 840 1300 1860

MPI 0.6 Unsolv. Unsolv. Unsolv. Unsolv.

3.8E-02 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

MPI-Leja 0.6 4.3 21.0 75.6 Unsolv.

6.4E-03 3.5E-04 1.1E-04 2.0E-03 ∗ ∗ ∗

INT-XU 2.1 5.2 10.3 17.8 28.4

7.3E-03 3.6E-04 3.1E-06 1.8E-08 2.5E-11

HYP-XU 1.9 4.7 9.5 16.6 26.5

7.3E-03 3.6E-04 3.2E-06 1.8E-08 3.0E-11

Table 4
As in Table 3 for the function f(x1, x2) = (x2

1 + x2
2)

5/2 on [−1, 1]2.

n 19 29 39 49 59

MPI-Leja 0.6 4.3 20.8 74.8 Unsolv.

1.1E-04 1.3E-05 1.4E-05 6.8E-04 ∗ ∗ ∗

INT-XU 2.1 5.2 10.3 17.8 28.4

1.1E-04 1.3E-05 3.1E-06 1.0E-06 4.0E-07

HYP-XU 1.9 4.7 9.5 16.6 26.5

1.1E-04 1.3E-05 3.1E-06 1.0E-06 4.0E-07
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