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Abstract

We make a further step in the unisolvence open problem for unsymmetric Kansa collocation, proving almost
sure nonsingularity of Kansa matrices with polyharmonic splines and random fictitious centers, for second-
order elliptic equations with mixed boundary conditions. We also show some numerical tests, where the
fictitious centers are local random perturbations of predetermined collocation points.
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1. Introduction

Strong form meshless collocation by Radial Basis Functions, named after the pioneering work of E.J.
Kansa in the late 80’s [13, 14], has been widely used in numerical modelling of scientific and engineering
problems for almost 40 years; cf., with no pretence of exhaustivity, [1, 3, 4, 5, 10, 19] and the references
therein. Despite the manifest success of Kansa method and several studies devoted to its theoretical and
computational features, for example on unisolvence in the overtesting framework via least squares (cf. e.g.
[6, 11, 16, 18, 19]), the basic problem of invertibility of unsymmetric square collocation matrices remains
still substantially open. It is indeed well known since the fundamental paper by Hon and Schaback [11] that
there exist singular collocation designs (though they are extremely “rare”), but finding sufficient conditions
that ensure invertibility is a challenging topic. This theoretical lack was clearly recognized in the popular
textbook [10], and still only quite partially fixed.

To be precise, some specific results have been recently obtained for random collocation, in the standard
(but quite difficult) situation where RBF centers and collocation points coincide, namely in the particular
case of the Poisson equation with Dirichlet boundary conditions, cf. [2, 8]. Nevertheless, while the assump-
tions in [2] (which treats the popular MultiQuadrics) are weak, in particular the boundary has no specific
property besides those required for well-posedness of the differential problem, in [8], dealing with Thin-Plate
Splines (TPS) with no polynomial addition, the boundary is assumed to possess an analytic parametrization.
All these restrictions make the quoted results not completely satisfactory, even in the framework of random
collocation.

In this paper, expanding the proving technique presented in [7], we focus on almost sure unisolvence
of random meshless collocation by polyharmonic splines, trying to work with more generality on second-
order elliptic equations and mixed Dirichlet-Neumann boundary conditions. The main idea that allows the
generalization is to work with distinct center and collocation points, in particular the collocation points
will be fixed and the centers randomly chosen. While the use of a sort of “fictitious” centers is not new
in the literature on the Kansa method (essentially in the least squares framework), cf. e.g. [4, 5, 21], the
novelty here is that we deal with square collocation matrices. Moreover, the centers are independent but not
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necessarily identically distributed random variables, in particular we can take the centers as local random
perturbations of predetermined collocation points. On the other hand, in the implementation we can exploit
an appealing computational feature of polyharmonic splines, that of being scale independent, cf. e.g. [10].

The main theoretical result is proved in Section 2, while in Section 3 we present some numerical tests to
show the applicability of this kind of Kansa collocation, which is theoretically unisolvent in a probabilistic
sense.

2. Second-order elliptic equations with mixed boundary conditions

In this paper, we consider second-order elliptic equations with variable coefficients and mixed boundary
conditions  Lu(P ) =

∑d
i,j=1 cij(P )∂2

xixj
u(P ) + ⟨∇u(P ), b⃗(P )⟩+ ρ(P )u(P ) = f(P ) , P ∈ Ω ,

Bu(P ) = χΓ1(P )u(P ) + χΓ2(P )∂νu(P ) = g(P ) , P ∈ ∂Ω ,

(1)

where Ω ⊂ Rd is a bounded domain (connected open set), P = (x1, . . . , xd), and the differential operator is
elliptic, i.e. ∑

i,j

cij(P )ξiξj ̸= 0 , ∀P ∈ Ω , ∀ξ ∈ Rd \ {0} . (2)

Moreover, ∇ = (∂x1
, . . . , ∂xd

) denotes the gradient and ⟨·, ·⟩ the inner product in Rd, b⃗ is a vector field,
∂ν = ⟨∇, ν⃗⟩ is the normal derivative at a boundary point, and χ denotes the characteristic function. The
boundary is indeed splitted in two disjoint portions, namely ∂Ω = Γ1 ∪ Γ2. If Γ2 = ∅ or Γ1 = ∅ we recover
purely Dirichlet or purely Neumann conditions, respectively.

We recall that polyharmonic splines correspond to the radial functions

ϕ(r) = rk log(r) , 4 ≤ k ∈ 2N

(TPS, Thin-Plate Splines, order m = k/2 + 1) and

ϕ(r) = rk , 2 < k ∈ N , k odd

(RP, Radial Powers, order m = ⌈k/2⌉), cf. e.g. [10]. The restriction on the exponents in the present context
guarantees the existence of second derivatives.

In the sequel, we shall use the following notation:

ϕA(P ) = ϕ(∥P −A∥) (3)

where A = (a1, . . . , ad) is the RBF center and ∥ · ∥ the Euclidean norm; notice that, for both TPS and
RP, ϕA(P ) is a real analytic function of P for fixed A (and of A for fixed P ) in Rd up to P = A, due to
analyticity of the univariate functions log(·) and

√
· in R+.

Observe that taking derivatives with respect to the P variable

∂2
xixj

ϕA(P ) = δij
ϕ′(r)

r
+

(xi − ai)(xj − aj)

r2

(
ϕ′′(r)− ϕ′(r)

r

)
, (4)

∇ϕA(P ) = (P −A)ϕ′(r)/r , ∂νϕA(P ) = ⟨P −A, ν⃗(P )⟩ϕ′(r)/r ,

where r = ∥P −A∥. Notice that in the TPS case

ϕ′(r)/r = rk−2(k log(r) + 1) , ϕ′′(r)− ϕ′(r)/r = rk−2(k(k − 2) log(r) + 2k − 2) ,

whereas in the RP case

ϕ′(r)/r = krk−2 , ϕ′′(r)− ϕ′(r)/r = k(k − 2)rk−2 .
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The Kansa collocation matrix can be written as

KN =

 LϕAj
(Pi)

BϕAj
(Qk)

 ∈ RN×N ,

where 1 ≤ i ≤ NI , 1 ≤ k ≤ NB , 1 ≤ j ≤ N = NI +NB , A1, . . . , AN are the centers, {P1, . . . , PNI
} distinct

internal collocation points, and {Q1, . . . , QNB
} distinct boundary collocation points.

We state now the main result.

Theorem 2.1. Let KN be the polyharmonic spline Kansa collocation matrix defined above for the second-
order elliptic equation (1) with mixed boundary conditions on Ω ⊂ Rd, d ≥ 2, where {Ph} ⊂ Ω and
{Qk} ⊂ ∂Ω are any two fixed sets of distinct collocation points, and {Ai} is a sequence of independent
random points with possibly distinct probability densities σi ∈ L1

+(Rd).
Then for every N = NI +NB with NI ≥ 0, NB ≥ 1, the matrix KN is almost surely nonsingular.

Proof. For the induction base, let us take N = 1, that is NI = 0, NB = 1. Then, either det(K1) = ϕA1
(Q1)

when Q1 ∈ Γ1, or det(K1) = ∂νϕA1
(Q1) when Q1 ∈ Γ2. In the first case ϕA1

(Q1) = 0 with RP iff A1 = Q1,
an event which clearly has probability zero. With TPS we have also to consider that A1 falls on the
hypersphere ∥Q1−A∥ = 1 due to the logarithmic factor, again an event with probability zero. In the second
case, ∂νϕA1(Q1) = 0 in the RP instance iff A1 = Q1, an event which clearly has probability zero, or Q1−A1

is orthogonal to ν⃗(Q1), that is A1 falls in the tangent space to the boundary point Q1. Also this event has
probability zero, since a tangent space is a null set in Rd. In the TPS instance we have also to take into
account the case k log(∥Q1−A1∥) = −1, i.e. that A1 falls on the hypersphere ∥Q1−A∥ = exp(−1/k), again
an event with probability zero.

For the inductive step, in case an internal collocation point is added we consider the auxiliary matrix
with an added central row and last column (as a function of the new random center A)

KI(A) =


LϕAj

(Pi) LϕA(Pi)

LϕAj (PNI+1) LϕA(PNI+1)

BϕAj
(Qk) BϕA(Qk)

 ∈ R(N+1)×(N+1)

such that KN+1 = KI(AN+1), while in case a boundary collocation point is added we consider the matrix
with and added last row and column

KB(A) =


LϕAj

(Pi) LϕA(Pi)

BϕAj
(Qk) BϕA(Qk)

BϕAj (QNB+1) BϕA(QNB+1)

 ∈ R(N+1)×(N+1)

such that KN+1 = KB(AN+1). Now developing the determinants by the last column we get

F (A) = det(KI(A)) =

NI∑
j=1

αjLϕA(Pj) + αNI+1LϕA(PNI+1) +

NB∑
k=1

βkBϕA(Qk) ,

and

G(A) = det(KB(A)) =

NI∑
j=1

αjLϕA(Pj) +

NB∑
k=1

βkBϕA(Qk) + βNB+1BϕA(QNB+1) ,

where αh, βk are the corresponding minors with the appropriate sign. Since |αNI+1| = |βNB+1| = |det(KN )|
is almost surely nonzero by inductive hypothesis, in both cases the determinants F (A) and G(A) as functions
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of A are almost surely not identically zero in Rd, because the functions {LϕA(Ph),BϕA(Qk)}, 1 ≤ h ≤ NI ,
1 ≤ k ≤ NB , are linearly independent in Rd (as functions of A). To prove linear independence, first we show
that LϕA(Ph) is analytic in Rd up to the point A = Ph where it has a singularity of some partial derivative,
for both RP and TPS. Indeed, by (3)-(4), we have that LϕA(Ph) = L⊖

AϕA(Ph) where

L⊖
AϕA(Ph) =

d∑
i,j=1

cij(Ph)∂
2
aiaj

ϕA(Ph)−
d∑

j=1

bj(Ph)∂aj
ϕA(Ph) + ρ(Ph)ϕA(Ph)

is a constant coefficient elliptic operator (acting on the A variables; notice that the direction of the vector b⃗
has been inverted). Now, if fh(A) = LϕA(Ph) were analytic at A = Ph it would be analytic in a neighborhood
of Ph, where ϕA(Ph) would solve the elliptic equation (in the A variables) L⊖

AϕA(Ph) = fh(A). By a famous
result in the theory of elliptic equations with analytic coefficients and data (cf. e.g. [12, Thm.7.5.1]), then
ϕA(Ph) would be analytic in such a neighborhood and thus at A = Ph, which is a contradiction.

On the other hand, BϕA(Qk) is either ϕA(Qk) for Qk ∈ Γ1 or alternatively ∂νϕA(Qk) for Qk ∈ Γ2, and
thus is analytic everywhere up to A = Qk. To prove this fact for ∂νϕA(Qk), take simply its restriction to
the line through the point Qk = (q1, . . . , qd) parallel to the a1 axis, namely as = qs, s = 2, . . . , d. Then
∂νϕA(Qk) = ν1(Qk)(q1−a1)ϕ

′(r)/r, from which we obtain ∂νϕA(Qk) = ν1(Qk)(q1−a1)|q1−a1|k−2(k log(|q1−
a1|) + 1) for TPS and ∂νϕA(Qk) = ν1(Qk)(q1 − a1)|q1 − a1|k−2 for RP. Both have clearly a singularity of
the (k − 1)-th derivative in the a1 variable at a1 = q1.

Consequently, if {LϕA(Ph),BϕA(Qk)} were dependent (as functions of A), one of them with singularity
say in C (where C is one of the collocation points) could be written as linear combination of the others.
But such linear combination would be analytic at A = C, since the collocation points {Ph} and {Qk} are
all distinct, thus all the other functions are analytic at C and a linear combination of analytic functions at
a point is analytic at such point. So this is a contradiction.

Now, both F and G are analytic in the open connected set U = Rd \({Ph}∪{Qk}), and are almost surely
not identically zero there, otherwise by continuity they would be zero in the whole Rd. By a basic theorem
in the theory of analytic functions (cf. [17] for an elementary proof), their zero sets in U have then null
Lebesgue measure and thus null measure with respect to any probability measure with integrable density in
Rd. Since the collocation set is finite and hence trivially it is a null set, the zero sets of F and G in Rd, say
Z(F ) and Z(G), also have (almost surely) null measure. Concerning the probability of the corresponding
events and taking for example F (the conclusion is the same for G), we can write that

prob{det(KN+1) = 0} = prob{F (AN+1) = 0} = prob{F ≡ 0}+prob{F ̸≡ 0 & AN+1 ∈ Z(F )} = 0+0 = 0 ,

and the inductive step is completed. □

Remark 2.1. One could ask whether the roles of collocation points and centers could be interchanged,
namely considering fixed centers and random collocation points. In such a case, however, we would not
readily get the same result. In fact, in order to resort to the theorem on zero sets of analytic functions
when we locate randomly the boundary collocation points, we would first restrict to boundaries having an
analytic parametrization. And, in addition, we should define a suitable notion of randomness on the boundary
itself, which has a different dimension. This quite restrictive approach was indeed that used in [8] for the
standard case X = Y , on domains of R2 whose boundary is an analytic parametric curve. Instead, letting the
collocation points fixed even on the boundary, we can work with general boundaries (and boundary conditions)
in any dimension, simply by locating randomly the centers, possibly as local perturbations of the collocation
points as we discuss below in the numerical section.

3. Numerical results

In this section, we implement unsymmetric Kansa collocation method for solving the linear second-order
elliptic PDE (1) on Ω = (0, 1)2, with both TPS and RP RBF. In all the test problems, we fix the set of
collocation points Y = {Yj}j=1,...,N corresponding to a uniform discretization tensorial grid of the square, in
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Figure 1: Random fictitious centers distribution for δ = 0.001 (top-left), δ = 0.01 (top-right), δ = 0.05 (bottom-left),
δ = 0.1 (bottom-right), with 441 collocation grid points.

lexicographic order. Using a MATLAB notation, the random fictitious centersX = Y +(2∗ rand(N, 1)−1)∗δ
are obtained by local random perturbation of the collocation points via additive uniformly distributed
random points in (−δ, δ)2; see Fig. 1. The accuracy is measured by the average of root mean square error

RMSE =
√∑

j (uj − ũj)2/N , obtained by m random centers arrays {Xl}, l = 1, . . . ,m, where uj and ũj

are the exact and approximate solutions at the collocation node Yj , respectively. In the sequel, we consider
m = 100 trials.

3.1. Test problem 1

As first test problem, we consider equation (1) with L = ∆ (Poisson equation), over the unit square
Ω = (0, 1)2, with purely Dirichlet boundary conditions that is Γ1 = ∂Ω and Γ2 = ∅, where f and g are
defined by forcing the analytical solution to be u(x1, x2) = sin(2πx1) + cos(2πx2).

In Tables 1 and 2 we report the average RMSE (Root Mean Square Errors) of Kansa method with TPS
and RP with a couple of exponents, and different values of the neighborhood radius δ (observe that δ = 0
corresponds to classical collocation with X = Y , that is of centers coinciding with the collocation points).
An example of distribution of errors around the average RMSE is illustrated in Fig. 2.

We can observe that for the smallest values of δ the errors have the same size of those corresponding
to classical collocation with X = Y (which can be considered a limit case), whose unisolvence is however
not covered by the present theory, that on the contrary ensures almost sure unsolvence for any δ > 0. For
larger values of δ, e.g. δ = 0.1, the errors are not satisfactory, which could be ascribable to the fact that
by increasing δ we have a decrease of the separation distance q = mini,j ∥Yi − Yj∥2 (of random centers) and
at the same time an increase of the fill distance h = maxi minj ∥Xi − Yj∥2 (of random centers with respect
to collocation points), with a combined effect on conditioning of the collocation matrix and accuracy; see
Figure 1 and Table 3 for an example.
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Table 1: Average of RMSE with TPS and different values of δ; test problem 1.

TPS k = 4 TPS k = 6

N δ = 0.1 δ = 0.01 δ = 0.001 δ = 0 δ = 0.1 δ = 0.01 δ = 0.001 δ = 0

121 7.0e-01 9.8e-03 8.2e-03 8.2e-03 4.4e-02 5.6e-03 4.6e-03 4.6e-03

441 7.0e-01 1.4e-03 1.3e-03 1.3e-03 1.6e-02 3.7e-04 3.4e-04 3.4e-04

961 7.6e+00 4.2e-04 4.0e-04 4.0e-04 8.7e-03 8.3e-05 7.3e-05 7.3e-05

1681 1.2e+01 1.9e-04 1.8e-04 1.8e-04 4.6e-03 2.6e-05 2.4e-05 2.4e-05

Table 2: Average of RMSE with RP and different values of δ; test problem 1.

RP k = 3 RP k = 5

N δ = 0.1 δ = 0.01 δ = 0.001 δ = 0 δ = 0.1 δ = 0.01 δ = 0.001 δ = 0

121 1.0e+00 1.7e-02 1.5e-02 1.5e-02 4.1e-01 5.8e-03 4.8e-03 4.8e-03

441 1.2e+01 3.1e-03 3.2e-03 3.2e-03 7.5e-02 6.1e-04 5.5e-04 5.5e-04

961 1.2e+01 1.2e-03 1.2e-03 1.2e-04 1.7e-01 1.7e-04 1.5e-04 1.5e-04

1681 1.8e+01 5.5e-04 6.1e-04 6.2e-04 5.1e-02 6.8e-05 5.7e-05 5.7e-05
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Figure 2: Plot of RMSE with 441 equispaced collocation points and random centers arrays Xl, l = 1, . . . , 100, for TPS (k = 6)
with δ = 0.01 (left) and δ = 0.001 (right); average RMSE in red, test problem 1.
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Table 3: Average of fill distance h (of random centers w.r.t. collocation points), separation distance q (of random
centers) and condition number of the RP collocation matrix with k = 5, for different values of δ; test problem 1 with
441 collocation points.

δ = 0.1 δ = 0.05 δ = 0.01 δ = 0.005 δ = 0.001

avg h 7.4e-02 6.2e-02 1.4e-02 7.0e-03 1.4e-03

avg q 2.7e-04 3.7e-04 3.6e-02 4.2e-02 4.8e-02

avg cond 9.2e+14 1.1e+14 1.9e+11 5.3e+10 2.5e+10

Table 4: Average of RMSE with TPS and different values of δ; test problem 2.

TPS k = 4 TPS k = 6

N δ = 0.1 δ = 0.01 δ = 0.001 δ = 0 δ = 0.1 δ = 0.01 δ = 0.001 δ = 0

121 9.9e-01 1.2e-01 7.9e-02 7.2e-02 1.1e+00 9.2e-02 8.7e-02 7.9e-02

441 1.9e+00 7.1e-02 1.3e-02 1.3e-02 2.5e-01 1.3e-02 1.2e-02 1.1e-02

961 3.3e+00 6.1e-02 5.1e-03 4.9e-03 1.5e-01 6.4e-03 3.6e-03 3.5e-03

1681 5.0e+01 2.4e-02 2.7e-03 2.6e-03 7.6e-02 5.4e-03 1.5e-03 1.5e-03

Table 5: Average of RMSE with RP and different values of δ; test problem 2.

RP k = 3 RP k = 5

N δ = 0.1 δ = 0.01 δ = 0.001 δ = 0 δ = 0.1 δ = 0.01 δ = 0.001 δ = 0

121 3.8e+00 8.6e-01 4.5e-01 4.1e-01 5.8e-01 3.7e-02 3.5e-02 3.2e-02

441 1.7e+01 1.6e-01 1.1e-01 1.1e-01 6.5e-01 3.5e-02 9.5e-03 9.1e-03

961 1.8e+01 1.2e-01 5.7e-02 5.5e-02 2.1e-01 6.7e-03 3.9e-03 3.8e-03

1681 3.9e+01 1.1e-01 3.6e-02 3.5e-02 7.0e-01 3.3e-03 2.0e-03 2.0e-03

3.2. Test problem 2

In the next experiment, we consider the convection-diffusion operator Lu = ∆u+⟨∇u, b⃗⟩, with b⃗ = (1, 1),
over the unit square Ω = (0, 1)2, and mixed boundary conditions in (1), given by Γ1 = {x1 = 0, 0 ≤ x2 ≤
1} ∪ {x1 = 1, 0 ≤ x2 ≤ 1}, Γ2 = {x2 = 0, 0 < x1 < 1} ∪ {x2 = 1, 0 < x1 < 1}. Again, f and g are defined
by selecting u(x1, x2) = sin(2πx1) + cos(2πx2).

The numerical results corresponding to the application of the Kansa method with random fictitious
centers are reported in Tables 4 and 5, where we can see an error behavior similar to that discussed in Test
problem 1. In particular, the smallest values of δ show errors having the same size of those corresponding
to classical collocation with X = Y . Almost sure unisolvence for any δ > 0 is again ensured by Theorem 1.

4. Conclusions

We have proved almost sure unisolvence of unsymmetric Kansa collocation by polyharmonic splines with
fixed collocation points and random fictitious centers. This result contributes to fill a theoretical gap in
the framework of Kansa meshless collocation, since determining sufficient unisolvence conditions for square
collocation systems by RBF is still a substantially open problem. The fact that the collocation points are
fixed and distinct from the centers allows to manage general elliptic operators and boundary conditions,
differently from some recent results on random collocation. Since in the present approach the centers
can be non identically distributed random variables, they can be chosen as local random perturbations
of a set of fixed collocation points. For small perturbations, the numerical tests show an error behavior
substantially equivalent to the classical case of centers coinciding with collocation points, where however
sufficient conditions for unisolvence are not known.
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Challenging problems, that can be object of future research, are the extensions of the present theoretical
unisolvence result to infinitely differentiable RBF such as MultiQuadrics and to quasi-random fictitious
centers, namely to low-discrepancy sequences such as for example Halton points.
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