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Abstract.

A new algebraic cubature formula of degree 2n+1 for the product Chebyshev measure
in the d-cube with ≈ nd/2d−1 nodes is established. The new formula is then applied
to polynomial hyperinterpolation of degree n in three variables, in which coefficients of
the product Chebyshev orthonormal basis are computed by a fast algorithm based on
the 3-dimensional FFT. Moreover, integration of the hyperinterpolant provides a new
Clenshaw-Curtis type cubature formula in the 3-cube.
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1 Introduction.

A cubature formula with high accuracy is an important tool for numerical com-
putation and has various applications. One of the applications is to construct
polynomial hyperinterpolation, introduced by Sloan [18], which is an approxi-
mation process constructed by applying the cubature formula on the expansion
coefficients of the orthogonal projection operator.

A cubature formula of degree 2n + 1 with N nodes with respect to a measure
dµ supported on a set Ω takes the form

(1.1)

∫

Ω

p(x) dµ =
∑

ξ∈Xn

wξ p(ξ) for all p ∈ Πd
2n+1(Ω) ,

where {wξ}, called weights, are (positive) numbers, Xn is a set of points, called
nodes,

(1.2) ξ := (ξ1, ξ2, . . . , ξd) ∈ Xn ⊂ Ω
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with card(Xn) = N , and Πd
m(Ω) denotes the subspace of d-variate polynomials

of total degree ≤ m restricted to Ω. For a cubature formula of degree 2n + 1 to
exist, it is necessary that

(1.3) N := card(Xn) ≥ dim(Πd
n(Ω)) =

(

n + d

d

)

=
nd

d!
(1 + o(1)).

There are improved lower bounds of the same order in terms of n. A challenging
problem is to construct cubature formulae with fewer nodes, that is, with the
number of nodes N close to the lower bound.

In this paper we consider the case that the measure is given by the product
Chebyshev weight function

(1.4) dµ = Wd(x) dx, Wd(x) :=
1

πd

d
∏

i=1

1
√

1 − x2
i

on the cube Ω := [−1, 1]d. For d = 1, the Gaussian quadrature formula of degree
2n+1 needs merely N = n+1 points. Our main result is a new family of cubature
formulae that uses N ≈ nd/2d−1 nodes. For d = 2 these formulae are known
to have minimal number of nodes. For d ≥ 3 they are still far from the lower
bound, but they appear to be the best ones that are known at this moment.
We refer to Section 2 for further discussions. We present numerical tests on
these cubature formulae in three variables and also apply them to constructing
polynomial hyperinterpolation operator in three variables.

For every function f ∈ C(Ω) the µ-orthogonal projection of f on Πd
n(Ω) is

(1.5) Snf(x) =
∑

|α|≤n

aα pα(x), aα :=

∫

Ω

f(x) pα(x) dµ ,

where x = (x1, x2, . . . , xd) is a d-dimensional point, α is a d-index of length |α|

(1.6) α = (α1, . . . , αd) ∈ N
d
0, |α| := α1 + . . . + αd ,

and the set of polynomials {pα , 0 ≤ |α| ≤ n} is any µ-orthonormal basis of
Πd

n(Ω) with pα of total degree |α| (concerning the theory of multivariate orthog-
onal polynomials, we refer the reader to the monograph [9]). Clearly, Snp = p
for every p ∈ Πd

n(Ω). Given a cubature formula (1.1) of degree ≤ 2n, we obtain
from (1.5) the polynomial approximation of degree n by the discretized expansion
coefficients {cα}

(1.7) f(x) ≈ Lnf(x) :=
∑

|α|≤n

cα pα(x) , cα :=
∑

ξ∈Xn

wξ f(ξ) pα(ξ) ,

where cα = aα and thus Lnp = Snp = p for every p ∈ Πd
n(Ω). This is the

hyperinterpolation operator. It satisfies the basic estimate: for every f ∈ C(Ω),

(1.8) ‖f − Lnf‖L2
dµ

(Ω) ≤ 2
√

µ(Ω)En(f) → 0 , n → ∞ ,
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where En(f) := inf {‖f − p‖∞ , p ∈ Πd
n(Ω)}, so that it converges in mean. The

convergence rate can be estimated by a multivariate version of Jackson theo-
rem (see, for example, [16]), which shows that En(f) = O(n−p) for f ∈ Cp(Ω),
p ∈ R

+. It becomes an effective approximation tool in the uniform norm when its
operator norm (the so-called Lebesgue constant) grows slowly (cf. [17, 19, 11, 5]).
The hyperinterpolation has been used effectively in several cases: originally for
the sphere [17, 19], and more recently for the square [4, 5], the disk [11], and
the cube [6]. We will use our new cubature formulae to construct a hyperinter-
polation operator of three variables for the Chebyshev weight function on the
cube. We show that the computation can be carried out efficiently using the 3-
dimensional FFT and that the algorithm can be completely vectorized. We will
also present numerical results on hyperinterpolation of several test functions.

The paper is organized as follows. In Section 2 we construct new cubature for-
mulae and report results of numerical tests, where comparisons are made with
tensor-product Gauss-Chebyshev formulae. Hyperinterpolation in three vari-
ables is considered in Section 3, where we show how to compute it effectively
and report the results of numerical tests. Finally in Section 4, we obtain a new
(nontensorial) Clenshaw-Curtis type formula in the cube by integrating the hy-
perinterpolant in Section 3 and show that it has a clear superiority over tensorial
Clenshaw-Curtis and Gauss-Legendre cubature on nonentire test integrands, a
phenomenon known for 1-dimensional and 2-dimensional Clenshaw-Curtis for-
mulae (see [21, 20]).

2 Algebraic cubature for the d-dimensional Chebyshev measure.

We consider cubature formula for the product Chebyshev weight function (1.4),
which is normalized so that its integral over Ω = [−1, 1]d is 1. For d = 1, we
write w(x) = W1(x).

In what follows we use for conveninece the notation Πn = Π1
n([−1, 1]). The

Gaussian quadrature formula for w takes the form

(2.1)

∫ 1

−1

f(x)w(x)dx =
1

n

n
∑

k=1

f(cos (2k−1)π
2n ) , ∀f ∈ Π2n−1 .

For d = 2, a cubature formula of degree 2n − 1 needs at least (cf. [14])

(2.2) N∗ = dim(Π2
n−1(Ω)) +

⌊n

2

⌋

=
n(n + 1)

2
+
⌊n

2

⌋

many nodes. Cubature formulae that attain this lower bound can be constructed
for the product Chebyshev weight W2(x) (see [15, 24] and the references therein)
by studying common zeros of associated orthogonal polynomials. In [1], these
cubature rules were derived by an elementary method which depends on a fac-
torization of the Gauss-Lobatto quadrature into two sums, over even indices and
odd indices, respectively. This factorization method was also used for d > 2 in
[1] and yields a cubature formula of degree 2n− 1 for Wd with roughly nd/2d/2

many nodes.
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A close inspection of the factorization method shows that it actually allows us
to derive cubature formulae of degree 2n−1 for Wd with roughly 2(n/2)d nodes.
This number of nodes is substantially less than nd of the product cubature
formula or nd/2d/2 of the formulae in [1], although it is likely still far from
optimal as seen from (1.3).

We start with the Gauss-Lobatto formula for w on [−1, 1]. It takes the form

(2.3)

∫ 1

−1

f(x)w(x)dx =
1

n





1

2
f(−1) +

n−1
∑

j=1

f
(

cos jπ
n

)

+
1

2
f(1)



 := Inf ,

which again holds for all f ∈ Π2n−1. We proceed to factor this rule into two
terms. The factorization depends on whether n is even or n is odd. Define

n = 2m :

IE
n f :=

1

n





1

2
f(−1) +

m−1
∑

j=1

f
(

cos 2jπ
n

)

+
1

2
f(1)





IO
n f :=

1

n

m
∑

j=1

f
(

cos (2j−1)π
n

)

(2.4)

and define

n = 2m − 1 :

IE
n f :=

1

n





m−1
∑

j=1

f
(

cos 2jπ
n

)

+
1

2
f(1)





IO
n f :=

1

n





1

2
f(−1) +

m−1
∑

j=1

f
(

cos (2j−1)π
n

)



 ,

(2.5)

where we use the superscripts E and O to signify that the sum is taken over even
indices or odd indices, respectively. Evidently, the quadrature (2.3) becomes

∫ 1

−1

f(x)w(x)dx = IE
n f + IO

n f , ∀f ∈ Π2n−1 ,

by definition.
The Chebyshev polynomials, Tn, are orthogonal with respect to w on [−1, 1],

Tn(t) := cosnθ , t = cos θ .

The following elementary lemma plays a key role in constructing cubature for-
mulae on [−1, 1]d.

Lemma 2.1. For n ≥ 0 and k ∈ Z,

IE
n Tk =

{

0, k 6= 0 mod n
1
2 , k = 0 mod n

and IO
n Tk =











0, k 6= 0 mod n
1
2 , k = 0, 2n, 4n, . . .

− 1
2 , k = n, 3n, . . . .
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Proof. The proof follows from elementary trigonometric identities. For exam-
ple, for n = 2m, an elementary calculation shows that

IO
n Tk =

1

n

m
∑

j=1

cos k (2j−1)π
2m =

sin kπ

4m sin kπ
2m

=
sin kπ

2n sin kπ
n

from which IO
n Tk = 0 for k 6= 0 mod n follows immediately. The case when k

is a multiple of n follows from the first equal sign of the above equation without
summing it up. Similarly,

IE
n Tk =

1

n





1

2
cos kπ +

m−1
∑

j=1

cos k jπ
m +

1

2



 =
sin kπ cos kπ

n

2n sin kπ
n

,

from which the stated result follows. The proof for n = 2m− 1 is similar and is
omitted for brevity. q.e.d.

Let σ ∈ {E, O}d, that is,

σ = (σ1, . . . , σd) with σi = E or σi = O.

For a function f : R
d 7→ R, we define the sum

Iσ1

n · · · Iσd
n f

as a d-fold multiple sum in which Iσk is applied to the k-th variable of f . Let
us define

(2.6) σ̄i =

{

E σi = O
O σi = E

For each σ ∈ {E, O}d, we then define

Iσ
n,df := Iσ1

n . . . Iσd
n f + I σ̄1

n . . . I σ̄d
n f .

Since the sum introduces a symmetry among σ ∈ {E, O}d, there are 2d−1 distinct
Iσ
n,df sums.

Theorem 2.2. For d ≥ 1 and each σ ∈ {E, O}d, the cubature formula

(2.7)

∫

[−1,1]d
f(x)Wd(x)dx = 2d−1Iσ

n,df

is exact for f ∈ Πd
2n−1(Ω) and its number of nodes, N , satisfies

N = 2
(⌊n

2

⌋)d

(1 + o(n−1)) .
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Proof. For k = (k1, . . . , kd) ∈ N
d
0 let Tk(x) := Tk1

(x1) · · ·Tkd
(xd), which is a

polynomial of total degree |k| := k1+· · ·+kd. It is well known that {Tk : |k| ≤ n}
is an orthogonal basis of Πd

n(Ω) (cf. [9]). Thus, it suffices to establish (2.7) for
f ∈ {Tk : |k| ≤ 2n− 1}. In this case we have

∫

[−1,1]d
Tk(x)Wd(x)dx = 2d−1

[

Iσ1

n Tk1
· · · Iσd

n Tkd
+ I σ̄1

n Tk1
· · · I σ̄d

n Tkd

]

.

Since T(0,...,0)(x) ≡ 1, we can write

∫

[−1,1]d
Tk(x)Wd(x)dx =

∫

[−1,1]d
Tk(x)T(0,...,0)(x)Wd(x)dx = δk,(0,...,0) ,

where the last equality is due to the orthogonality of {Tk}. From the definition
of IE

n and IO
n , it is evident that IE

n 1 = IO
n 1 = 1/2. Hence, for k = (0, . . . , 0),

the right hand side is equal to 2d−1(2−d + 2−d) = 1, verifying the equation for
k = (0, . . . , 0).

Assume now 0 < |k| ≤ 2n − 1. If one of ki 6= 0 mod n, then Iσ
n,dTk = 0

by Lemma 2.1. We are left with the case that ki = 0 mod n for all i. Since
|k| ≤ 2n− 1, there can be at most one ki = n. Furthermore, |k| > 0 shows that
there is exactly one ki = n. Thus the right hand side becomes Iσi

n Tn + I σ̄i
n Tn =

IE
n Tn + IO

n Tn, which is zero as IE
n Tn = 1/2 and IO

n Tn = −1/2 according to the
Lemma 2.1. The last claim of the statement follows by the observation that each
term in formulas (2.4) and (2.5) uses

⌊

n
2

⌋

+ O(1) points. q.e.d.

For the case of d = 2, Theorem 2.2 contains two distinct cubature formulae
for σ = (E, E), (E, O), respectively, whose number of nodes are either equal to
N∗ in (2.2) or N∗ + 1, those are the ones that have appeared in [15, 24], and
later in [1], as mentioned earlier. For d = 3, there are 4 distinct formulae for
σ = (E, E, E), (E, E, O), (E, O, E), (O, E, E), respectively. For n = 2m, the
number of nodes is

N =
(n + 1)3 + (n + 1)

4

for σ = (E, E, E) and

N =
(n + 1)3 − (n + 1)

4

for σ = (E, E, O), (E, O, E), (O, E, E), respectively.
In order to demonstrate the effectiveness of the new cubature formula, we

present in Figures 1-2 numerical results of (2.7) with σ = (E, E, E) on the inte-
grals of six text functions with respect to the product Chebyshev measure on the
3-cube. The first three functions are analytic entire (a polynomial, an exponen-
tial and a gaussian), whereas the other three are less smooth: one analytic but
not entire (a 3-dimensional version of the Runge test function), one C∞ nonan-
alytic, and one C2. These functions are analogues of test functions for algebraic
cubature in dimension 1 and 2, see [21, 20]. We compare them with two natural



NEW CUBATURE FORMULAE 7

choices for cubature on a tensor product domain: the tensor-product Gauss-
Chebyshev and Gauss-Chebyshev-Lobatto formulae. The results, obtained with
Matlab (cf. [10]), demonstrate the superiority of the new formula in all cases,
especially for the less smooth functions, in terms of number of function evalua-
tions. It should be pointed out that, however, the superiority for the less smooth
functions arises for even n (a sort of parity phenomenon). Other numerical tests
(not reported for brevity) have shown that the cubature formula has the same
behavior for σ = (E, E, O), (E, O, E), (O, E, E).

3 Implementing hyperinterpolation in the 3-cube.

A natural question associated with cubature formulae is polynomial interpo-
lation. Let Xn−1 denote the set of the nodes of the cubature formula (2.7). The
interpolation problem looks for a polynomial subspace, S, of the lowest degree
such that

P (x) = f(x), x ∈ Xn−1, ∀f ∈ C(Rd)

has a unique solution in S. In the case of d = 2, this problem is completely
solved in [24], where S is a subspace of Π2

n(Ω) which includes Π2
n−1(Ω), and

compact formulae of the fundamental interpolation polynomials are also given
there. For d > 2, however, the problem is much harder, since the number of
nodes of our cubature is far from dim(Πd

n(Ω)). For example, if d = 3, then
dim(Πd

n−1(Ω)) = n(n + 1)(n + 2)/6 ≈ n3/6, whereas our cubature requires
≈ n3/4 nodes. The problem essentially comes down to study the polynomial
ideal that has Xn−1 as its variety (see [25]).

A simpler approach to polynomial approximation via these new nodes is given
by hyperinterpolation, as described in the Introduction. We now use cubature
formula (2.7) to construct hyperinterpolation as in (1.7) for the 3-cube Ω =
[−1, 1]3. In this case, {pα} is the product Chebyshev orthonormal basis (cf. [9]),
i.e.

(3.1) pα(x) = T̂α1
(x1)T̂α2

(x2)T̂α3
(x3) ,

where T̂k(·) =
√

2 cos(k arccos(·)), k > 0 and T̂0(·) = 1. Moreover, let

Cn =

{

cos
kπ

n
, k = 0, ..., n

}

be the set of n+1 Chebyshev-Lobatto points, and CE
n , CO

n its restriction to even
and odd indices, respectively. Then,

(3.2) Xn =
(

Cσ1

n+1 × Cσ2

n+1 × Cσ3

n+1

)

∪
(

Cσ̄1

n+1 × Cσ̄2

n+1 × Cσ̄3

n+1

)

,

with (σ1, σ2, σ3) ∈ {E, O}3, see (2.6). The weights of the cubature formula (2.7)
for ξ ∈ Xn, are

(3.3) wξ =
4

(n + 1)3
·















1 if ξ is an interior point
1/2 if ξ is a face point
1/4 if ξ is an edge point
1/8 if ξ is a vertex point
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Note that, since

dim(Π3
n(Ω)) = (n + 1)(n + 2)(n + 3)/6 < N = card(Xn) ≈ n3/4 ,

the polynomial Lnf in (1.7) is not interpolant.
Now, defining

(3.4) F (ξ) = F (ξ1, ξ2, ξ3) =







wξf(ξ) ξ ∈ Xn

0 ξ ∈ (Cn+1 × Cn+1 × Cn+1)\Xn

we can write

cα =
∑

ξ∈Xn

wξf(ξ)pα(ξ)

=
∑

ξ1∈Cn+1





∑

ξ2∈Cn+1





∑

ξ3∈Cn+1

F (ξ1, ξ2, ξ3) T̂α1
(ξ1)



 T̂α2
(ξ2)



 T̂α3
(ξ3)

= βα

n+1
∑

i=0





n+1
∑

j=0

(

n+1
∑

k=0

Fijk cos
kα1π

n + 1

)

cos
jα2π

n + 1



 cos
iα3π

n + 1
,

where α = (α1, α2, α3) ∈ {0, 1, . . . , n}3 and

(3.5) βα =

3
∏

s=1

βαs
, βαs

=

{ √
2 αs > 0

1 αs = 0
, s = 1, 2, 3 .

This shows that the 3-dimensional coefficients array {cα} is a scaled Discrete
Cosine Tranform of the 3-dimensional array

(3.6) Fijk = F

(

cos
iπ

n + 1
, cos

jπ

n + 1
, cos

kπ

n + 1

)

, 0 ≤ i, j, k ≤ n + 1 ,

where we eventually pick up only the (n + 1)(n + 2)(n + 3)/6 ≈ n3/6 hyperin-
terpolation coefficients corresponding to |α| = α1 + α2 + α3 ≤ n.

A fast implementation of hyperinterpolation is now feasible (for example in
Matlab), via the FFT. Indeed, we have written a Matlab code (see [8]), com-
pletely vectorized by several implementation tricks, whose kernel can be sum-
marized as follows:

Algorithm: Fast total degree hyperinterpolation in the 3-cube

(i) construct the hyperinterpolation point set Xn as union of the two subgrids
in (3.2);

(ii) compute the cubature weights in (3.3);

(iii) compute the 3-dimensional array {Fijk} at the complete grid Cn+1×Cn+1×
Cn+1 by (3.4) (notice that f is evaluated only at Xn);
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(iv) compute the 3-dimensional array of coefficients {cα} by three nested ap-
plications of the 1-dimensional Real(FFT(·)) operator;

(v) select the coefficients {cα} corresponding to the triples α = (α1, α2, α3)
such that |α| = α1 + α2 + α3 ≤ n.

We recall that there is a simple way to approximate a function in the 3-cube
by tensor-product of polynomials of degree n, that is, by a tensor-product dis-
crete Chebyshev series (ultimately a tensor-product hyperinterpolant). Such an
approximation uses (n + 1)3 function evaluations, and (n + 1)3 coefficients. In
contrast, let us stress again the following facts on our total-degree hyperinter-
polation of degree n in the 3-cube:

Remarks

• the number of hyperinterpolation nodes, or function evaluations, is equal
to card(Xn) ≈ n3/4;

• the number of hyperinterpolation coefficients is dim(Π3
n(Ω)) ≈ n3/6.

In order to compare the performances of total-degree and tensor-product hy-
perinterpolation in the 3-cube, we show, in figures 3.1-3.2, the hyperinterpolation
errors versus the number of nodes (i.e., of function evaluations) on the six test
functions already used in Section 2, and we choose again (σ1, σ2, σ3) = (E, E, E),
see (3.2). The errors are relative to the maximum deviation of the function from
its mean and are computed on a uniform control grid. Since the computation of
the coefficients via the FFT has roughly the same cost for both kinds of hyperin-
terpolation, in terms of both CPU time and storage, we have chosen the number
of function evaluations as a measure of computational cost for the construction,
and the number of coefficients as a measure of the compression capability of the
algorithms.

The situation here is in some sense opposite to that of Figures 2.1-2.2. In-
deed, total-degree appears superior to tensor-product hyperinterpolation on the
smoothest functions, but not on the less smooth ones. As it is natural from the
observation above, the behavior of total-degree hyperinterpolation in terms of
number of coefficients is better than that in terms of number of nodes (function
evaluations).

4 A Clenshaw-Curtis-like formula for the cube.

In the recent paper [20], pursuing an idea already present in [18], it has been
shown how hyperinterpolation allows us to construct new cubature formulae.
Given h ∈ L2

dµ(Ω) and f ∈ C(Ω), we can approximate the integral of hf in dµ
as

∫

Ω

h(x) f(x) dµ ≈
∫

Ω

h(x)Lnf(x) dµ

=
∑

|α|≤n

cα mα =
∑

ξ∈Xn

λξ f(ξ) ,(4.1)
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where the generalized “orthogonal moments” {mα} and the cubature weights
{λξ} are defined by

(4.2) mα :=

∫

Ω

h(x) pα(x) dµ , λξ := wξ

∑

|α|≤n

pα(ξ)mα .

Observe that the cubature formula (4.1) is exact for every f ∈ Πd
n(Ω), and that

{mα} are just Fourier coefficients of h with respect to the µ-orthonormal basis
{pα}.

Concerning stability and convergence of such cubature formulae, the following
result has been proved in [20]:

Theorem 4.1. Let all the assumptions for the construction of the cubature
formula (4.1) be satisfied, and in particular let h ∈ L2

dµ(Ω). Then the sum of
the absolute values of the cubature weights has a finite limit

(4.3) lim
n→∞

∑

ξ∈Xn

|λξ| =

∫

Ω

|h(x)| dµ .

Notice that (4.3) ensures that the sum of absolute values of the weights is
bounded, and thus by recalling that Ln is a projection operator on Πd

n(Ω) we
obtain the Polya-Steklov type (cf. [12]) convergence estimate
(4.4)
∣

∣

∣

∣

∣

∣

∫

Ω

h(x) f(x) dµ −
∑

ξ∈Xn

λξ f(ξ)

∣

∣

∣

∣

∣

∣

≤





∫

Ω

|h(x)| dµ + sup
n

∑

ξ∈Xn

|λξ|



 En(f) ,

where En(f) denotes the error of the best polynomial approximation of degree
n to f in the uniform norm.

Now, applying (4.1)-(4.2) in the case

(4.5) dµ = w(x) dx , w ∈ L1
dx(Ω) , with h =

1

w
∈ L1

dx(Ω) ,

(since then h2 = 1/w2 ∈ L1
dµ(Ω)) we obtain, via hyperinterpolation, a cubature

formula for the standard Lebesgue measure from an algebraic cubature formula
for another measure (absolutely continuos with respect to the former). The
specialization of this approach to the 1-dimensional Chebyshev measure gives
ultimately the popular Clenshaw-Curtis quadrature formula [7]. An extension
to dimension 2 has been studied in [20]. Here we apply the method in dimension
3, obtaining a new nontensorial Clenshaw-Curtis-like cubature formula in the
3-cube.

For the computation of the weights {λξ}, we can use now a similar approach
to the one used for the computation of the coefficients {cα}, resorting again to a
Discrete Cosine Transform, where the roles of the points ξ and of the 3-indexes
α are interchanged. Our algorithm below is in line with the one for computing
weights for 1-dimensional Clenshaw-Curtis rules given by J. Waldvögel in [22].
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First, observe that the orthogonal moments {mα} are simply

(4.6) mα = mα1
mα2

mα3
, mαj

=

∫ 1

−1

T̂αj
(t) dt .

Now, defining

(4.7) µ(α) = µ(α1, α2, α3) =







mα |α| ≤ n

0 α ∈ {0, 1, . . . , n}3\{α : |α| ≤ n}

we can write

λξ = wξ

∑

|α|≤n

T̂α1
(ξ1)T̂α2

(ξ2)T̂α3
(ξ3)mα

= wξ

n
∑

α3=0

(

n
∑

α2=0

(

n
∑

α1=0

µα T̂α1
(ξ1)

)

T̂α2
(ξ2)

)

T̂α3
(ξ3)

= wξ Gijk ,

where

Gijk =

n
∑

α3=0

(

n
∑

α2=0

(

n
∑

α1=0

µαβα1
cos

kα1π

n + 1

)

βα2
cos

jα2π

n + 1

)

βα3
cos

iα3π

n + 1
,

cf. (3.5) for the definition of βα, and the triples (i, j, k) ∈ {0, 1, . . . , n + 1}3 are
such that

ξ =

(

cos
iπ

n + 1
, cos

jπ

n + 1
, cos

kπ

n + 1

)

∈ Xn ,

cf. (3.2).
This shows, that the 3-dimensional weights array {λξ} is a scaled Discrete

Cosine Transform of the 3-dimensional array {βαµα}, where we eventually pick
only up the card(Xn) ≈ n3/4 cubature weights corresponding to the points in
Xn. A fast implementation of the corresponding Clenshaw-Curtis-like formula
in the cube is now feasible (for example in Matlab), again via the FFT, just
mimicking the Algorithm for total degree hyperinterpolation in Section 3.

In Figures 4.1-4.2 we display the relative errors of such a formula for (σ1, σ2, σ3) =
(E, E, E) (cf. (3.2)) on the six test functions already used above, compared
with those of the tensor-product Clenshaw-Curtis, Gauss-Legendre, and Gauss-
Legendre-Lobatto formulae. The numerical results have been obtained with
Matlab, using [10] for the Gaussian formulae and [23] for the tensor-product
Clenshaw-Curtis formula.

In particular, we see that with the entire test functions nontensorial Clenshaw-
Curtis cubature is more accurate than the tensor-product version, but less accu-
rate than the other two tensor-product formulae. On the other hand, in the less
smooth cases the nontensorial Clenshaw-Curtis formula is better than all the
other three, especially for odd hyperinterpolation degrees n, which correspond
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to use n+1 even in (2.7) (again a sort of parity phenomenon, cf. Figure 2). This
behavior echos that of 1-dimensional and 2-dimensional Clenshaw-Curtis formu-
lae (see [21, 20]). Other numerical tests (not reported for brevity) have shown
that the other versions of the nontensorial Clenshaw-Curtis formula, correspond-
ing to (σ1, σ2, σ3) = (E, E, O), (E, O, E), (O, E, E) in (3.2), produce essentially
the same results.

Last, but not least, Trefethen [21] explained beautifully when and why Clenshaw-
Curtis rules are as good as Gauss-Legendre rules in the one dimensional case. A
natural question is if one can extend the results in [21] to our Clenshaw-Curtis
rules on the cube. This question, however, seems to be difficult. First, there is no
known non-tensorial Gaussian cubature, so that we can only make comparison
with tensor product Gaussian cubature. Second, it turns out that our cubature
preserves a polynomial subspace larger than Π3

2n−1 (see [13]), although not Π3
2n.

Moreover, we do not yet know the approximation properties of this polynomial
subspace. We wish to return to this problem in the future.

Acknowledgment. We thank an anonymous referee for his careful reading and
constructive comments.
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Figure 2.1: Relative cubature errors (Chebyshev weight function) versus the number
of function evaluations for three test functions.
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Figure 2.2: Relative cubature errors (Chebyshev weight function) versus the number
of function evaluations for three test functions.
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Figure 3.1: Hyperinterpolation relative errors versus the number of function evaluations
for three entire test functions.
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Figure 3.2: Hyperinterpolation relative errors versus the number of function evaluations
for three nonentire test functions.
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Figure 4.1: Relative cubature errors versus the number of cubature points for three
test functions (nontensorial Clenshaw-Curtis-like formula).
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Figure 4.2: Relative cubature errors versus the number of cubature points for three
test functions (nontensorial Clenshaw-Curtis-like formula).


