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Near optimal Tchakaloff meshes for compact sets
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Abstract

By a discrete version of Tchakaloff Theorem on positive quadrature formulas, we prove that any real
multidimensional compact set admitting a Markov polynomial inequality with exponent 2 possesses a
near optimal polynomial mesh. This improves for example previous results on general convex bodies
and starlike bodies with Lipschitz boundary, being applicable to any compact set satisfying a uniform
interior cone condition. We also discuss two algorithmic approaches for the computation of near optimal
Tchakaloff meshes in low dimension.
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1 Introduction

Let K ⊂ Rd (or Cd ) be a polynomial determing compact set (i.e., polynomials vanishing on K vanish everywhere). We recall
that a polynomial mesh on K is a sequence of finite norming sets Xn ⊂ K , such that

‖p‖K ≤ C ‖p‖Xn
, ∀p ∈ Pd

n
, card(Xn) =O(ns) , (1)

for some constant C ≥ 1 and s ≥ d, where Pd
n

denotes the subspace of polynomials of total-degree not exceeding n with

dimension N = N(n) = dim(Pd
n
) =
�n+d

d

�

, and ‖p‖Y the uniform norm on a continuous or discrete compact set Y ).

When s = d the mesh is called “optimal” in the literature, since necessarily necessarily card(Xn) ≥ N ∼ nd/d!, n→∞, so
that it has the lowest possible order of growth with respect to n, whereas it is called near optimal when a logarithmic factor in
n multiplies nd , such as O(nd logk n), k ≤ d.

Polynomial meshes, that are ultimately good discrete models of compact sets when polynomials are involved, have been
playing an important role in multivariate polynomial approximation during the last decade, from both the theoretical and the
computational point of view. The latter is witnessed by the role of polynomial meshes in interpolation (Fekete-like subsets) and
least squares, Bernstein-Markov measures and pluripotential numerics, and more recently in polynomial optimization. We may
refer the reader for example to [2, 5, 8, 11, 15, 16, 20, 19], with the references therein.

We shall focus here on compact sets in Rd . It is well-known by the fundamental construction of Calvi and Levenberg [5,
Thm. 5] that any real compact set admitting a Markov polynomial inequality with exponent r, i.e. there exists a constant
M > 0 such that

‖∇p(x)‖2 ≤Mnr ‖p‖K , ∀p ∈ Pd
n

, (2)

possesses a polynomial mesh with O(nrd) points.
On the other hand, optimal polynomial meshes have been constructed on several classes of compact sets, such as for

example starlike and more general bodies with smooth boundary [11, 12, 15], bidimensional general convex bodies [13],
general polytopes [11], and suitable sections of disk, sphere, ball and torus [8, 24]. Near optimal meshes are known on Cα

starlike bodies with α = 2− 2/d (in particular on planar Lipschitz starlike bodies, [12]), and on the general class of fat real
subanalytic sets (essentially, finite unions of analytic images of boxes, cf. [20]). It should also be recalled that near optimal
polynomial meshes are known to exist on any compact set in Cd (cf. [1, 3], and also [4]), but such results are essentially based
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on Fekete interpolation sets of suitable degree, that are explicitly available only in very few instances and are extremely hard to
compute.

On the contrary, in this note we show that any real compact set satisfying a Markov polynomial inequality (2) with exponent
r = 2 possesses a near optimal mesh, in view of a discrete version of Tchakaloff Theorem on positive quadrature, and that such a
mesh can be computed by standard Linear and Quadratic Programming algorithms (at least in low dimension and for moderate
degrees). Such a class includes for example any convex body [26], and more generally any compact body satisfying a uniform

interior cone condition (that is with locally Lipschitz boundary), cf. [9].
We recall as a Lemma a discrete version of Tchakaloff Theorem on the existence of positive multivariate quadrature formulas

exact on polynomial spaces. Originally proved by V. Tchakaloff in 1957 for absolutely continuous measures [23], it has then
been extended to any measure with finite polynomial moments, cf. e.g. [7].

Lemma 1.1. Let µ be a multivariate discrete measure supported at a finite set X = {x i} ⊂ Rd , with correspondent positive weights

(masses) λ = {λi}, i = 1, . . . , M.

Then, there exist a quadrature formula with nodes Tn = {t j} ⊆ X , that we may term the “Tchakaloff points” of (X ,µ), and

positive weights w = {w j}, 1 ≤ j ≤ m≤ N = dim(Pd
n
), such that

∫

X

p(x) dµ=

M
∑

i=1

λi f (pi) =

m
∑

j=1

w j p(t j) , ∀p ∈ Pd
n

. (3)

Proof. We recall also the proof (cf. e.g. [17]), since it gives the base for a numerical algorithm to compute Tchakaloff points
and weights. Let {p1, . . . , pN} be a basis of Pd

n
, and V = (vi j) = (p j(x i)) the Vandermonde-like matrix of the basis computed

at the support points. If M > N (otherwise there is nothing to prove), existence of a positive quadrature formula for µ with
cardinality not exceeding N can be immediately translated into existence of a nonnegative solution with at most N nonvanishing
components to the underdetermined linear system

V t
u = b , u ≥ 0 , (4)

where

b = V t
λ=

¨∫

X

p j(x) dµ

«

, 1≤ j ≤ N , (5)

is the column vector of µ-moments of the basis {p j}.
Existence then holds by the well-known Caratheodory Theorem applied to the columns of V t , which asserts that a conic

(i.e., with positive coefficients) combination of any numer of vectors in RN can be rewritten as a conic combination of at most
N (linearly independent) of them; cf. [6]. �

We can now state and prove our main result.

Proposition 1.2. Let K ⊂ Rd be a compact set admitting a Markov polynomial inequality like (2) with exponent r = 2.

Then, K possesses a polynomial mesh Zn with cardinality O(n2d). Moreover, the Tchakaloff points T2kn
extracted from Zkn

with

unit mass measure, where kn = nℓn, ℓn = [log n]+1, form a near optimal polynomial mesh for K with card(T2kn
) =O((n log n)d).

Proof. The first part is Calvi-Levenberg construction in [5, Thm. 5]. Let L be the maximal length of the convex hulls of the
projections of K on the cartesian axes. Since polynomial meshes are affinely invariant, we may assume up to a translation that

K ⊆ [0, L]d . Fix θ ∈ (0, 1) and define ν =
l p

dMLn2

θ exp(−
p

d θ )

m

. Consider in [0, L]d a uniform grid with stepsize h = L/ν . For every

box of the grid which intersects K choose a point in the intersection, and denote with Zn the (finite) set of such points.
Observe that, by the estimate |q(z)| ≤ exp(dMn2δ)‖q‖K , valid for every q ∈ Pd

n
and for every z ∈ Rd such that dist∞(z, K)≤

δ (cf. [5, Lemma 6]), applied to the components of ∇p = (∂1p, . . . ,∂d p), we get

‖∇p(z)‖2 ≤ edMn2δ ‖∇p‖K , ∀z ∈ Rd : dist∞(z, K)≤ δ . (6)

Now, for every x ∈ K we can choose y ∈ Zn such that δ = ‖x − y‖∞ ≤ h ≤ θ/(
p

d Mn2)exp(−
p

d θ ) < θ/(
p

d Mn2). By
the mean value theorem, for every x , y ∈ K we have

|p(x)− p(y)| ≤ ‖∇p(ξ)‖2 ‖x − y‖2
for a suitable ξ in the segment [x , y]. Then by (6) with z = ξ, together with ‖x − y‖2/

p
d ≤ ‖x − y‖∞ ≤ h, we get

|p(x)− p(y)| ≤ edMn2δ
Mn2 ‖x − y‖2 ‖p‖K < e

p
d θ
p

d h‖p‖K ≤ θ ‖p‖K ,

and thus
|p(x)| ≤ |p(y)|+ |p(x)− p(y)| ≤ ‖p‖Zn

+ θ ‖p‖K ,

from which (1) follows with C = 1/(1−θ ). Notice that card(Zn) does not exceed the fraction of grid boxes intersecting K , and
thus it is bounded by the overall number of grid boxes

card(Zn)≤ ν d ≤ cd n2d , cd =

¢ p
d LM

θ exp(−
p

d θ )

¥d

. (7)
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In the case of convex bodies, the proof can use simply the mean value theorem, so that the factor exp(−
p

d θ ) in the denominator
is dropped, in both the definition of ν and (7) (we omit the details for brevity).

Concerning the second part, first observe that for every p ∈ Pd
n

the polynomial pℓn is in Pd
kn

and thus

‖p‖ℓnK = ‖pℓn‖K ≤ C ‖pℓn‖Zkn
.

Now, consider on X = Zkn
the discrete measure µ with unit masses. By Lemma 1 we get for every q ∈ Pd

kn

‖q‖2
Zkn
≤ ‖q‖2

ℓ2(Zkn
)
= ‖q‖2

ℓ2w (T2kn
)
=

m
∑

j=1

w j q2(t j)

≤
 

m
∑

j=1

w j

!

‖q‖2
T2kn
= µ(Zkn

)‖q‖2
T2kn
= card(Zkn

)‖q‖2
T2kn

.

Then we can write
‖pℓn‖K ≤ C

p

card(Zkn
)‖pℓn‖T2kn

≤ C
p

cd k2d
n
‖pℓn‖T2kn

and thus
‖p‖K ≤

�

kd
n

C
p

cd

�1/ℓn ‖p‖T2kn
= O(1) ‖p‖T2kn

since
�

kd
n

C
p

cd

�1/ℓn
= exp

�

log kd
n

ℓn

�

�

C
p

cd

�1/ℓn

= exp

�

d
log n+ log ℓn

ℓn

�

�

C
p

cd

�1/ℓn

≤ exp

�

d

�

1+
log ℓn

ℓn

��

�

C
p

cd

�1/ℓn ∼ ed , n→∞ .

Notice finally that card(T2kn
) =O((n log n)d) as n→∞, since

card(T2kn
)≤ dim(Pd

2kn
) =

�

2kn+ d

d

�

∼
(2n log n)d

d!
, n→∞ . (8)

�

The class of compact sets covered by Proposition 1 is very wide. Indeed

Corollary 1.3. Any compact domain (the closure of a bounded open set) in Rd satisfying a uniform interior cone condition (each

point of K is the vertex of a suitably rotated fixed cone contained in K) possesses a near optimal polynomial mesh. This holds in

particular for any convex body.

In fact, such a property implies the fulfillement of a Markov inequality with exponent 2, which is inherited from the cone, cf.
e.g. [25]. This is valid on any compact domain with (locally) Lipschitz boundary, the latter property implying the fulfillement
of a uniform interior cone condition [9].

In particular, Proposition 1 is valid on any convex body, where one can prove that a Markov inequality holds with r = 2
and M proportional to the reciprocal of the body width (the minimum distance between parallel supporting hyperplanes) by a
factor 4 (or 2 on centrally symmetric bodies), cf. [26]. This improves the previous results for general convex bodies and starlike
Lipschitz bodies in dimension d > 2, where the best known cardinality for polynomial meshes was O(n2d−2), cf. [11, 12]. It can
also be seen as a further step towards the proof of the Conjecture: “Every convex body in Rd possesses an optimal polynomial
mesh”, cf. [11].

The proof of Proposition 1 is completely constructive, and easily implementable, at least in low dimension. In particular,
differently from other relevant families of points in multivariate polynomial approximation, such as Fekete points or Lebesgue
points, Tchakaloff points can in principle be computed by basic algorithms of Linear and Quadratic Programming.

In fact, the discrete version of Tchakaloff Theorem in Lemma 1, requires ultimately to compute a sparse nonnegative solution
to the underdetermined linear system (4)-(5). In the literature on quadrature compression, essentially two approaches have been
used.

The Linear Programming (LP) approach consists in minimizing the linear functional c
t
u for a suitable choice of the vector

c, subject to the constraints V t
u = b and u ≥ 0. In fact, the solution is a vertex of the polytope defined by the constraints,

which has (at least) M − N null components, cf. e.g. [21]. Observe that a usual choice of the popular compressed sensing field
(Basis Pursuit, cf. [10]), namely c = (1, . . . , 1) that is minimizing ‖u‖1 subject to the constraints, is not feasible in the present
context, since ‖u‖1 = µ(X ) for any u satisfying (4) by exactness of the quadrature formula on the constants.

As an alternative, the Quadratic Programming approach consists in solving the NonNegative Least Squares (NNLS) problem

compute u
∗ : ‖V t

u
∗ − b‖2 =min‖V t

u − b‖2 , u ≥ 0 , (9)

that can be done by the well-known Lawson-Hanson active set optimization method [14], which automatically seeks a sparse

solution and is implemented for example by the lsqnonneg native algorithm of Matlab. Our limited computational experience,
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in low dimension (d = 2, 3) and with moderate degrees (polynomial spaces of dimension up to the hundreds), has shown that
in such setting Lawson-Hanson NNLS is more efficient than the most common implementations of LP. A Matlab code for the
computation of Tchakaloff points based on NNLS is provided in the software packages quoted in [17, 22], where the reader can
find a more detailed discussion.

In order to make an illustrative example, in Figure 1 we display for degree n = 4 the grid-based mesh Zn = Z4 with θ = 1/2
(approximately 8800 points) and the near optimal Tchakaloff mesh T2kn

= T16 (153 points extracted from the approximately
140000 points of Zkn

= Z8) on a quarter of a Cassini oval, that is

K = {x = (x1, x2) ∈ R2 : ((x1 − a)2+ x2
2)((x1+ a)2+ x2

2) ≤ b4, x1, x2 ≥ 0} ,

with a = 1, b = 2 (the Cassini ovals are convex for b/a ≥
p

2); the Tchakaloff points have been computed by Lawson-Hanson
NNLS algorithm.
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Figure 1: Grid-based polynomial mesh (around 8800 points) and Tchakaloff near optimal mesh (153 points) for degree n = 4 on a quarter of
a Cassini oval.
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