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Abstract

Resorting to recent results on subperiodic trigonometric quadra-
ture, we provide three product Gaussian quadrature formulas exact on
algebraic polynomials of degree n on circular lunes. The first works on
any lune, and has n2+O(n) cardinality. The other two have restrictions
on the lune angular intervals, but their cardinality is n2/2 +O(n).
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1 Introduction

Quadrature problems concerning a circular lune, i.e., the portion of a disk
not “obscured” by an overlapping disk, have a very long and fascinating his-
tory, starting from the famous quadrature of Hippocrate’s lunes (5th century
BC), passing through Clausen’s and Euler’s contributions in the 18th cen-
tury, till the classification of the lunes that are constructible by compass and
straightedge and that have equal area to a given square, eventually obtained
in the mid-20th century by the Russian mathematicians Chebotaryov and
Dorodnov via Galois theory; cf., e.g., [11, 15].

In the present paper, we study the problem of quadrature on lunes, that is
numerical integration of a bivariate function on a circular lune, constructing
three product Gaussian quadrature formulas that are exact on algebraic
polynomials up to a given degree. Quite surprisingly, such a problem has
not been yet addressed in the numerical literature, at least in the present
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formulation concerning polynomial exactness on the original domain. Some
approaches have indeed been studied, for example in [16, 17], where however
a preliminary polynomial or spline approximation of the lune boundary is
needed.

The key of our approach is given by suitable trigonometric transforma-
tions, that map (the interior of) a rectangle (in angular variables) diffeomor-
phically onto (the interior of) the lune, and allow to resort to some recently
developed trigonometric Gaussian rules on subintervals of the period (cf.
[5]). In such a way we complete our study of algebraic cubature on the
geometrical figures related to a couple of overlapping disks: lenses (intersec-
tion of two disks), double bubbles (union of two disks), cf. [4], and lunes
(difference of two disks).

All these results, indeed, and many other concerning sections of the disk
(circular segments, sectors, zones) and more generally integration domains
related to circular and elliptical arcs, are based on the recently developed
topic of “subperiodic” trigometric interpolation and quadrature; cf. [2, 3, 5,
6, 10].

For the reader’s convenience, we report the main result of [5], stated here
for a general angular interval:

Proposition 1 Let [α, β] be an angular interval, with 0 < β − α ≤ 2π. Let
{(ξj , λj)}1≤j≤n+1, be the nodes and positive weights of the algebraic Gaussian
quadrature formula for the weight function

w(x) =
2 sin(ω/2)

√

1− sin2(ω/2)x2
, x ∈ (−1, 1) , ω =

β − α

2
≤ π . (1)

Then
∫ β

α
t(θ) dθ =

n+1
∑

j=1

λjt(θj) , (2)

for every trigonometric polynomial t ∈ Tn([α, β]), where

θj =
α+ β

2
+ 2arcsin

(

ξj sin
(ω

2

))

∈ (α, β) , j = 1, 2, . . . , n + 1 .

Observe that, since the weight function (1) is even, the set of angular
nodes is symmetric with respect to the center of the interval, and that
symmetric nodes have equal weight, cf. [8].

The paper is organized as follows. In Sections 2 and 3 we develop the
theoretical construction of three product Gaussian quadrature formulas ex-
act on algebraic polynomials of degree n on circular lunes. The first works
on any lune, and has n2+O(n) cardinality. The other two have restrictions
on the lune angular intervals, but their cardinality is n2/2 + O(n). More-
over, we discuss the convergence rate of such formulas in connection with
multivariate Jackson inequality.
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In Section 4, we present some numerical results obtained by a Matlab
implementation of the product quadrature formulas. The corresponding
codes are available online in [7]. We do not develop specific applications
here, but it is worth recalling that Gaussian quadrature on domains defined
by circular arcs is of practical interest, for example, in the field of optical
design and optimization; cf. [1].

2 A general transformation

In this section we construct a basic product quadrature formula, which is
valid on any circular lune. By no loss of generality, up to rotation, translation
and scaling, we can consider a lune, say L, which is the difference of the
unit disk with of a disk of radius r centered at (−d, 0), d > 0. The condition
|1− r| < d < 1+ r ensures that the intersection is nonempty and one disk is
not included into the other, so that we have a proper lune. The boundary
of the lune is given by two circular arcs: the right (longer) is an arc of the
unit disk with semiangle ω2, the left (shorter) is an arc of the other disk
with semiangle ω1, where

0 < ω1 = arccos

(

r2 + d2 − 1

2dr

)

< ω2 = arccos

(

r2 − d2 − 1

2d

)

< π . (3)

Examples of lunes as difference of overlapping disks can be seen in Figures
3 and 4 below.

We now try to construct a transformation P : R → L of the rectangle

R = [−ω1, ω1]× [ω1, ω2]

onto the lune L, P (φ, θ) = (x(φ, θ), y(φ, θ)), of the form

P (φ, θ) = A1 +A2 cos(θ) +A3 sin(θ) +A4 cos(φ) +A5 cos(φ) cos(θ)

+A6 cos(φ) sin(θ) +A7 sin(φ) +A8 sin(φ) cos(θ) +A9 sin(φ) sin(θ) , (4)

where the Ai = (Ai(1), Ai(2)) are suitable 2-dimensional vectors, i.e., each
component of P is in the trigonometric space T1

⊗

T1.
The idea is that for θ = ω1 the corresponding curve is the lune’s right

boundary subarc (cos(φ), sin(φ)), for θ = ω2 it is the left boundary sub-
arc (−d, 0) + r(cos(φ), sin(φ)), for φ = ω1 it is the right boundary subarc
(cos(θ), sin(θ)). Moreover, we impose that, for fixed θ, varying φ we have
circular arcs, symmetric with respect to the x-axis. After simple but lengthy
calculations (not reported for brevity) we obtain

x(φ, θ) = cos(θ)−
cos(ω1)

sin(ω1)
sin(θ) +

1

sin(ω1)
cos(φ) sin(θ) ,
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y(φ, θ) =
1

sin(ω1)
sin(φ) sin(θ) , (5)

with Jacobian

det(JP (φ, θ)) =
sin(θ)(cos(φ) cos(θ − ω1)− cos(θ)

sin2(ω1)
. (6)

Since the boundary of the rectangle is mapped onto the boundary of the lune
(preserving the orientation) and the Jacobian is positive in the interior, this
transformation is a diffeomorphism that maps the interior of the rectangle
onto the interior of the lune. Indeed, sin(θ)/ sin2(ω1) > 0 because 0 < ω1 ≤
θ ≤ ω2 < π, thus we only have to check the sign of the second factor in (6).
Now, cos(φ) ≥ cos(ω1), which gives

cos(φ) cos(θ − ω1)− cos(θ) ≥ cos(ω1) cos(θ − ω1)− cos(θ)

= cos(θ − ω1 + ω1) + sin(θ − ω1) sin(ω1)− cos(θ) = sin(θ − ω1) sin(ω1) > 0

for θ > ω1.
The geometric action of transformation (5) can be seen in Figure 1-left.
We are now ready to state and prove the following

Proposition 2 Let L be the circular lune obtained as difference of the unit
disk with a disk of radius r centered at (−d, 0), d > 0 (cf. (3)), and let P be
the transformation (4)-(6). The following product Gaussian formula holds

∫∫

L
f(x, y) dx dy =

n+2
∑

i=1

n+3
∑

j=1

Wij f(xij, yij) , ∀f ∈ P
2
n , (7)

where P
2
n denotes the space of bivariate polynomials of total degree not

greater than n, and

Wij = det(JP (φi, θj))λi µj , (xij, yij) = P (φi, θj) , (8)

{φi}, {λi} being the angles and weights of the trigonometric Gaussian for-
mula (2) of degree of exactness n + 1 on [−ω1, ω1], and {θj}, {µj} those
of the trigonometric Gaussian formula (2) of degree of exactness n + 2 on
[ω1, ω2].

Proof. Since the transformation P :
◦
R→

◦
L is a diffeomorphism with pos-

itive Jacobian, we can apply the change of variables theorem for double
integration, obtaining

∫∫

L
f(x, y) dxdy =

∫ ω1

−ω1

∫ ω2

ω1

f(P (φ, θ)) det(JP (φ, θ)) dθdφ . (9)
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Now, f(x, y) ∈ P
2
n implies that f(P (φ, θ)) det(JP (φ, θ)) belongs to the

trigonometric tensor-product space Tn+1([−ω1, ω1])
⊗

Tn+2([ω1, ω2]), so that
we get exactness using the corresponding trigonometric Gaussian formula (2)
in each variable. �

Observe that the cardinality of the product Gaussian formula (7) is ap-
proximately (n+ 2)(n + 3) = n2 +O(n).

3 Reducing the number of nodes

In order to reduce the number of quadrature nodes, we can try to use axial
symmetry, together with symmetry of subperiodic trigonometric Gaussian
quadrature, in the spirit of the construction of [4] for circular segments. We
have studied two transformations, which lead to formulas with substantially
half the cardinality of (7), but have restrictions on the lune’s angular interval.

3.1 First approach

We seek a transformation P : R′ → L of the form (4), where

R′ = [−ω1, ω1]× [0, ω2] ,

such that, P (φ, 0) ≡ 1, for θ = ω2 it gives the lune’s left boundary sub-
arc (−d, 0) + r(cos(φ), sin(φ)), for φ = ω1 it gives the right boundary sub-
arc (cos(θ), sin(θ)). By imposing symmetry with respect to the x-axis,
x(φ, θ) = x(−φ, θ) and y(φ, θ) = −y(−φ, θ), together with the further sym-
metry condition x(φ, θ) = x(φ,−θ) and y(φ, θ) = −y(φ,−θ), we eventually
obtain

x(φ, θ) = cos(θ) +
(1− cos(θ)) sin(ω2)

(1− cos(ω2)) sin(ω1)
(cos(φ)− cos(ω1)) ,

y(φ, θ) =
1

sin(ω1)
sin(φ) sin(θ) , (10)

with Jacobian

det(JP (φ, θ)) =
g(φ, θ)

sin2(ω1)(1− cos(ω2))
, (11)

where

g(φ, θ) = ((1− cos(ω2)) sin(ω1) + cos(ω1) sin(ω2)) sin
2(θ) cos(φ)

− sin(ω2) sin
2(θ) cos2(φ)− sin(ω2) sin

2(φ) cos(θ) + sin(ω2) sin
2(φ) cos2(θ) .

(12)
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This transformation maps the boundary of the rectangle R′ onto the
boundary of the lune, non injectively since one side collapses into one sin-
gle point, P (φ, 0) ≡ (1, 0), and preserving the orientation, so in order to
check whether it is a diffeomorphism that maps the interior of the rectangle
onto the interior of the lune, we have to study under which conditions the
Jacobian is positive (i.e., g(θ, φ) is positive) in the interior.

It is not difficult to show that det(JP (φ, θ)) is positive in
◦

R′ if and only
if the following inequality holds

ω1 ≤ arctan

(

2(1 − cos(ω2))

sin(ω2)

)

. (13)

To prove that condition (13) is necessary, consider the function g(φ, θ)
in (12) restricted to a portion of the boundary, φ = ω1. Now,

g(ω1, θ) = (1− cos(ω2)) sin(ω1) cos(ω1) sin
2(θ)

− sin(ω2) sin
2(ω1) cos(θ)(1− cos(θ))

is clearly negative for ω1 ≥ π/2 and 0 < θ < π/2. On the other hand, if
(13) is not satisfied

lim
θ→0+

g(ω1, θ)

sin2(θ)
= (1− cos(ω2)) sin(ω1) cos(ω1)−

1

2
sin(ω2) sin

2(ω1) < 0 ,

and thus g(ω1, θ) < 0 in a neighborhood of θ = 0.
In order to prove that (13) is sufficient, we write the estimate

1

sin(ω2)
g(φ, θ) =

(

(1− cos(ω2))
sin(ω1)

sin(ω2)
+ cos(ω1)− cos(φ)

)

sin2(θ) cos(φ)

− sin2(φ) cos(θ)(1− cos(θ)) ≥ (tan(ω1) sin(ω1)/2 + cos(ω1)

− cos(φ)) sin2(θ) cos(φ)− sin2(φ) cos(θ)(1− cos(θ)) ,

and thus det(JP (φ, θ)) is positive if the last trigonometric expression above
is positive, i.e.,

1 + cos2(ω1)− 2 cos(ω1) cos(φ)

2 cos(ω1)

cos(φ)

sin2(φ)
>

cos(θ)(1− cos(θ))

sin2(θ)
. (14)

For θ > π/2, (14) holds clearly true, because the left-hand side is
positive and the right-hand side is negative, under our assumption that
−π/2 < −ω1 ≤ φ ≤ ω1 < π/2. For 0 < θ ≤ π/2 we have 0 ≤ cos(θ)(1 −
cos(θ))/ sin2(θ) < 1/2, and thus it is sufficient to show that

1 + cos2(ω1)− 2 cos(ω1) cos(φ)

2 cos(ω1)

cos(φ)

sin2(φ)
≥

1

2
.
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Also the latter inequality holds true, since the left-hand side has global
minimum at φ = ±ω1 and this minimum is 1/2.

The geometric action of transformation (10) can be seen in Figure 1-
center, where the lune satisfies (13).

Figure 1: Mapping a 10× 10 angular grid from the relevant rectangles to a
lune by the transformations (5) (left), (10) (center) and (18) (right).

At this point, we can state the following result on the construction of
product Gaussian quadrature with halved cardinality.

Proposition 3 Let L be the circular lune obtained as difference of the unit
disk with a disk of radius r centered at (−d, 0), d > 0 (cf. (3)), where the
angular intervals satisfy (13), and let P be the transformation (10)-(12).
The following product Gaussian formula holds

∫∫

L
f(x, y) dx dy =

n+3
∑

i=1

⌈n+2

2
⌉

∑

j=1

Wij f(xij, yij) , ∀f ∈ P
2
n , (15)

where P
2
n denotes the space of bivariate polynomials of total degree not

greater than n, and

Wij = det(JP (φi, θj))λi µj , (xij, yij) = P (φi, θj) , (16)

{φi}, {λi} being the angles and weights of the trigonometric Gaussian for-
mula (2) of degree of exactness n + 2 on [−ω1, ω1], and {θj}, {µj} those
of the trigonometric Gaussian formula (2) of degree of exactness n + 2 on
[−ω2, ω2].

Proof. Since under assumption (13) the transformation P :
◦

R′→
◦
L is a

diffeomorphism with positive Jacobian, we can apply the change of variables
theorem for double integration, obtaining

∫∫

L
f(x, y) dxdy =

∫ ω1

−ω1

∫ ω2

0

f(P (φ, θ)) det(JP (φ, θ)) dθdφ .
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On the other hand, by symmetry of the transformation we can also write

∫∫

L
f(x, y) dxdy =

∫ ω1

−ω1

∫

0

−ω2

f(P (φ, θ)) det(JP (φ, θ)) dθdφ ,

which together with the former gives
∫∫

L
f(x, y) dxdy =

1

2

∫ ω1

−ω1

∫ ω2

−ω2

f(P (φ, θ)) det(JP (φ, θ)) dθdφ . (17)

Now, f(x, y) ∈ P
2
n implies that f(P (φ, θ)) det(JP (φ, θ)) belongs to the

trigonometric tensor-product space Tn+2([−ω1, ω1])
⊗

Tn+2([−ω2, ω2]). Thus,
using the corresponding trigonometric Gaussian formula (2) in each variable,
and observing that by symmetry each node is repeated twice with equal
weight, apart from the node (1, 0) for n even, which is repeated 2(n + 3)
times but has null weight, we obtain the product Gaussian formula (15)-(16).
�

Observe that the cardinality of the product Gaussian formula (15) is
approximately (n+ 2)(n + 3)/2 = n2/2 +O(n), that is half the cardinality
of (7). In particular, it is exactly half for n even, and (n+ 3)2/2 for n odd.

3.2 Second approach

We seek a transformation P : R′′ → L of the form (4), where

R′′ = [0, ω1]× [−ω2, ω2] ,

such that, P (0, θ) ≡ (−d+ r, 0), for θ = ω2 it gives the lune’s left boundary
subarc (−d, 0) + r(cos(φ), sin(φ)), 0 ≤ φ ≤ ω1, for φ = ω1 it gives the right
boundary subarc (cos(θ), sin(θ)). By imposing symmetry with respect to
the x-axis, x(φ, θ) = x(φ,−θ) and y(φ, θ) = −y(φ,−θ), together with the
further symmetry condition x(φ, θ) = x(−φ, θ) and y(φ, θ) = −y(−φ, θ), we
eventually obtain

x(φ, θ) = (cos(φ)− cos(ω1))

(

cos(ω2)

1− cos(ω1)
+

sin(ω2)

sin(ω1)

)

+
1− cos(φ)

1− cos(ω1)
cos(θ) ,

y(φ, θ) =
1

sin(ω1)
sin(φ) sin(θ) , (18)

with Jacobian

det(JP (φ, θ)) =
g(φ, θ)

sin(ω1)(1 − cos(ω1))
, (19)

where

g(φ, θ) = −

(

cos(ω2) +
sin(ω2)

sin(ω1)
(1− cos(ω1))

)

sin2(φ) cos(θ)+sin2(φ) cos2(θ)

8



+cos(φ) sin2(θ)− cos2(φ) sin2(θ) . (20)

Also this transformation, as that in (10), maps the boundary of the
rectangle R′′ onto the boundary of the lune, non injectively since one side
collapses into one single point, P (0, θ) ≡ (−d + r, 0), and preserves the
boundary orientation. In order to check whether it is a diffeomorphism
that maps the interior onto the interior, with the same reasoning made for
the previous transformation we have to check under which conditions the
Jacobian is positive (i.e., g(φ, θ) is positive) in the interior.

We prove now that det(JP (φ, θ)) is positive in
◦

R′′ if and only if the
following inequality holds

(cos(ω2) + cos(ω2 − ω1))
2 ≤ 4 cos(ω1) . (21)

Observe that condition (21) determines a set of the parameters ω1, ω2 which
has nonempty difference with that determined by condition (13); see Figure
2, where (13) corresponds to the area below the dashed curve, and (21)
to that below the solid curve. Notice that, as (13), also (21) implies that
ω1 < π/2, except for the tangency point (ω2, ω1) = (3π

4
, π
2
). In the region

above both the curves, and in particular for ω1 > π/2, only the general
formula (7) is applicable.

To prove that condition (21) is necessary, consider

g(ω1, θ)

1− cos(ω1)
= −(cos(ω2) + cos(ω2 − ω1)) cos(θ) + cos2(θ) + cos(ω1) ,

which has the same sign of det(JP (ω1, θ)). It is not difficult to check
that such a function has global minimum for θ = ±θ∗ where 0 < θ∗ =
arccos((cos(ω2) + cos(ω2 − ω1))/2) < ω2, and the condition

g(ω1, θ
∗)

1− cos(ω1)
= −(cos(ω2) + cos(ω2 − ω1))

2/4 + cos(ω1) ≥ 0

is exactly (21).
To prove that condition (21) is sufficient for positivity of the Jacobian

in the interior, since the denominator in (19) is positive, we are reduced to
prove that g(φ, θ) is positive. Now,

∂g

∂φ
= sin(φ)(2a cos(φ)− sin2(θ)) ,

where

a = 1− (cos(ω2) + cos(ω2 − ω1))
1− cos(ω1)

sin2(ω1)
.

Since by (21)

| cos(ω2) + cos(ω2 − ω1)|
1− cos(ω1)

sin2(ω1)
≤ 2

√

cos(ω1)
1− cos(ω1)

sin2(ω1)
< 1 ,
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we have a > 0 and 2a cos(φ) − sin2(θ) is a strictly decreasing function of
φ ∈ [0, ω1]. Now, sign(∂g/∂φ) = sign(2a cos(φ)−sin2(θ)) because sin(φ) ≥ 0
in (0, ω1], thus ∂g/∂φ may change sign at most once, i.e., either it doesn’t
change sign, or it may change from positive to negative increasing φ (it
cannot change from negative to positive, the factor 2a cos(φ)− sin2(θ) being
strictly decreasing in φ). This entails that, for fixed θ, the function g(φ, θ)
takes its minimum either at φ = 0 (where it vanishes) or at φ = ω1, and we
have proved above that nonnegativity of g(ω1, θ) is equivalent to (21).

The geometric action of transformation (18) can be seen in Figure 1-
right, where the lune satisfies (21).

omega2

om
eg

a1

0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Figure 2: Regions of applicability of the quadrature formulas for a lune
in the (ω2, ω1) plane (see (13) and (21)): formula (15)-(16) can be applied
below the dashed curve, formula (22)-(23) below the solid curve, formula
(7)-(8) for every pair of angles (3); the horizontal dotted line is ω1 = π/2.

We can give now a statement concerning the third product Gaussian
formula.

Proposition 4 Let L be the circular lune obtained as difference of the unit
disk with a disk of radius r centered at (−d, 0), d > 0 (cf. (3)), where the
angular intervals satisfy (21), and let P be the transformation (18)-(20).
The following product Gaussian formula holds

∫∫

L
f(x, y) dx dy =

⌈n+2

2
⌉

∑

i=1

n+3
∑

j=1

Wij f(xij, yij) , ∀f ∈ P
2
n , (22)
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where P
2
n denotes the space of bivariate polynomials of total degree not

greater than n, and

Wij = det(JP (φi, θj))λi µj , (xij, yij) = P (φi, θj) , (23)

{φi}, {λi} being the angles and weights of the trigonometric Gaussian for-
mula (2) of degree of exactness n + 2 on [−ω1, ω1], and {θj}, {µj} those
of the trigonometric Gaussian formula (2) of degree of exactness n + 2 on
[−ω2, ω2].

The proof of proposition 4 proceeds as that of Proposition 3, with the
roles of ω1 and ω2 interchanged. This time it is the node (−d + r, 0) to
be repeated 2(n + 3) times, but it has null weight so it doesn’t appear
in (22). Observe that, as (15), also the product Gaussian formula (22)
has approximately (n + 2)(n + 3)/2 = n2/2 + O(n) nodes, that is half the
cardinality of (7).

Remark 1 (Convergence rate). Let In(f) be any of the three product Gaus-
sian formulas discussed above. Concerning the convergence rate, due to the
positivity of the weights it is simple to show by standard arguments of
quadrature theory that

∣

∣

∣

∣

∫∫

L
f(x, y) dx dy − In(f)

∣

∣

∣

∣

≤
(

meas(L) +
∑

Wij

)

distL(f,P
2
n)

= 2meas(L) distL(f,P
2
n) ,

which implies that for any fixed k > 0 and sufficiently regular integrand f ,
we have the error estimate

∫∫

L
f(x, y) dx dy = In(f) +O(n−k) , (24)

since a lune is a Jackson compact, cf. [14].
We recall that a fat compact set Ω ⊂ R

d (i.e., Ω = Ωo) is termed a
Jackson compact if it admits a Jackson inequality, namely for each k ∈ N

there exist a positive integer mk and a positive constant ck such that

nk distΩ(f,P
d
n) ≤ ck

∑

|i|≤mk

‖Dif‖Ω , n > k , ∀f ∈ Cmk(Ω) (25)

where
distΩ(f,P

d
n) = inf {‖f − p‖∞,Ω , p ∈ P

d
n} .

Examples of Jackson compacts are d-dimensional cubes (with mk = k + 1)
and Euclidean balls (with mk = k).
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In [14], it is proved that any fat Whitney regular Markov compact is a
Jackson compact. Now, a lune has both these properties, being the image
of a rectangle by the analytic transformation (5) and thus a sub-analytic set
(cf. [13, 18] concerning sub-analytic geometry).

More directly, a lune admits a Markov polynomial inequality with expo-
nent 2 because it is a Lipschitz domain, i.e., at the boundary it is locally
the cartesian graph of a Lipschitz continuous function. This is due to the
fact that the circles are not tangent at the lune’s corners. Moreover, a lune
is Whitney 1-regular, i.e., any pair of points can be joined by an internal
curve whose length is bounded by their Euclidean distance times a fixed fac-
tor. Indeed, depending on their position inside the lune, two points can be
joined either by the corresponding segment if it doesn’t intersect the lune’s
shorter side, or by the curve formed by two pieces of the segment joined by
the subarc of such a side between the intersection points. In any case, it is
not difficult to realize that the ratio (curve length)/distance is bounded by
rω1/ sin(ω2).

4 Implementation and examples

Efficient implementation of the product Gaussian formulas (7), (15) and (22)
on circular lunes, is clearly based on fast computation of the trigonometric
Gaussian formula (2). A Matlab implementation of the latter is provided
in [3], by exploiting fast and stable computation of modified Chebyshev
moments and the algorithms for orthogonal polynomials in the OPQ suite
[9] by W. Gautschi. It is worth recalling that Gaussian quadrature for the
weight function (1), can also be embedded in the more general framework
of “sub-range” Jacobi polynomials, cf. [10].

In [7] we provide a Matlab code, named gqlune, that implements the
three product quadrature formulas studied in the present paper, for a general
lune. It can be applied to the difference of any disk with any other disk (with
arbitrary centers and radii), recognizing automatically whether the lune is
proper, and applying different quadrature formulas in the degenerate case
(that is when the disks do not overlap) or the second disk is contained into
the first (in this latter case the region is treated as an asymmetric annulus,
via the approach of [3]).

For a proper lune, by default the code chooses automatically the lower
cardinality formulas when (13) or (21) are satisfied (privileging (15) in the
parameters intersection zone, see Figure 2), resorting to the general formula
(7) otherwise.

Concerning efficiency of the method, using the computational tricks for
trigonometric Gaussian quadrature discussed in [6], in particular a fast ver-
sion of the Golub-Welsh algorithm, recently proposed in [12] for Gaussian
rules with symmetric weight function, we are able to compute the product
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Gaussian formulas for lunes in just 10−2 seconds up to exactness degree
n = 200, that is up to tens of thousands nodes and weights.

All the numerical tests have been made in Matlab 7.7.0 with an Athlon
64 X2 Dual Core 4400+ 2.40GHz processor.

Example 1. We consider the lune obtained as difference of the disk centered
in (0, 0) and radius 2, with the disk centered in (−1.8, 0) and radius 2.5; the
product quadrature nodes with exactness degree n = 4 for the three formulas
above are shown in Figure 3-left and Figure 4.

In Figure 5-top we show the relative errors obtained by the three product
quadrature formulas on the slowly varying Gaussian

f1(x, y) = exp[−((x− 1)2 + (y − 1)2)] ,

and the more rapidly varying Gaussian

f2(x, y) = exp[−100((x − 1)2 + (y − 1)2)] ;

observe that the Gaussian center (1, 1) belongs to the interior of the lune.
Such errors are plotted in loglog scale, with respect to the number of nodes,
corresponding to the sequence of exactness degrees n = 5, 10, 15, . . . , 95, 100.
The reference value of the integrals has been obtained by the standard Mat-
lab dblquad numerical integrator, with a relative error tolerance of 10−15

(notice that this requires a computational time in the order of the minutes,
whereas we can obtain a comparable precision in few 10−2 seconds).

Example 2. We take the same lune as in Example 1, but this time we
apply the product quadrature formulas to the C0 function

f3(x, y) = [(x− 1)2 + (y − 1)2)]1/2 ,

which has a singularity of the first derivatives at the internal point (1, 1),
and to the C4 function

f4(x, y) = [(x− 1)2 + (y − 1)2)]5/2 ,

which has a singularity of the fifth derivatives at the same point. The loglog
plot of the errors is shown in Figure 5-bottom.

Notice that, as expected in view of the cardinality for the same exactness
degree, in both the Examples formulas (15) and (22) perform better than
formula (7), in terms of precision as a function of the number of nodes (i.e.,
in terms of function evaluations).
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Figure 3: The 6× 7 = 42 nodes of the product quadrature formula (7) with
exactness degree n = 4 on two circular lunes, with ω1 = 0.9147, ω2 = 1.7987
(left), and ω1 = 1.5675, ω2 = 2.5526 (right).

Figure 4: The 7 × 3 = 21 nodes of the product quadrature formulas (15)
(left) and (22) (right), with exactness degree n = 4 on the same circular
lune of Figure 3-left.
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