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Abstract

We discuss and compare two greedy algorithms, that compute dis-
crete versions of Fekete-like points for multivariate compact sets by
basic tools of numerical linear algebra. The first gives the so-called
“Approximate Fekete Points” by QR factorization with column pivot-
ing of Vandermonde-like matrices. The second computes Discrete Leja
Points by LU factorization with row pivoting. Moreover, we study the
asymptotic distribution of such points when they are extracted from
Weakly Admissible Meshes.
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1 Introduction.

Locating good points for multivariate polynomial approximation, in par-
ticular polynomial interpolation, is an open challenging problem, even in
standard domains. One set of points that is always good, in theory, are
the so-called Fekete points. They are defined to be those points that max-
imize the (absolute value of the) Vandermonde determinant on the given
compact set. However, these are known analytically in only a few instances
(the interval and the complex circle for univariate interpolation, the cube for
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tensor product interpolation), and are very difficult to compute, requiring
an expensive and numerically challenging multivariate optimization.

Recently, a new insight has been given by the theory of “admissible
meshes” of Calvi and Levenberg [15], which are nearly optimal for least-
squares approximation and contain interpolation sets nearly as good as
Fekete points of the domain. These allow us to replace a continuous compact
set by a discrete version, that is “just as good” for all practical purposes.

In some recent papers, a simple and effective greedy algorithm to extract
approximate Fekete points from admissible meshes has been studied, and
succesfully applied in various instances, cf. [8, 9, 34, 35]. The algorithm gives
an approximate solution to a nonlinear combinatorial optimization problem
(discrete maximization of the Vandermonde determinant) using only a basic
tool of numerical linear algebra, namely the QR factorization with column
pivoting.

In this paper, we pursue an alternative greedy algorithm for discrete
maximization on (weakly) admissible meshes, i.e., the computation of the
so-called Leja points of the mesh. Following an idea recently proposed by
R. Schaback [32], we show that this algorithm can be easily implemented by
another basic tool of linear algebra, the LU factorization with partial (row)
pivoting. We recall that approximate Fekete points, computed with any ba-
sis from a weakly admissible mesh, are asymptotically equidistributed with
respect to the pluripotential-theoretic equilibrium measure of the compact
set; cf. [8]. Here we prove that the same is true for discrete Leja points
computed with a special class of polynomial bases.

2 Some definitions and notation.

Suppose that X ⊂ C
d is a compact set. Let P

d
n(X) denote the space of

polynomials (on C
d) of degree at most n, restricted to X. We will assume

that X is P
d
n-determining, i.e., if p ∈ P

d
n is identically zero on X, then it is

identically zero on C
d.

The following matrix and its determinant will be important. For any
ordered set of points z = {z1, z2, . . . , zk} ∈ C

d and ordered set of polynomials
q = {q1, q2, . . . , qm} on C

d, let

V (z;q) = V (z1, . . . , zk; q1, . . . , qm) := [qj(zi)]1≤i≤k,1≤j≤m ∈ C
k×m (1)

denote the associated Vandermonde matrix. The ordering of the sets z and
q are important, giving the ordering of the rows and columns, respectively
of the matrix. It is especially important to note that the rows of this ma-
trix correspond to the points zi and the columns to the polynomials qj. In
particular, selecting a row in the matrix corresponds to selecting a point in
the set z.
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In the case when m = k we let

vdm(z;q) = vdm(z1, . . . , zk; q1, . . . , qk) := det (V (z1, . . . , zk; q1, . . . , qk))
(2)

denote the determinant of the Vandermonde matrix.
In the following, we adopt the notation:

‖f‖X := sup
x∈X

|f(x)|

where f is any bounded function on the set X.

3 Fekete points.

The concept of Fekete points for interpolation can be described in a very
general, not necessarily polynomial, setting. It is worth observing that such
Fekete points should not be confused with the “minimum energy” Fekete
points (cf., e.g., [2] and references therein), the two concepts being equivalent
only in the univariate complex case (cf., e.g., [27]).

Given a compact set K ⊂ C
d, a finite-dimensional space of linearly

independent continuous functions,

SN = span(pj)1≤j≤N , (3)

and a finite set {ξ1, . . . , ξN} ⊂ K, if

vdm(ξ1, . . . , ξN ; p1, . . . , pN ) 6= 0

then the set {ξ1, . . . , ξN} is unisolvent for interpolation in SN , and

ℓj(x) =
vdm(ξ1, . . . , ξj−1, x, ξj+1, . . . , ξN ;p)

vdm(ξ1, . . . , ξj−1, ξj , ξj+1, . . . , ξN ;p)
, j = 1, . . . , N , (4)

is a cardinal basis, i.e. ℓj(ξk) = δjk and

LSN
f(x) =

N∑

j=1

f(ξj) ℓj(x) (5)

interpolates any function f at {ξ1, . . . , ξN}. In matrix terms, the cardinal
basis ℓ = (ℓ1, . . . , ℓN ) is obtained from the original basis p = (p1, . . . , pN ) as

ℓt = Lpt , L := ((V (ξ;p))−1)t . (6)

In the case that such points maximize the (absolute value of the) de-
nominator of (4) in KN (Fekete points), then ‖ℓj‖∞ ≤ 1 for every j, and
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thus the norm of the interpolation operator LSN
: C(K) → SN is bounded

by the dimension of the interpolation space,

‖LSN
‖ = max

x∈K

N∑

j=1

|ℓj(x)| = max
x∈K

‖Lpt(x)‖1 ≤ N . (7)

Clearly, Fekete points as well as ‖LSN
‖ are independent of the choice of

the basis in SN , since the determinant of the Vandermonde-like matrices
changes by a factor independent of the points (namely the determinant of
the transformation matrix between the bases).

In the present polynomial framework, we have that

SN = P
d
n(K) , N = dim(Pd

n(K)) (8)

and that
Λn := ‖LSN

‖ (9)

is the so-called Lebesgue constant of interpolation at the point set {ξj}, K
being any P

d
n-determining compact set. In this framework Fekete points and

Lebesgue constants are preserved under affine mapping of the domain. It is
also worth recalling that (7) is often a rather pessimistic overestimate of the
actual growth.

There are several open problems about Fekete points, whose properties
have been studied till now mainly in the univariate complex case in view of
their deep connection with potential theory. They are analytically known
only in few cases: the interval (Gauss-Lobatto points) where Λn = O(log n),
the complex circle (equispaced points) where again Λn = O(log n), and the
cube (tensor-product of Gauss-Lobatto points) for tensorial interpolation
where Λn = O(logd n), cf. [12]. An important qualitative result has been
proved only recently, namely that Fekete points are asymptotically equidis-
tributed with respect the pluripotential equilibrium measure of K, cf. [3].
Their asymptotic spacing is known only in few instances, cf. the recent
paper [10].

Moreover, the numerical computation of Fekete points becomes rapidly a
very large scale problem, namely a nonlinear optimization problem in N ×d
variables. It has been solved numerically only in very special cases, like the
triangle (up to degree n = 19, cf. [36]) and the sphere (up to degree n = 191,
cf. [33]).

A reasonable approach for the computation of Fekete points is to use
a discretization of the domain, moving from the continuum to nonlinear
combinatorial optimization. But which could be a suitable starting mesh? A
possible answer is given by the theory of admissible meshes for multivariate
polynomial approximation, recently studied by Calvi and Levenberg [15],
which is briefly sketched in the following section.
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4 Weakly Admissible Meshes (WAMs).

Given a polynomial determining compact set K ⊂ C
d, we define a Weakly

Admissible Mesh (WAM) to be a sequence of discrete subsets An ⊂ K such
that

‖p‖K ≤ C(An)‖p‖An , ∀p ∈ P
d
n(K) (10)

where both card(An) ≥ N and C(An) grow at most polynomially with n.
When C(An) is bounded we speak of an Admissible Mesh (AM).

We sketch below the main features of WAMs in terms of ten properties
(cf. [8, 15]):

P1: C(An) is invariant under affine mapping

P2: any sequence of unisolvent interpolation sets whose Lebesgue con-
stant grows at most polynomially with n is a WAM, C(An) being
the Lebesgue constant itself

P3: any sequence of supersets of a WAM whose cardinalities grow polyno-
mially with n is a WAM with the same constant C(An)

P4: a finite union of WAMs is a WAM for the corresponding union of
compacts, C(An) being the maximum of the corresponding constants

P5: a finite cartesian product of WAMs is a WAM for the corresponding
product of compacts, C(An) being the product of the corresponding
constants

P6: in C
d a WAM of the boundary ∂K is a WAM of K (by the maximum

principle)

P7: given a polynomial mapping πs of degree s, then πs(Ans) is a WAM
for πs(K) with constants C(Ans) (cf. [8, Prop.2])

P8: any K satisfying a Markov polynomial inequality like ‖∇p‖K ≤ Mnr‖p‖K

has an AM with O(nrd) points (cf. [15, Thm.5])

P9: least-squares polynomial approximation of f ∈ C(K) (cf. [15, Thm.1]):
the least-squares polynomial LAnf on a WAM is such that

‖f − LAnf‖K / C(An)
√

card(An) min {‖f − p‖K , p ∈ P
d
n(K)}

P10: Fekete points: the Lebesgue constant of Fekete points extracted from
a WAM can be bounded like Λn ≤ NC(An) (that is the elementary
classical bound of the continuum Fekete points times a factor C(An));
moreover, their asymptotic distibution is the same of the continuum
Fekete points, in the sense that the corresponding discrete probability
measures converge weak-∗ to the pluripotential equilibrium measure
of K (cf. [8, Thm.1])
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The properties above give the basic tools for the construction and appli-
cation of WAMs in the framework of polynomial interpolation and approxi-
mation. For illustrative purposes we focus briefly on the real bivariate case,
i.e. K ⊂ R

2. Property P8, applied for example to convex compacts where a
Markov inequality with exponent r = 2 always holds, says that it is always
possible to obtain an Admissible Mesh with O(n4) points. In order to avoid
such a large cardinality, which has severe computational drawbacks, we can
turn to WAMs, which can have a much lower cardinality, typically O(n2)
points.

In [8] a WAM on the disk with about 2n2 points and C(An) = O(log2 n)
has been constructed with standard polar coordinates, using essentially
property P2 for univariate Chebyshev and trigonometric interpolation. More-
over, using property P2 and P7, WAMs for the triangle and for linear trape-
zoids, again with about 2n2 points and C(An) = O(log2 n), have been ob-
tained simply by mapping the so-called Padua points of degree 2n from the
square with standard quadratic transformations. We recall that the Padua
points are the first known optimal points for bivariate polynomial interpo-
lation, with a Lebesgue constant growing like log-squared of the degree (cf.
[7, 14]).

In [11] these results have been improved, showing that there are WAMs
for the disk and for the triangle with approximately n2 points and still the
same constants. Property P4 allows to obtain WAMs for any polygon that
can be subdivided into triangles or trapezoids by standard algorithms of
computational geometry.

5 Approximate Fekete points.

The WAMs described in the previous section can be used directly for least-
squares approximation of continuous functions, by property P10. On the
other hand, it is also important to identify good interpolation points. Once
we have a WAM, by property P10 we can try to compute Fekete points
of the WAM, that is to solve the nonlinear discrete optimization problem.
The latter, however, is known to be NP-hard [16], so heuristic or stochastic
algorithms are mandatory.

To this purpose, we can adopt the greedy algorithm recently studied in
[8, 9, 34], which gives an approximate solution using only optimized tools of
numerical linear algebra (namely QR-like factorizations). Consider a WAM
{An} of a polynomial determining compact set K ⊂ C

d

a = An = {a1, . . . , aM} , M ≥ N = dim(Pd
n(K)) (11)

and the associated rectangular Vandermonde-like matrix

V (a;p) = V (a1, . . . , aM ;p) := [pj(ai)] , 1 ≤ i ≤ M , 1 ≤ j ≤ N (12)

6



where {pj} is a basis of P
d
n(K). We sketch below the algorithm in a Matlab-

like notation.

Algorithm AFP: Approximate Fekete Points

(i) V0 = V (a;p) ; T0 = I ; (inizialization)
for k = 0, . . . , s − 1 (successive orthogonalization)

Vk = QkRk ; Pk = inv(Rk) ;

Vk+1 = VkPk ; Tk+1 = TkPk ;

end ;

(ii) ind = [ ] ; W = V t
s ; (inizialization)

for k = 1, . . . , N (greedy algorithm for a maximum volume submatrix)

– “select the largest norm column colik(W )”; ind = [ind, ik];

– “remove from every column of W its orthogonal projection onto
colik”;

end ;

(iii) ξ = a(ind) ; (extraction of Approximate Fekete Points)

The core of the algorithm is given by (ii) and can be efficiently implemented
by the well-known QR factorization with column pivoting [13]. In Matlab-
like programming, the greedy algorithm simply reduces to the following
instructions

w = W\b ; ind = find(w 6= 0) ; (13)

where b is any nonzero column vector, since the “backslash” standard solver
uses exactly the QR factorization with column pivoting when applied to an
undetermined system. The purpose of (i) is to manage the ill-conditioning
that arises with nonorthogonal bases, like the standard monomial basis.
Indeed, it eventually amounts to a change of basis from p = (p1, . . . , pN ) to
the discrete orthonormal basis

ϕ = (ϕ1, . . . , ϕN ) = pTs (14)

with respect to the inner product

〈f, g〉 =
M∑

i=1

f(ai)g(ai) . (15)

In practice s = 1 or 2 iterations suffice, unless the original matrix V (a;p) is
so severely ill-conditioned (rule of thumb: condition number much greater
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than the reciprocal of machine precision) that the algorithm fails. This
well-known phenomenon of “twice is enough” in numerical Gram-Schmidt
orthogonalization, has been deeply studied and explained in [21]. Observe
that we don’t really need orthogonality, but rather a reasonable conditioning
of the Vandermonde matrix in the transformed basis, namely V (a;ϕ) =
V (a;p)Ts = Vs.

The quality of the approximate Fekete points given by Algorithm AFP is
in general affected by the choice of the basis. Nevertheless, it has been proved
in [8, Thm.1] that their asymptotic distribution is the same of true Fekete
points, in the sense that the corresponding discrete probability measures
converge weak-* to the pluripotential equilibrium measure of K.

6 Leja points.

Let X ⊂ C
d be a continuous or discrete compact set. Suppose again that

we are given an ordered basis

p = {p1, . . . , pN} (16)

for P
d
n(X). Here, of course, N := dim

(
P

d
n(X)

)
. The Leja points for X, up

to degree n, with respect to the ordered basis p, is a sequence of points
ξ1, ξ2, . . . , ξN ∈ X, defined as follows.

The first point, ξ1, is defined to the max point of |p1| on X (if there
is more than one then each choice will lead to a different Leja sequence).
Suppose then that the points ξ1, ξ2, . . . , ξk have already been chosen. The
next point ξk+1 ∈ X is chosen to be a max point of the function

x 7→ |vdm(ξ1, . . . , ξk, x; p1, . . . , pk, pk+1)|.

Again, if there is more than one max point, each choice leads to a differ-
ent sequence. This procedure can be seen as a greedy algorithm for the
maximization of the Vandermonde determinant in the set X.

There are also “non determinantal” versions of multivariate Leja points,
which are related to potential theory and minimum energy configurations
(the two concepts being equivalent in the univariate complex setting). For
an overview about theoretical and computational aspects of Leja points we
may quote, e.g., [1, 4, 5, 17, 23, 28, 31] and references therein.

6.1 The LU decomposition and partial pivoting.

Suppose that k ≥ m. If Gaussian elimination can be, and is, directly applied
to the matrix A ∈ C

k×m the end result is the so-called LU decomposition
A = LU where L ∈ C

k×m is lower triangular with Ljj = 1, j = 1, . . . ,m,
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and U ∈ C
m×m is upper triangular. This, as it turns out, is not always

possible, as is easily verified, for example, for the matrix

A =

[
0 1
1 0

]
.

If the rows of A are allowed to be permuted then an LU decompostion of
the form PA = LU, where P ∈ C

k×k is a certain permutation matrix, is
always possible. The simplest such strategy for permuting the rows is called
partial (or row) pivoting and it works as follows.

Gaussian elimination is the process of sequentially subtracting from cer-
tain rows a multiple of the “pivot row” with the purpose of producing an
equivalent matrix with as many zeros in it as possible. Partial pivoting is a
simple strategy for choosing the pivot rows. The first pivot row is that row
i = p1 so that the element |Ap11| is as large as possible. Then each row j
for j 6= p1 is replaced by that row minus the multiplier Aj1/Ap11 times row

p. The resulting matrix Ã, say, is then such that Ãj1 = 0, j 6= p1. The usual
practice is then to interchange the pivot row with the first row, by means
of a simple permutation, and apply the same procedure to the submatrix
A1 = Ã2≤i,2≤j etc.. If we set A0 then the matrices Aj ∈ C

k−j,m−j and the
process stops after m − 1 steps.

The elements Pivj = (Aj−1)pj1 are called the pivot elements and end up
being the diagonal entries Ujj of the upper triangle matrix U. It is then easy
to see that (see e.g. [22, Ch.3])

s∏

t=1

Pivt = det((PA)1≤i≤s,1≤j≤s) (17)

where P is the matrix of the permutations used in the process. This deter-
minant formula allows us to interpret the pivot selection process as follows.
At any stage the previous pivots have already been chosen and are fixed.
Hence maximizing over the candidates in a column to find |Pivs| is the
same as maximizing |∏s

t=1 Pivt| and this in turn is equivalent to maximizng
over the various subdeterminants |det((PA)1≤i≤s,1≤j≤s)|. Here, the candi-
date rows each result in a candidate permutation and so, in this formulation,
we maximize over the various allowed permutation matrices P.

6.2 Discrete Leja points by LU with partial pivoting.

Assume now that our compact set X is finite and ordered in some manner.
We take

x = X = {x1, . . . , xM} , A = V (x;p) ∈ C
M×N

where, as before, N = dim
(
P

d
n(X)

)
. Our assumption that X is determining

implies that M ≥ N (indeed typically M ≫ N). We emphasize again
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that the rows of the Vandermonde matrix correspond to the points, and
the columns to the basis. Hence selecting rows of A corresponds exactly
to selecting points of X. Which rows, and hence points of X, does partial
pivoting select?

By (17) (and the remarks following) the criteria of partial pivoting is to
choose the maximum such determinant, in absolute value. Suppose that the
rows selected, in sequence, correspond to the points ξ1, ξ2, . . . etc., then the
determinant det((PA)1≤i≤s,1≤j≤s) is just the determinant

vdm(ξ1, . . . , ξs; p1, . . . , ps)

and hence partial pivoting chooses the rows corresponding to the Leja points
for X, in the same order!

In view of the considerations above, we can write the following matrix
implementation of the greedy algorithm that computes the Leja points of
a WAM, say X = An, of a polynomial determining compact set K (cf.
(11)-(12)). Again, we use a Matlab-like notation:

Algorithm DLP: Discrete Leja Points

• a = An = {a1, . . . , aM} ;

• A = V (a;p) ;

• [L,U,σ] = LU(A, ’vector’) ; (σ is a permutation vector)

• ind = σ(1 : N) ; ξ = a(ind) ; (extraction of Discrete Leja Points)

When V (a;p) is very ill-conditioned, as typically happens with nonorthog-
onal bases, we can still apply step (i) of algorithm AFP to get a discrete
orthonormal basis and a better conditioned Vandermonde matrix.

Remark 6.1 Observe that the first k Leja points depend only on the first
k basis functions in p. Hence the Leja points are a sequence, i.e., computing
the Leja points for the basis obtained from p by adding an element to the
end of p does not change the Leja points already computed for p.

In particular, if the basis is chosen so that the first Nj = dim(Pd
j (K))

basis elements span P
d
j (K), then the first Nj Leja points are a candidate

set of interpolation points for polynomials of degree j. Moreover, by the
nature of the Gram-Schmidt process, this latter property is not affected by
a preliminary orthogolization process as in step (i) of algorithm AFP (since
the matrix Ts is upper triangular).

In contrast, the Approximate Fekete points depend on the entire basis,
and not on its order.
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6.3 Asymptotics of Discrete Leja Points.

We showed in [8] that the Approximate Fekete Points selected from a WAM
An ⊂ K, using any polynomial basis, and the true Fekete points for K both
have the same asymptotic distribution.

We first introduce some notation. By

vdm(z1, . . . , zN )

we will mean the Vandermonde determinant computed using the standard
monomial basis. Further, we set mn to be the sum of the degrees of the N
monomials of degree at most n, i.e., mn = dnN/(d + 1).

Then it is known (see [38]) that if Fn = {f1, . . . , fN} ⊂ K is a set of true
Fekete points for degree n in K, the limit

lim
n→∞

|vdm(f1, . . . , fN )|1/mn =: τ(K)

exists and is called the transfinite diameter of K.

Theorem 6.1 (cf. [8]) Suppose that K ⊂ C
d is compact, non-pluripolar,

polynomially convex and regular (in the sense of Pluripotential theory) and
that for n = 1, 2, . . . , An ⊂ K is a WAM. Let {ξ1, . . . , ξN} be the Approxi-
mate Fekete Points selected from An by the greedy algorithm AFP described
above, using any polynomial basis p = {p1, . . . , pN}. Then

• lim
n→∞

|vdm(ξ1, . . . , ξN )|1/mn = τ(K), the transfinite diameter of K;

• the discrete probability measures µn := 1
N

∑N
j=1 δξj

converge weak-* to
the pluripotential-theoretic equilibrium measure dµK of K.

Remark 6.2 For K = [−1, 1], dµ[−1,1] = 1
π

1√
1−x2

dx; for K the unit circle

S1, dµS1 = 1
2πdθ. If K ⊂ R

d ⊂ C
d is compact, then K is automatically

polynomially convex. We refer the reader to [24] for other examples and
more on complex pluripotential theory.

Remark 6.3 Note also that a set of true Fekete points Fn is also a WAM
and hence we may take An = Fn, in which case the algorithm will select as
Approximate Fekete Points exactly Fn (there is no other choice) and so the
true Fekete points must necessarily also have these two properties.

Leja points depend more strongly on the ordering of the basis than do
Fekete points and hence it is perhaps not surprising that the convergence
theorem for Leja points that we are able to offer is slightly weaker than that
for Fekete points. In fact, we give a convergence theorem that holds for a
certain class of ordered bases. Specifically, let

e = {e1, . . . , eN}
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be any ordering of the standard monomials zα that is consistent with the
degree, i.e.

j ≤ k =⇒ deg(ej) ≤ deg(ek).

We consider the ordered bases of P
d
n, p = {p1, . . . , pN}, that can be written

in the form
p = Le (18)

where L ∈ C
N×N is lower triangular. Note that these are exactly the kind

of bases of which we discussed in Remark 6.1.

Theorem 6.2 Suppose that K ⊂ C
d is compact, non-pluripolar, polynomi-

ally convex and regular (in the sense of Pluripotential theory) and that for
n = 1, 2, · · · , An ⊂ K is a WAM. Let {ξ1, . . . , ξN} be the Discrete Leja
Points selected from An by the greedy algorithm DLP described above, using
any basis p of the form (18). Then

• lim
n→∞

|vdm(ξ1, . . . , ξN )|1/mn = τ(K), the transfinite diameter of K;

• the discrete probability measures µn := 1
N

∑N
j=1 δξj

converge weak-* to
the pluripotential-theoretic equilibrium measure dµK of K.

Proof. The proof of the first assertion is based on a slight modification of
the proof of Proposition 3.7 of [5], which concerns the true Leja points of
K. Once we have established the first, then the second assertion follows, as
in the proof of [8, Thm.1], from the main result of [3].

First note that, since the k-th column of vdm(An;p) consists of pk eval-
uated at all the points of An. Further, since the pivoting strategy is a com-
parison of elements in a column, the order of rows selected is not affected
by multiplying a column, i.e., multiplying a pk, by a constant. Hence, with-
out loss of generality, we may assume that the diagonal elements Ljj of the
transformation in (18) are Ljj = 1. Hence each pk may be assumed to be of
the form

pk(z) = ek(z) +
∑

j<k

cjej(z), cj ∈ C.

Moreover, each combination

pk(z) +
∑

j<k

ajpj(z) = ek(z) +
∑

j<k

cjej(z) (19)

is of exactly the same form.
It follows that the so-called Chebyshev constants

tk(K) := inf
cj∈C

‖ek(·) +
∑

j<k

cjej(·)‖1/deg(ek)
K
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may also be defined as

tk(K) := inf
cj∈C

‖pk(·) +
∑

j<k

cjpj(·)‖1/deg(pk)
K

and similarly for the Chebyshev constants for An, tk(An).
We also need to make use of the geometric mean of the Chebyshev con-

stants, i.e.,

t0k(K) :=




∏

deg(ej)=k

tj(K)




1/(Nk−Nk−1)

where Nk := dim(Pd
k(K)).

Note also, that in our case, An is assumed to be a WAM and hence

(tk(An))deg(ek) ≥ 1

C(An)
(tk(K))deg(ek) , 1 ≤ k ≤ Nn . (20)

Consequently we also have

t0k(An) ≥
(

1

C(An)

)1/rk

t0k(K)

where
rk := k(Nk − Nk−1).

Thus, by (3.7.3) of [5] we have

|vdm(ξ1, . . . , ξN )| ≥
(

1

C(An)

)Nn n∏

k=1

(t0k(K))rk .

By the definition of Fekete points we even have

|vdm(f1, . . . , fN )| ≥ |vdm(ξ1, . . . , ξN )| ≥
(

1

C(An)

)Nn n∏

k=1

(t0k(K))rk .

Note then that, by the definition of C(An),

(
1

C(An)

)Nn/mn

→ 1 and

(
n∏

k=1

(t0k(K))rk

)1/mn

= τ(K)

by the famous result of Zaharjuta [38]. The result follows. �

Remark 6.4 The idea of computing Leja sequences from Weakly Admissi-
ble Meshes appears also in the recent paper [4], which concerns the univariate
complex case. The approach is there embedded in the more general concept
of Pseudo Leja Sequence, for which univariate versions of the asymptotic re-
sults above have been proved. The present LU-based strategy can be viewed
as an alternative computational method for producing such “discrete” uni-
variate Leja sequences.
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7 Numerical examples.

In this section we present some examples of computation of Discrete Leja
Points (DLP) and Approximate Fekete Points (AFP) by the matrix algo-
rithms discussed in Sections 5 and 6.

7.1 A circular sector.

As a first example, we take the circular sector (3/4 of the unit disk, written
in polar coordinates)

K = {(ρ, θ) : 0 ≤ ρ ≤ 1 , −π/2 ≤ θ ≤ π} (21)

which has been already considered in [32, Ex.2]. Our first step is to construct
an Admissible Mesh (AM) for K, that will be used to extract DLP and AFP.
To this purpose, in view of Property P4, it is convenient to see K as the
union of three quadrants, since these are convex compact sets where we can
easily compute an AM.

We show now, following the proof of [15, Thm.5] (which is much more
general), how to construct an AM in a convex compact set K ⊂ R

2. First,
we recall that every convex compact set of R

2 admits the Markov inequality

max
x∈K

‖∇p(x)‖2 ≤ M n2 ‖p‖K , M =
α(K)

w(K)
, ∀p ∈ P

2
n(K) , (22)

where α(K) ≤ 4, and w(K) is the minimal distance between two parallel
supporting lines for K, cf. [26].

Consider a cartesian grid {(ih, jh) , i, j ∈ Z} with constant stepsize h:
for every square of the grid that has nonempty intersection with K, take a
point in this intersection. Let An be the mesh formed by such points. For
every x ∈ K, let a ∈ An the point closest to x: by construction, the distance
between these points cannot exceed

√
2h. Using the mean value theorem,

the Cauchy-Schwarz inequality and the Markov inequality, we can write

|p(x) − p(a)| ≤ ‖∇p(y)‖2‖x − a‖2 ≤ M
√

2hn2 ‖p‖K ,

since y belongs to the open segment connecting x and a, which lies in K.
Then, from |p(x)| ≤ |p(x) − p(a)| + |p(a)| ≤ M

√
2hn2 ‖p‖K + |p(a)|, the

polynomial inequality

‖p‖K ≤ 1

1 − µ
‖p‖An

follows, provided that

h = hn : M
√

2hnn2 ≤ µ < 1 , (23)

i.e., An is an AM with constant C = 1/(1 − µ), cf. (10).
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In the case of the first quadrant of the unit disk, we have that w(K) = 1,
and we take the upper bound for convex compacts α(K) = 4, since sharper
bounds do not seem to be available in the literature. Hence, by (22)-(23) we
get an AM as soon as we consider the cartesian grid {(ihn, jhn) , i, j ∈ Z}
with 4

√
2n2hn < 5.66n2hn ≤ µ < 1 for some fixed µ. For example, taking

hn = (6n2)−1 we get µ = 5.66/6 and C ≈ 17.65. Since we can partition
the set of grid squares into subsets of four adjacent squares and, apart from
a neighborhood of the boundary of the quadrant, take as mesh point their
common vertex, then the cardinality of the mesh is roughly estimated as
1/4 of the number of grid points in the unit square times the area of the
quadrant, that is card(An) ≈ ((6n2)2/4)π/4 ≈ 7n4. We could obtain a lower
constant C, paying the price of increasing the cardinality of the mesh.

By Property P1 and P4 of admissible meshes then we get an AM of the
compact set (21) as union of three meshes of the three quadrants, with the
same constant C ≈ 17.65 and cardinality card(An) ≈ 3 × 7n4 = 21n4. In
Figure 1 we show the DLP and AFP computed for degree n = 6, with the
Koornwinder orthogonal basis of the unit disk for the Vandermonde matrix
(cf. [25]). In this example the Vandermonde matrix is not ill-conditioned, so
the preliminary orthogonalization iterations are not necessary. It is worth
noticing two facts. The first is that in our implementation (Matlab 7.6.0 on
an Intel Core 2 Duo 2.13GHz Processor with 4Gb RAM), the computation
of DLP is 3 times faster than that of AFP (around 0.03s versus 0.09s). On
the other hand, the quality of AFP is better than that of DLP. Not only
do they appear more evenly distributed, but in addition the absolute value
of the Vandermonde determinant and the Lebesgue constant (numerically
evaluated) are |vdm| ≈ 2·104 and Λ6 ≈ 4 for the AFP, whereas |vdm| ≈ 7·102

and Λ6 ≈ 12 for the DLP. Notice that both the Lebesgue constants are much
below the theoretical bound for Fekete points extracted from an AM, namely
Λn ≤ CN .

In this example we are already using for a low degree a huge number
of mesh points, namely around 27000 points. This is a typical situation
with Admissible Meshes, since their cardinality increases like O(n4). It is
therefore necessary to reduce the cardinality of the extraction meshes, even
for low/moderate degrees. This can be obtained using Weakly Admissible
Meshes, when available, as is done in the next subsection with triangles and
polygons.

7.2 Polygons.

The recent paper [11] gives a construction of a WAM for the two-dimensional
unit simplex, and thus for any triangle by affine mapping (Property P1 of
WAMs). This WAM, say An, has n2 + n + 1 points for degree n, and
constant C(An) = O(log2 n). The mesh points lie on a grid of intersecting
straight lines, namely a pencil from one vertex (image of the point (0, 0)
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Figure 1: N = 28 AFP (Approximate Fekete Points, circles) and DLP
(Discrete Leja Points, asterisks) for degree n = 6 extracted from an AM
(Admissible Mesh) of a circular sector.

of the simplex) cut by a pencil parallel to the opposite side (image of the
hypothenuse of the simplex). The points on each segment of the pencils,
and in particular the points on each side, are the corresponding Chebyshev-
Lobatto points.

Property P4 allows then to obtain WAMs for any triangulated polygon.
The constant of any such WAM can be bounded by the maximum of the
constants corresponding to the triangular elements, and thus is O(log2 n),
irrespectively of the number of sides of the polygon, or of the fact that it
is convex or concave. Notice that a rough triangulation is better in the
present framework, to keep the cardinality of the mesh low (which will be
of the order of n2 times the number of triangles).

As a first example, we consider a nonregular convex hexagon, either
trivially triangulated by the barycenter, or by the so-called “ear-clipping”
algorithm (cf., e.g., [20]). The latter constructs a minimal triangulation of
any simple polygon with k vertices, obtaining k − 2 triangles. In Figure 2,
we show the N = 45 AFP and DLP computed for degree n = 8, using the
product Chebyshev basis of the minimal surrounding rectangle for the Van-
dermonde matrix. In the first mesh the point (0, 0) of the simplex is mapped
to the barycenter for each triangle. The cardinality of the barycentric-based
mesh is 6(n2 + n + 1) − 6(n + 1) − 5 = 6n2 − 5, whereas that of the other
mesh is 4(n2 + n + 1)− 3(n + 1)− 2 = 4n2 + n− 1 (one has to subtract the
repetitions of points along the contact sides).

16



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: N = 45 AFP (circles) and DLP (asterisks) for degree n = 8
extracted from two WAMs of a nonregular convex hexagon (dots).

In Table 1 we show the numerically evaluated Lebesgue constants for
the AFP and DLP computed from the two meshes above, at a sequence of
degrees. From these results we see that DLP are of lower quality than AFP:
this is not surprising, since the same phenomenon is well-known concerning
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continuous Fekete and Leja points. Nevertheless, both provide reasonably
good interpolation points, as it is seen from the interpolation errors on three
test functions in Table 2.

In order to emphasize the flexibility of Algorithms AFP and DLP, finally
we show the points computed for a more complicated polygon in a shape of
a hand, with 39 sides (obtained from the screen sampled hand of one of the
authors, by piecewise linear interpolation); see Figure 3. In this example
we have used the ear-clipping triangulation which gives 37 triangles and a
WAM with approximately 37n2 points for degree n.

Table 1: Lebesgue constants for AFP and DLP extracted from two WAMs
of a nonregular convex hexagon (WAM1 corresponding to barycentric tri-
angulation, WAM2 to minimal triangulation).

mesh points n = 5 n = 10 n = 15 n = 20 n = 25 n = 30

WAM1 AFP 6.5 18.9 20.4 40.8 73.3 73.0
DLP 7.1 19.6 49.8 58.3 108.0 167.0

WAM2 AFP 6.8 12.3 34.2 52.3 49.0 80.4
DLP 10.7 48.4 62.0 91.6 86.6 203.0

Table 2: Max-norm of the interpolation errors with AFP and DLP ex-
tracted from WAM2 for three test functions: f1 = cos (x1 + x2); f2 =
Franke function; f3 = ((x1 − 0.5)2 + (x2 − 0.5)2)3/2.

function points n = 5 n = 10 n = 15 n = 20 n = 25 n = 30

f1 AFP 6E-06 5E-13 3E-15 3E-15 3E-15 4E-15
DLP 8E-06 2E-12 2E-15 4E-15 3E-15 4E-15

f2 AFP 1E-01 2E-02 5E-03 4E-04 3E-05 2E-06
DLP 3E-01 2E-02 9E-03 5E-04 4E-05 3E-06

f3 AFP 3E-03 2E-04 1E-04 4E-05 2E-05 1E-05
DLP 3E-03 3E-04 1E-04 3E-05 2E-05 5E-06

Acknowledgements. We are grateful to Robert Schaback for having
pointed out to us the LU-based strategy for computing discrete Leja-like
points.
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Figure 3: N = 136 AFP (circles) and DLP (asterisks) for degree n = 15 in
a hand-shape polygon.
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