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Abstract In this paper we propose an algorithm that computes a low cardinality PI-
type (Positive weights and Interior nodes) algebraic cubature rule of degree n, with
at most (n+ 1)(n+ 2)/2 nodes, over curvilinear polygons defined by piecewise ra-
tional functions. Typical examples are domains whose boundary is defined piecewise
by NURBS curves or by composite Bezier curves. The key tools are a relevant but
overlooked theorem of 1976 by Wilhelmsen on Tchakaloff sets, a specific in-domain
algorithm for such curvilinear polygons and the sparse nonnegative solution of un-
derdetermined moment matching systems by the Lawson-Hanson NonNegative Least
Squares solver. Many numerical tests are performed to show the flexibility of this ap-
proach and the implemented MATLAB toolbox is freely available to the users, in
particular for possible applications within FEM/VEM with NURBS-shaped curvilin-
ear elements.

Keywords low-cardinality algebraic cubature · PI (Positive Interior) rules ·
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sets · underdetermined moment matching systems · NonNegative Least Squares ·
NEFEM (NURBS-Enhanced FEM) · VEM (Virtual Element Method).
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1 Introduction

The need of efficient algebraic cubature formulas (that are cubature formulas with
a given degree of polynomial exactness) on curvilinear polygonal elements (that are
polygons with one or more curved sides), is not new but has manifestly re-emerged
during the last fifteen years in the framework of the numerical solution of PDEs by
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FEM and VEM approaches. Such curvilinear elements for example typically arise
when a polygonal mesh intersects a curved domain boundary and allow to cope ac-
curacy loss due to standard piecewise linear approximation of the boundary itself,
but the relevant algebraic cubature problem can become a bottleneck of the im-
plementation if not properly treated. In particular, the case of curvilinear polygons
with NURBS sides is at the base of the NEFEM (NURBS-Enhanced Finite Ele-
ment Method) developed as a “seamless bridge” between traditional FEM and CAD,
while the appearance of NURBS in the curved VEM context is quite recent. On all
this matter and without any pretence of exhaustivity we may quote, for example,
[3, 4, 5, 18, 19, 28] with the references therein.

In the present paper we extend our approach for spline curvilinear polygons de-
veloped in [23], providing an algorithm (implemented in MATLAB) that computes a
low cardinality PI-type (Positive weights and Interior nodes) cubature rule of Alge-
braic Degree of Exactness ADE = n, with at most (n+1)(n+2)/2 = dim(P2

n) nodes,
over curvilinear polygons defined by piecewise rational functions (here and below
dim(Pd

n) denotes the space of d-variate polynomials with total degree not exceeding
n). Typical examples are domains whose boundary is defined piecewise by NURBS
curves or by composite Bezier curves. The key tools are a somehow overlooked the-
orem by Wilhelmsen [27] on Tchakaloff sets (Section 3), that are constructed by a
specific in-domain algorithm for such curvilinear polygons developed in [24] (re-
called in Section 2), and the sparse nonnegative solution of underdetermined moment
matching systems by the Lawson-Hanson NonNegative Least Squares solver (Sec-
tions 3 and 4). Several numerical examples showing the effectiveness of the method
are discussed in Section 5, where we also briefly describe the core of the freely avail-
able codes at [21].

We guess that this new approach could be useful in the NEFEM and curved VEM
frameworks, quoted above as a meaningful motivation. In this respect, we stress that
differently from the cubature method [19] developed in the NEFEM framework for
NURBS curved elements, that is based on partition into curved triangles and a clas-
sical mapping approach, our approach is completely triangulation-free and the rules
are exact up to polynomial degree n (to machine-precision) and of possibly lower car-
dinality. Moreover, interiority of the cubature nodes is guaranteed, differently from
the recent paper [13] that treats cubature on NURBS-shaped domains by a direct
use of Green’s formula (here used only to compute the polynomial basis moments),
generating however exterior nodes in some instances. Indeed, while the present pa-
per is devoted to provide a general-purpose cubature method on NURBS-shaped do-
mains, potentially useful in a variety of application including for example industrial
CAGD as quoted in [13], we plan to develop the application to numerical modelling
by FEM/VEM in future work.

2 An in-domain routine for rational spline curvilinear polygons

A key tool of our approach is an efficient implementation of the indicator function
of planar NURBS-shaped domains, recently developed in [24]. For the reader’s con-
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venience, we recall in this section the main features of the corresponding algorithm.
Indeed, we describe below an in-domain routine, for Jordan domains S⊂ R2,

1. whose boundary ∂S is described by parametric equations x = x̃(t), y = ỹ(t), t ∈
[a,b], x̃, ỹ ∈C([a,b]), x̃(a) = x̃(b) and ỹ(a) = ỹ(b);

2. for which there are partitions {I(k)}k=1,...,M of [a,b], and {I(k)j } j=1,...,mk of each
I(k) ≡ [t(k), t(k+1)], such that the restrictions of x̃, ỹ on each closed interval I(k) are
rational splines, w.r.t. the subintervals {I(k)j } j=1,...,mk .

As notation, we will adopt

x̃(t) =
uk,1(t)
vk,1(t)

, ỹ(t) =
uk,2(t)
vk,2(t)

, t ∈ I(k)

being uk,1, uk,2, vk,1, vk,2 splines on I(k), sharing the same knots and having degree,
respectively, ηk,1, ηk,2, δk,1, δk,2.

Observe that since x̃, ỹ belong to C([a,b]), the denominators vk,1, vk,2, k= 1, . . . ,M
will be everywhere not null in the closed interval I(k).

In [23], the typical instances were spline curvilinear regions. Given the vertices
Vk ∈ R2, k = 1, . . . ,M of the integration domain S, then ∂S := ∪M

k=1Vk ⌢ Vk+1 (with
the convention that VM+1 = V1) and each curvilinear side Vk ⌢ Vk+1 was tracked
by a parametric spline of degree δk, interpolating an ordered subsequence of knots
P1,k = Vk,P2,k, . . . ,Pmk−1,k,Pmk,k = Vk+1 with a suitable parametrization determining

each I(k)j (and thus each I(k)). This structure of the boundary included also the case in
which it could be defined by composite Bezier closed curves, where the k-th curve is
of the form

B(t̃) =B(ωk(t)) =
mk−1

∑
i=0

bi,mk−1(t)Pi+1,k,

where t̃ = t(k+1)+t(k)
2 + t(k+1)−t(k)

2 t := ωk(t), t ∈ [0,1] and

bi,l(t) =
(

l
i

)
t i(1− t)l−i, i = 0, . . . , l −1, t ∈ [0,1]

are known as Bernstein polynomials.
In this paper we generalise the previous framework, encompassing domains in

which the boundary is locally a p-th degree NURBS curve [16, p.117], i.e. defined in
the curvilinear side Vk ⌢Vk+1 as

C(t) =
∑

mk
i=1 Bi,p(t)λi,kPi,k

∑
mk
i=1 Bi,p(t)λi,k

, t ∈ [t(k), t(k+1)]

where {Pi,k}mk
i=1 are the control points, {λi,k}mk

i=1 are the weights and {Bi,p}mk
i=1 are

the p-th degree B-spline basis functions [7, p.87] defined on the nonperiodic (and
nonuniform) knot vector

U = {t(k), . . . , t(k)︸ ︷︷ ︸
p+1

, t(k)p+1, . . . , t
(k)
mk−(p+1), t

(k+1), . . . , t(k+1)︸ ︷︷ ︸
p+1

}.
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with t(k)p+ j ≤ t(k)p+ j+1, j = 1, . . . ,mk −1.
In order to define an algorithm that establishes if a point P ∈ R2 is inside (or not

inside) such a S, having in mind a variant of the procedure proposed in [23], for the
reader’s sake we describe it again, pointing out the needed modifications to these new
instances.

A classical in-domain strategy is based on the well-known Jordan curve theorem
that states that a point P belongs to a Jordan domain S if and only if, having taken a
point P∗ /∈ S then the segment P∗P crosses ∂S an odd number c(P) of times. There
may be many pathological cases, for instance when P∗P touches a vertex or when
includes a segment of ∂S.

P

P
*

P

P
*

P

P
*

Fig. 2.1 Critical situations for establishing the crossing number on curvilinear polygons.

It can even happen that the boundary ∂S has a critical point S= (x̃(γ), ỹ(γ)) where

lim
t→γ−

x̃′(t) lim
t→γ+

x̃′(t)< 0,

that geometrically means that there is locally a vertical turn of boundary from left to
right (or conversely from right to left). In these cases, if the in-domain analysis of
the point P is performed by means of vertical segments P∗P then the aforementioned
Jordan theorem cannot be directly applied. These situations, illustrated in Figure 2.1,
are not difficult to be ascertained, and we will initially require that P∗P does not
contain any critical point or vertical side.

Under these assumptions, let R be a cartesian rectangle, i.e. with sides parallel
to the cartesian axes, that stricly contains S. Let P∗ be the point of ∂R that shares
the same abscissa Px of P = (Px,Py) but has ordinate strictly inferior of Py. We intend
to compute the crossing number c(P), i.e. the number of times in which the vertical
segment P∗P crosses ∂S.

The first step consists in covering ∂S with the union of suitable rectangles R1, . . . ,RL.
Each R j, j = 1, . . . ,L contains a portion of ∂S that has no turning points and is
parametrized by two rational functions, i.e. locally (x̃(t), ỹ(t)) are the ratio of two
polynomials. Once these R j, j = 1, . . . ,L are at hand, we will show that the evalua-
tion of the crossing number c(P) is straightfoward, requiring at most the solution of
some polynomial equations.

In order to determine numerically these R j, we observe that since x̃, ỹ are ra-
tional splines in each I(k) then there are I(k)j = [t(k)j , t(k)j+1] ⊆ I(k), k = 1, . . . ,M, j =
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Fig. 2.2 Three domains S3, S4, S5, of curvilinear type, whose boundary may contain arc of circles, ellipses,
segments as well as other NURBS blocks and its monotone boxes. Notice that monotone boxes may
degenerate to a segment (as in the figure on the left, due to vertical segments) and distinct ones may
overlap (as in the figure on the right).

1, . . . ,mk −1, where the restriction of x̃, ỹ to I(k)j are rational functions, i.e.

x̃(t) =
uk, j,1(t)
vk, j,1(t)

, ỹ(t) =
uk, j,2(t)
vk, j,2(t)

, t ∈ I(k)j

where uk, j,1, uk, j,2, vk, j,1, vk, j,2 are polynomials on I(k)j , having degree, respectively,
ηk,1, ηk,2, δk,1, δk,2 (notice that they do not depend on j but just on the local degree
of the splines uk,1, uk,2, vk,1, vk,2 in I(k)).

If x̃′ changes sign in (t(k)j , t(k)j+1), then define as N(k)
j = {t( j,k)

i }i=1,...,l j,k the set of all

the points t( j,k)
i ∈ (t(k)j , t(k)j+1) such that x̃′(t( j,k)

i ) = 0 (notice that the restriction of x̃ to

I(k)j is a rational function with the denominator nowhere null, hence x̃′ exists), other-

wise put N(k)
j = /0. Next, let T ( j,k) = {t(k)j , t(k)j+1}∪N

(k)
j , where we suppose that its ele-

ments, say T ( j,k)
i , are in increasing order. Observe that being x̃(t) = uk, j,1(t)/vk, j,1(t),

t ∈ I(k)j , the determination of the set N(k)
j requires the solution of a polynomial equa-

tion. More precisely, since

x̃′(t) =
u′k, j,1(t)vk, j,1(t)−uk, j,1(t)v′k, j,1(t)

v2
k, j,1(t)

, t ∈ I(k)j ,

and v2
k, j,1(t) ̸= 0 for each t ∈ I(k)j , we get that x̃′(t) = 0 if and only if

u′k, j,1(t)vk, j,1(t)−uk, j,1(t)v′k, j,1(t) = 0,

and consequently the determination of N
(k)
j requires the solution of a polynomial

equation of degree ηk,1 +δk,1 −1.

Now define the rectangles B( j,k)
i , named monotone boxes in [23],

B
( j,k)
i := [ min

t∈I( j,k)
i

x̃(t), max
t∈I( j,k)

i

x̃(t)]× [ min
t∈I( j,k)

i

ỹ(t), max
t∈I( j,k)

i

ỹ(t)].
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where I( j,k)
i := [T ( j,k)

i ,T ( j,k)
i+1 ]. Observe that by definition if N(k)

j = /0, then there is only

the monotone box B
( j,k)
1 . Since ỹ restricted to [T ( j,k)

i ,T ( j,k)
i+1 ] is a rational function, the

evaluation of
min

t∈[T ( j,k)
i ,T ( j,k)

i+1 ]

ỹ(t), max
t∈[T ( j,k)

i ,T ( j,k)
i+1 ]

ỹ(t)

can be easily determined once the derivative of the polynomial ỹ′ is at hand, by com-
puting its zeros in [T ( j,k)

i ,T ( j,k)
i+1 ] and the evaluation of ỹ at T ( j,k)

i and T ( j,k)
i+1 .

At the end of this procedure we have determined I( j,k)
i , so that

– the restrictions of x̃, ỹ to each I( j,k)
i ⊆ [a,b] are rational functions,

– x̃ is a monotone function (and consequently there are no turning points of ∂S in
the interior of each box B

( j,k)
i ).

Once the set B := {B( j,k)
i } is available, we apply the crossing theorem to test

whether or not P = (Px,Py) is inside the domain S. First we determine

B(P) = {B = [α1,β1]× [α2,β2] ∈B : Px ∈ [α1,β1],Py ≥ α2}.

Intuitively, B(P) takes into account all the monotone boxes Bl such that P∗P∩Bl ̸= /0,
and that may contribute to the evaluation of c(P).

Consider a monotone box Bl = [α
(l)
1 ,β

(l)
1 ]× [α

(l)
2 ,β

(l)
2 ] ∈B(P). If Py > β

(l)
2 then

the point P does not belong to the monotone box Bl and necessarily the segment P∗P
crosses the boundary ∂S once in Bl and below P, due to the monotonicity of x̃ in Bl .
Otherwise, we have that P ∈Bl . Since by assumption P∗P does not contain a critical
point or a vertical segment of the boundary and Bl includes a certain portion of ∂S

described parametrically by two rational functions, say x̃|Bl , ỹ|Bl , with arguments in
the interval I|Bl ⊆ [a,b], in which x̃|Bl is monotone and such that Px ∈ x̃|Bl (I|Bl ),
necessarily there is a unique root t∗ ∈ I|Bl of the polynomial equation x̃|Bl (t) = Px.
In particular, being x̃|Bl (t) =

u(t)
v(t) , for certain polynomials u, v, then t∗ is the unique

solution in I|Bl of the polynomial equation u(t)−Px · v(t) = 0.
Next,

– if ỹ(t∗)< Py then the segment P∗P crosses the boundary ∂S once in the monotone
box, below P;

– if ỹ(t∗) > Py then the segment P∗P does not cross the boundary ∂S once in B,
below P;

– if ỹ(t∗) = Py then P is on the boundary ∂S.

As result, in the assumptions mentioned above, counting all these crossings, we
determine whether a point P is inside or not inside the domain S.

When the vertical segment P∗P contains a critical point or a portion of a vertical
side of ∂S, we used an algorithm that is based on the well-known winding theorem to
ascertain whether P belongs or not to S. To this purpose, we computed by a (shifted)
Gauss-Legendre rule of sufficiently high degree of exactness the so called winding
number, wind(P, x̃, ỹ) ∈ Z,

wind(P, x̃, ỹ) :=
1

b−a

∫ b

a

ỹ′(t)(x̃(t)−Px)− x̃′(t)(ỹ(t)−Py)

(x̃(t)−Px)2 +(ỹ(t)−Py)2 dt.
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If the quantity wind(P, x̃, ỹ) is odd then the point belongs to S otherwise is not inside
such domain. We observe that the evaluation of wind(P, x̃, ỹ) can be difficult when P
is close to the boundary, but in general there is no need to compute such a quantity
with high precision, in view of the fact that wind(P, x̃, ỹ) is an integer.

Remark 2.1 In our implementation, each monotone box B
( j,k)
i has abscissae ranging

in the interval [
min(x̃(T ( j,k)

i ), x̃(T ( j,k)
i+1 )),max(x̃(T ( j,k)

i ), x̃(T ( j,k)
i+1 ))

]
.

Partitioning [T ( j,k)
i ,T ( j,k)

i+1 ] as ∪ni, j,k−1
s=1 [T ( j,k)

i,s ,T ( j,k)
i,s+1] where

T ( j,k)
i = T ( j,k)

i,1 < T ( j,k)
i,2 < .. .T ( j,k)

i,ni, j,k
= T ( j,k)

i+1

and defining the monotone boxes

B
( j,k)
i,s := [ min

t∈I( j,k)
i,s

x̃(t), max
t∈I( j,k)

i,s

x̃(t)]× [ min
t∈I( j,k)

i,s

ỹ(t), max
t∈I( j,k)

i,s

ỹ(t)].

where I( j,k)
i,s = [T ( j,k)

i,s ,T ( j,k)
i,s+1], we have that ∂S⊂ ∪i,s, j,kB

( j,k)
i,s ⊆B.

In such a case, an inferior or equal number of polynomial equations is needed to
establish whether or not a point P belongs to S. In spite of this, we observe that there
is numerical evidence that a too high number of monotone boxes does not improve
the performance of the in-domain process.

Fig. 2.3 Three domains S3, S4, S5, of curvilinear type, whose boundary may contain arc of circles, ellipses,
segments as well as other NURBS blocks and is covered by a larger number of monotone boxes (compare
with Figure 2.2).

Remark 2.2 In the implementation of the algorithm, to see if a point P = (Px,Py)
belongs to the boundary ∂S, we solved a certain polynomial equation u(t∗)− Px ·
v(t∗) = 0 and then tested that that its unique solution t∗ satisfies ỹ(t∗) = Py. In view
of numerical errors, we can only establish that a point is very close to ∂S, that is
|ỹ(t∗)−Py| is below a certain tolerance fixed by the user.

For similar numerical issues, when a point P = (Px,Py) has abscissa Px close to
that of a turning point or vertical side, we prefer to use the winding-algorithm.
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3 On the construction of Tchakaloff-like cubature rules

Now, we show how to extract from a sufficiently dense discretization of a compact
set a PI-type cubature rule with low cardinality (not exceeding the dimension of the
polynomial space P2

n, being n the Algebraic Degree of Exactness). A fundamental
existence result is the following version of Tchakaloff theorem [26, 17]:

Theorem 3.1 Let µ be a positive measure on the compact domain D ⊂ Rd and let n
be a positive integer. Then there are ν ≤ dim(Pd

n(D)) points {Q j} ∈ D and positive
real numbers {w j} such that

∫
D

p(P)dµ =
ν

∑
j=1

w j p(Q j) (3.1)

for all p ∈ Pd
n(D) (the space of d-variate polynomials of degree not exceeding n,

restricted to D).

We aim to compute a set of nodes {Q j} ⊂ D and corresponding positive weights,
satisfying (3.1). A key result is the following theorem by Wilhelmsen in [27], extend-
ing a proposition by Davis [6]:

Theorem 3.2 Let F be the linear span of continuous, real-valued, linearly indepen-
dent functions { fk}k=1,...,N defined on a compact set D ⊂ Rd . Assume that F satisfies
the Krein condition (i.e. there is at least one f ∈ F which does not vanish on D) and
that L is a positive linear functional on F, i.e. L f > 0 for every f ∈ F, f ≥ 0 not
vanishing everywhere in D. If {Pi}+∞

i=1 is an everywhere dense subset of D, then for
sufficiently large I, the set X = {Pi}Ii=1 is a Tchakaloff set, i.e.

L f =
ν

∑
j=1

w j f (Q j), ∀ f ∈ F (3.2)

where w j > 0 ∀ j and {Q j}ν
j=1 ⊂ X ⊂ D, with ν = card({Q j})≤ N.

Notice that we can apply this theorem to the case of algebraic cubature, setting
L f =

∫
D f (P) dµ (being µ a positive measure on the compact set D ⊂ Rd) and F =

Pd
n(D). Such a kind of formula can be named “Tchakaloff-like algebraic cubature

rule”.
Applying Theorem 3.2 to our instance, i.e. D= S, and supposing that a Tchakaloff

set X is at hand, given any polynomial basis {φ j} of Pd
n define the Vandermonde-like

matrix
V =Vn(X) = (φ j(Pi))i, j ∈ RI×N . (3.3)

Denoting by γ = {γ j} the vector of moments

γ j =
∫
S

φ j(P)dµ , j = 1, . . . ,N , (3.4)
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the (underdetermined) N × I moment system

V T u = γ . (3.5)

has a sparse nonnegative solution u to (3.5), whose nonvanishing components (i.e.,
the weights {w j} = {ui > 0}) are at most N = dim(Pd

n). Furthermore, the nodes
{Q j} ⊂ X are determined by the indices of the non-zero components of u (see e.g.
[22]).

In the present work, we determine the vector u, solution of (3.5), by means of
Lawson-Hanson iterative algorithm, that automatically seeks a sparse solution of the
NonNegative Least Squares problem

min
u≥0

∥V T u− γ∥2 (3.6)

by active set optimization; cf. [15]. We point out that there are several alternative
implementations available in MATLAB, as the built-in function lsqnonneg or the
open-source routine of the package NNLSlab in [20]. On the other hand, in the recent
papers [9, 11] an acceleration of the Lawson-Hanson algorithm has been discussed in
the framework of compression of discrete probability measures and regression, based
on the concept of “Deviation Maximization” instead of standard column pivoting for
the underlying QR factorizations [10]. Such a method, called LHDM, shows remark-
able speed-ups and in perspective could be applied also in the cubature framework.

4 Implementing Tchakaloff-like algebraic cubature rules

In this section we describe a procedure that determines a Tchakaloff-like algebraic
cubature formula with nodes in the integration domain S, having ADE = n over S,
i.e. such that∫

S
p(x,y)dxdy =

ν

∑
j=1

w j p(Q j) , ν ≤ N = dim(P2
n) = (n+1)(n+2)/2

for any bivariate polynomial p ∈ P2
n.

We assume that I(k)s = [t(k)s , t(k)s+1], k = 1, . . . ,M, s = 1, . . . ,mk −1, is a partition of
[a,b] and that ∂S = {(x̃(t), ỹ(t)), t ∈ [a,b]}, where the restrictions of x̃, ỹ ∈C([a,b])
to each I(k)s are rational functions.

The first step consists in computing the moments γ j of a suitable polynomial basis
{φ j} of total degree n over S, i.e.

γ j =
∫
S

φ j(x,y)dxdy , j = 1, . . . ,N.

As in [23], in our MATLAB implementation we have adopted as polynomial basis
{φ j}, 1 ≤ j ≤ N, the lexicographically ordered total-degree product Chebyshev basis

φ j(x,y) = Th1(α1(x)) ·Th2(α2(y)), 0 ≤ h1 +h2 ≤ n

(here j is the position of (h1,h2) in the ordering) and (x,y) ∈ R∗ = [a1,b1]× [a2,b2]
where
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– Th(·) = cos(harccos(·)) is the h-degree Chebyshev polynomial of first kind;
– if R∗ = [a1,b1]× [a2,b2] is the bounding box of S (that corresponds to the smallest

cartesian rectangle, i.e. with sides parallel to the axes, containing the domain S,
easily available when the all the monotone boxes are determined), then αi(s) =
(2s− bi − ai)/(bi − ai), s ∈ [ai,bi], i = 1,2; we point out that if the boundary
∂S is described by a NURBS curve, then R∗ is the smallest cartesian rectangle
containing the convex hull of the control points of the NURBS.

The choice of this basis comes from the necessity of avoiding the extreme ill-
conditioning of Vandermonde matrices in the standard monomial basis. In virtue of
Gauss-Green theorem (see e.g. [2]),

γ j =
∫
S

φ j(x,y)dxdy =
∮

∂S
Ψj(x,y)dy (4.1)

where

Ψj(x,y) =
∫

φ j(x,y)dx = Th2(α2(y))
∫

Th1(α1(x))dx

To this purpose we observe that∫
T0(α1(x))dx = x,∫
T1(α1(x))dx =

b1 −a1

4
·α2

1 (x),∫
Th(α1(x))dx =

b1 −a1

2
·
(

h
h2 −1

Th+1(α1(x))−
x

h−1
Th(α1(x))

)
, h ≥ 2.

If Pk,s := (x̃(t(k)s ), ỹ(t(k)s )) and Pk,s ⌢ Pk,s+1 is the arc of ∂S joining Pk,s with Pk,s+1,
one gets

γ j =
∮

∂S
Ψj(x,y)dy = ∑

k,s

∫
Pk,s⌢Pk,s+1

Ψj(x,y)dy

= ∑
k,s

∫ t(k)s+1

t(k)s

Ψj(x̃(t), ỹ(t)) ỹ′(t)dt . (4.2)

The evaluation of the integrals on the right-hand side of (4.2) require some atten-
tion. In [23] it was considered the case in which x̃ and ỹ are in [t(k)s , t(k)s+1] both polyno-
mials of degree δk, observing that since Ψj is a polynomial of total degree n+1, each
integrand in the last sum of (4.2) is a polynomial of degree (n+1)δk +δk −1 = (n+
2)δk − 1 and consequently can be exactly integrated by a (shifted) Gauss-Legendre
formula with ⌈ (n+2)δk

2 ⌉ points.
The setting in which x̃ and ỹ are rational functions is more delicate, and requires

for example the usage of appropriate high order Gauss-Legendre rules [14], or adap-
tive routines as the MATLAB built-in routine integral, or the Extended Rational
Fejèr Quadrature Rules proposed in [8]. See also [19, §4] for several numerical tests
and comparisons between methods.
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The second step consists in extracting the nodes and positive weights of a Tchakaloff-
like algebraic cubature rule. To this purpose, let P0 = /0. We introduce a sequence of
tensorial grids Mℓ in the rectangle R∗ := [a1,b1]× [a2,b2] containing S, with Mℓ

finer as ℓ increases, determining by the in-domain algorithm, at the ℓ-th iteration of
the procedure, the set Pℓ =Pℓ−1∪(Mℓ∩S), that is the points of the previous meshes,
as well as of the present one, belonging to the integration domain.

Next, we apply the Lawson-Hanson algorithm to attempt the extraction of the
Tchakaloff formula with nodes {(x(ℓ)i ,y(ℓ)i )}i=1,...,νℓ and corresponding positive weights
{w(ℓ)

i }i=1,...,νℓ , νℓ ≤ N, finally testing if the so obtained rule is such that

γ
(ℓ)
j =

νℓ

∑
i=1

w(ℓ)
i φ j(x

(ℓ)
i ,y(ℓ)i ), j = 1, . . . ,N ,

well approximates the set of moments γ = {γ j}, i.e.

∥γ
(ℓ)− γ∥2 ≤ ε (4.3)

where ε is a tolerance fixed by the user. If (4.3) does not hold we iterate the procedure
until (4.3) is satisfied or a maximum number of iterations is reached, providing in this
case an error message. It is important to observe that in exact arithmetic this proce-
dure has finite termination in view of a theorem by Wilhelmsen mentioned above
[27], since the set Pℓ becomes sufficiently dense after a finite number of iterations.

5 Numerical experiments

In this section, we test either the in-domain routine, either the cubature algorithm
that produces a Tchakaloff-like algebraic cubature rule with nodes belonging to the
integration domain S whose boundary ∂S is defined via piecewise rational functions.

In particular, we intend to determine these rules when ∂S is described by piece-
wise NURBS curves, implying that each curvilinear side Vk ⌢Vk+1 ⊆ ∂S, k= 1, . . . ,M,
is defined parametrically as

C(t) =
∑

mk
i=1 Bi,p(t)λi,kPi,k

∑
mk
i=1 Bi,p(t)λi,k

, t ∈ I(k) := [t(k), t(k+1)]

where

– Pi,k = ((Pi,k)x,(Pi,k)y), i = 1, . . . ,mk, k = 1, . . . ,M, are the control points,
– {λi,k}mk

i=1, k = 1, . . . ,M, are the weights,
– {Bi,p}mk

i=1 are the p-th degree B-spline basis functions [7, p.87] defined on the
nonperiodic (and nonuniform) knot vector

U = {t(k), . . . , t(k)︸ ︷︷ ︸
p+1

, t(k)p+1, . . . , t
(k)
mk−(p+1), t

(k+1), . . . , t(k+1)︸ ︷︷ ︸
p+1

}.

with t(k)p+ j ≤ t(k)p+ j+1, j = 1, . . . ,mk −1, k = 1 . . . ,M.
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In order to satisfy the assumptions introduced in Section 2, we first need to

1. determine the splines uk,1, uk,2, vk,1, vk,2 on I(k) defining

x̃(t) =
uk,1(t)
vk,1(t)

, ỹ(t) =
uk,2(t)
vk,2(t)

, t ∈ I(k),

i.e.

uk,1(t) =
mk

∑
i=1

Bi,p(t)λi,k(Pi,k)x, uk,2(t) =
mk

∑
i=1

Bi,p(t)λi,k(Pi,k)y,

vk,1(t) = vk,2(t) =
mk

∑
i=1

Bi,p(t)λi,k; (5.1)

2. convert from a B-spline notation to a piecewise one via MATLAB command
fn2fm.

Once we have described these rational splines in piecewise form, we can deter-
mine, as introduced in the previous sections, the in-domain and the cubature routine.

The latter is implemented by the MATLAB code cubRS, in which

1. we define a mesh on the smallest rectangle R∗ = [a1,b1]× [a2,b2] containing the
domain S; in particular for ADE = n, then setting τ = ⌊n1.5⌋, we considered the
points Pi j = (xi,y j) where

xi = a1 + i
a2 −a1

τ −1
, y j = b1 + j

b2 −b1

τ −1
, 0 ≤ i, j ≤ τ −1

i.e. a uniform tensor grid mesh M1, based on τ equispaced points in each direction
(such a choice of τ is based on numerical experiments, in order to try to keep low
the number of grid refinements);

2. we determine the points of M1 strictly inside the spline curvilinear polygon S, say
P1 ⊆ M1, by the in-domain algorithm developed in Section 2 and implemented
by the MATLAB code inRS;

3. we compute the moments over S of the n-th total-degree product Chebyshev basis

{Th1(α1(x))Th2(α2(y))}, (x,y) ∈ [a1,b1]× [a2,b2], 0 ≤ h1 +h2 ≤ n

with αi(s) = (2s−bi −ai)/(bi −ai), i = 1,2, by means of Gauss-Green theorem
and suitable quadrature rules along the rational spline boundary arcs;

4. we extract the nodes of a PI-type formula with ADE = n from P1 and determine
the relative weights using the Lawson-Hanson algorithm on the corresponding
NNLS problem, as described at the end of Section 3; cf. (3.5)-(3.6).

In case the cubature rule is not satisfactory, i.e. the 2-norm of the moment error
is larger than a fixed tolerance, say ε = 10−12 (cf. (4.3)), we proceed iteratively by
defining finer uniform tensor grids Mℓ (increasing the value of τ , as τℓ+1 = ⌊βτℓ⌋
with e.g. β = 1.5), determining at the ℓ-th iteration, with ℓ> 1, those points belonging
to S, say Pℓ ⊆Mℓ, and performing step 4 of the algorithm above with the set

⋃ℓ
i=1Pi

instead of P1.

Moreover, these algebraic Tchakaloff rules of PI-type
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– are optimally stable (positive weights), i.e. the cubature condition number

cond({wi}) =
∑

ν
i=1 |wi|

|∑ν
i=1 wi|

is equal to 1, the best possible result for rules with ADE ≥ 0;
– have cardinality particularly low (though usually not minimal);
– are suitable when sampling of the integrand is not possible outside the domain.

As in [23], the possible ill-conditioning of Chebyshev-Vandermonde matrices
may harm the extraction procedure. Thus we mitigated these instances by a suitable
discrete orthogonalization of the polynomial basis via the economy size QR factoriza-
tion (as described for example in [22]). All the routines for the numerical experiments
are available at [20] and have been tested on a computer with a M1 chip, with 16 GB
of RAM, running MATLAB R2021b.

We start our numerical tests by considering a convex domain S1 and a non-convex
domain S2, corresponding respectively to the intersection and the difference of a con-
vex polygonal element with a disk, whose boundary ∂Si, i = 1,2, is composed by an
arc of circle and a polygonal arc with 6 sides. Such curvilinear elements can arise for
example within VEM application in computational mechanics, when a circular hole
in a plate or a circular inclusion in a fibre-reinforced material are present (cf. [4]).
Since an arc of a circle and a polygonal arc can be exactly described with piecewise
NURBS curves, an algebraic cubature rule can be determined on S1 and S2 by means
of the approach used in the present paper.

Fig. 5.1 The curvilinear domains Si with i = 1,2, the grid points P outside the domain or on its boundary
(in red), those inside the domain (in green) and the nodes of a cubature formula of PI-type for n = 6 (28
magenta dots).

Relatively to these domains, we compute the maximum relative error of the mo-
ments of the lexicographically ordered monomial basis of total degree n, {x j1y j2},
0 ≤ j1 + j2 ≤ n, with the new general purpose algorithm as well as with that used in
[4], introduced for producing a Tchakaloff-type algebraic cubature rule in the case of
curvilinear polygons where one side of the boundary is a convex or concave arc of
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n # trial pts cond moment r.d. cpu cpu [4]
S1 2 6 76 (121) 1 8e−16 4.7e−3s 5.3e−4s

4 15 76 (121) 1 4e−15 4.8e−3s 2.3e−3s
6 28 122 (196) 1 4e−15 5.4e−3s 1.7e−3s
8 45 325 (484) 1 6e−15 7.9e−3s 4.7e−3s

10 66 681 (961) 1 8e−15 1.5e−2s 8.3e−3s

S2 2 6 64 (121) 1 5e−16 3.3e−3s 1.6e−3s
4 15 64 (121) 1 3e−15 3.9e−3s 1.8e−3s
6 28 99 (196) 1 3e−15 5.1e−3s 2.6e−3s
8 45 265 (484) 1 3e−15 6.8e−3s 3.7e−3s

10 66 555 (961) 1 6e−15 1.3e−2s 8.6e−3s

Table 5.1 Degrees of exactness n, cardinality # of the extracted nodes, number of points used to extract
the nodes versus all those generated in the bounding box (the latter in parentheses), cubature conditioning
cond, maximum relative difference moment r.d. on the computation of the monomial basis on domain
Si, i = 1,2, of the general purpose method adopted in this paper with that introduced in [4] and the respec-
tive median cputimes on 100 tests.

a circle. In particular, applying these procedures, for each n we run 100 tests finally
taking the median of the cputimes.

The results summarized in Table 5.1 show that

– the new method produces numerically the same moments with a relative differ-
ence close to machine precision;

– though as expected the performance is a little worse, the cputimes are comparable,
making these new rules attracting for cubature within FEM/VEM;

– both methods produce algebraic rules with positive weights.

The substantial advantage of the present approach is that it can be applied to much
more general instances than [4], where the curved edges are circular arcs.

In order to show the flexibility of our method, we consider the domains depicted
in Figure 2.2, that are from left to right,

1. a ”M” shaped domain S3, in which ∂S3 is determined by a unique order 3 NURBS
curve with 16 distinct control points,

2. a convex domain S4, where ∂S4 is obtained by joining a circular and an elliptical
arc, followed by a segment,

3. a concave domain S5 whose boundary ∂S5 consists of a unique NURBS curve of
order 3 with 9 distinct control points.

We report in Table 5.2 the results that we obtained applying the new algorithm
to the computation of algebraic cubature rules in which the degrees of exactness are
n = 2,4,6,8,10.

In particular

– the column #trial pts addresses the number of points inside the domain used
to extract the rule and all those tested in the bounding box (including some outside
the domain and thus discarted); by construction all the points are internal to the
domain;
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Fig. 5.2 The curvilinear domains Si with i= 3,4,5, the grid points P outside the domain or on its boundary
(in red), those inside the domain (in green) and the nodes of a cubature formula of PI-type for n = 6 (28
magenta dots). The control points of the NURBS curve are represented as cyan squares, joined to represent
the so called control points polygon.

n # # trial pts cond moment res cpu
S3 2 6 28 (121) 1 5e−16 1.3e−2

4 15 108 (377) 1 1e−15 1.8e−2
6 28 225 (637) 1 1e−15 2.2e−2
8 45 693 (1573) 1 3e−15 3.4e−2
10 66 1304 (3077) 1 5e−15 8.5e−2

S4 2 6 65 (121) 1 8e−16 4.8e−3
4 15 65 (121) 1 2e−15 4.8e−3
6 28 109 (196) 1 2e−15 6.6e−3
8 45 274 (484) 1 2e−15 9.0e−3
10 66 609 (961) 1 3e−15 1.5e−2

S5 2 6 50 (121) 1 5e−16 5.3e−3
4 15 50 (121) 1 7e−16 6.1e−3
6 28 89 (196) 1 1e−15 7.6e−3
8 45 239 (484) 1 2e−15 1.1e−2
10 66 491 (961) 1 4e−15 1.6e−2

Table 5.2 Degree of precision n of the rule, cardinality # of the extracted nodes, cubature conditioning
and moment residual of the rule on domains Si, i = 3,4,5, number of trial points used in the extraction,
cubature condition number cond, moment residual of the rule and median of the cputime over 50 tests.

– the fact that in all tests the cubature conditioning is equal to 1, means that the
rules have positive weights and thus optimal stability;

– the column moment res consists of the quantity ∥γ − γ(num)∥2, where γ = {γ j}
are the moments of the chosen shifted product Chebyshev basis of degree n, while
γ(num) = {γ

(num)
j } consists in their evaluation using the cubature rule provided by

the algorithm; their matching close to machine precision confirm that the rules
have (numerical) algebraic degree of exactness equal to n;

– the column with the cputimes required by the algorithm to compute the rule,
displays the median over 50 tests; we observe, that as seen before for domains S1,
S2, they are still fast being at most of the order of some 10−2 seconds, depending
on the complexity of the domain.
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In Figure 5.3 we illustrate the performance of these new cubature rules to deter-
mine

I =
∫
Si

(c0 + c1x+ c2y)n dxdy , i = 3,4,5 ,

making 100 trials with uniform random coefficients c j ∈ (0,1), j = 0,1,2 and ADE =
n, n = 2,4,6,8,10. The reference values of these integrals have been determined by
applying Gauss-Green theorem and Gauss-Legendre high-order quadrature along the
rational spline boundary ∂S. We have plotted with a dot the relative error REk made
by the rule (log scale) and by a larger circle the logarithmic average on all the trials,
i.e. ∑

100
k=1 log(REk)/100.

The tests show that in spite of the fact that the moments are computed close to
machine precision, there is a little deterioration of the logarithmic average error for
n = 10, while for lower degrees this value remains is in general lower than 10−14.
Notice that an ADE greater than 10 is usually beyond what is needed for example in
VEM applications.

2 4 6 8 10
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-13

2 4 6 8 10
10
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-15
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Fig. 5.3 Dots: Relative errors REk , k = 1, . . . ,100, on cubature over random polynomials (c0 + c1x +
c2y)n on S3 (on the left), S4 (in the middle) and S5 (on the right). Circles: average logarithmic error, i.e.
10∑

100
k=1 log(REk)/100. The abscissae are the ADE of the formula and are equal to 2,4,6,8,10.

As a further illustration, we report in Table 5.3 the relative errors made by the
Tchakaloff-like rules when approximating

∫
Si

fk(x,y)dxdy, where

f1(x,y) = exp(−(x2 + y2)),

f2(x,y) = ((x− x0)
2 +(y− y0)

2)11/2 , (x0,y0) = (0,0.4),

f3(x,y) = ((x− x0)
2 +(y− y0)

2)1/2 , (x0,y0) = (0,0.4),

that are examples of functions with different degree of regularity on each domain
Si, i = 3,4,5. The reference values of these integrals are those obtained by the same
routines with ADE = 20. As expected, in both the domains the quality of the approxi-
mation worsens for less regular integrands (indeed f1 ∈C∞(Si), whereas (0,0.4) ∈ Si
is a singular point for the first derivatives of f3 and for 6-th derivatives of f2).

As additional information, we show in Table 5.4 the median cputimes over 10
tests necessary to process # in-domain operations, on the regions Si, i = 3,4,5. These
random points belong to the bounding box of each domain.
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S3 S4 S5
ADE f1 f2 f3 f1 f2 f3 f1 f2 f3

2 2e−02 4e−01 4e−02 4e−03 9e−01 6e−02 6e−03 2e−01 1e−02
4 3e−03 2e−01 9e−02 3e−04 2e−02 4e−02 9e−04 2e−01 1e−02
6 3e−04 4e−02 6e−03 4e−05 3e−02 2e−02 4e−05 1e−02 4e−03
8 3e−05 3e−03 2e−03 1e−06 8e−04 1e−03 2e−06 2e−03 3e−03
10 1e−06 8e−05 1e−03 8e−09 4e−05 2e−04 8e−08 3e−05 2e−04

Table 5.3 Relative errors of the new rules on the domains Si, i = 3,4,5 with ADE = 2,4,6,8,10.

# S3 S4 S5
102 2.4e−03s 1.2e−03s 1.1e−03s
103 4.5e−03s 1.9e−03s 1.7e−03s
104 2.7e−02s 7.9e−03s 8.3e−02s
105 2.8e−01s 6.0e−02s 6.6e−02s
106 2.2e+00s 7.5e−01s 8.0e−01s

Table 5.4 Median cputime over 30 tests of the application of the in-domain algorithm to # random points,
in domains Si, i = 3,4,5.

Remark 5.1 All the MATLAB routines and demos are collected in the toolbox CUB RS

and can be freely downloaded at the homepage [21]. We point out that at the time of
writing this paper, we are not aware of the existence of an official built-in NURBS
toolbox (though it can be retrieved by third-parties), though MATLAB has a specific
environment for rational splines. Thus we have been forced to implement a set of
routines, in which the boundary ∂S of each domain can be described by piecewise
rational splines, as in the case of parametric splines or composite Bezier curves or
NURBS.

To this purpose, we used structured arrays, in which the k-th component contains
the relevant data of the k-th component of curve Vk ⌢ Vk+1, that are control points,
weights, order, knots, type of the curve (e.g. NURBS, composite Bezier curve or
spline). Next, we provide the routines

– inRS that implement the in-domain algorithm described above,
– cubRS that computes a PI-type Tchakaloff-like algebraic cubature rule of exact-

ness degree n,

for the designed domain S.
Hoping that this software could be useful to the community, we wrote many de-

mos that show how to define the boundary of the integration domain S, how to use
the in-domain routine inRS and the cubature rule generator cubRS.

6 Conclusion

We have implemented the construction of low-cardinality Positive Interior cuba-
ture rules over curvilinear polygons whose boundary is given by rational parametric
curves, in particular NURBS curves. The method, which generalizes what we previ-
ously implemented for spline boundaries [23], relies on Davis-Wilhelmsen theorem
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about Tchakaloff-like representation of positive functionals on polynomial spaces, by
sparse sampling on sufficiently dense sequences [26, 6, 27].

Computation of nodes and weights is accomplished by NNLS solution to an un-
derdetermined moment-matching system, where the moments are obtained by Gauss-
Green theorem, integrating via Gaussian quadrature suitable antiderivatives of the
bivariate product Chebyshev basis for total-degree polynomials.

One of the main difficulties is the construction of sufficiently dense sequences,
e.g. Halton sequences, in the domain, where we used our very recent implementation
of the indicator function of NURBS-shaped domains via a covering of the bound-
ary by “monotone boxes” and an economy use of the crossing number [24]. On the
other hand, the moment-matching NNLS problem is coped via the classical Lawson-
Hanson active-set algorithm, which naturally seeks a sparse solution, or one of its
recent variants [15, 9, 11, 20].

The resulting algorithm, that we may call TDW-cubature (Tchakaloff-Davis-Wil-
helmsen), together with its open-source Matlab implementation, turns out to be rather
efficient, and potentially useful in several applications, for example within the emerg-
ing fields of FEM/VEM with curved elements. Indeed, we have recently adopted
substantially the same approach for tetrahedralization-free cubature on general poly-
hedral elements [25], and even for the compression of QMC cubature on complicated
2D and 3D domains [12].
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