Global polynomial optimization by

*

norming sets on sphere and torus

Marco Vianello!

February 12, 2018

Abstract

Using the approximation theoretic notion of norming set, we compute
(1 — e)-approximations to the global minimum of arbitrary n-th degree
polynomials on the sphere, by discrete minimization on approximately
3.2n%¢ ! trigonometric grid points, or 2n%e ™! quasi-uniform points. The
same error size is attained by approximately 6.5 nc™! trigonometric grid
points on the torus.
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1 Introduction

In this paper, following the approach proposed in [23] for the cube, we make a
further step in the use of discrete polynomial inequalities as a tool for global
polynomial optimization. Such an approach, based on the approximation the-
ory notion of norming set, places in the framework of approximate continuous
optimization by discrete optimization on suitable subsets, see e.g. [8] 9] [10] 25]
and the references therein.

Given a compact set (or manifold) S C R%, we briefly recall that a norming
set in the infinity norm for P4(S) (the space of d-variate polynomials of degree
not exceeding n, restricted to ), is a subset X C S such that

Iplls < cllpllx , Vp e PL(S), (1)

for some constant ¢ > 1 independent of p. Observe that X is P4 (S)-determining,
i.e. the only polynomial in PZ(S) which vanishes on X is the null polynomial
on S. This implies that card(X) > N = dim(P%(S)). It can happen that
dim(P4(S)) < dim(PZ) = (*1%), in particular this occurs when S is an algebraic
variety. For example on the 2-sphere S = S? we have that dim(P2(S)) =

(n+1)? <dim(P?) = (n+1)(n + 2)(n + 3)/6; cf. [7,[24].
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Finite norming sets are of special interest in approximation theory. In the
last 10 years, the study of family of norming sets like (), called polynomial
meshes when c is independent of n and card(X) = O(N?®), s > 1, has received
a considerable attention in the literature on multivariate polynomial approxi-
mation (a polynomial mesh is termed optimal when s = 1). Indeed, polyno-
mial meshes are good discrete models of a compact set, concerning for example
polynomial least square approximation, extraction of interpolation point sets,
Bernstein-Markov measures and numerical methods in pluripotential theory.
Moreover, they can be constructed in an incremental way by algebraic transfor-
mation, finite union and product, and are stable under small perturbations; see
e.g. [1 Bl 5L 6L 15, 18, 19 20, 2T, 22] and the references therein.

By the following elementary lemma, we recall the basic inequality that allows
to use () for approximate polynomial optimization on S, provided that we are
able to construct X in such a way that ¢ — 1. By no loss of generality, we focus
on the approximation of the minimum.

Lemma 1 Assume that () holds. Then

'_'<—1( —'), Pd(S) . P
min p ménp_(c ) maxp — min p Vp € Po(S) (2)

Proof. Consider the nonnegative polynomial ¢(z) = maxsp — p(z) € P4(S).
We have that ||¢||s = maxgsp — ming p and ||¢||x = maxgp — miny p. Then by
(@ applied to ¢

lglls = llallx = minp —minp < (¢ = 1) [lgllx < (¢ = 1) [lqlls ,

that is @). O

Giving an approximation relative to the range of p, namely to maxgp —
ming p, is standard in polynomial optimization. The usual way to express an
inequality like ([2]), is to say that minx p is a (1 — €)-approximation to ming p,
with e = ¢ — 1; see, e.g., [§].

2 Optimization by norming sets on the sphere

If one is able to construct X in such a way that ¢ becomes close to 1, estimate
@) gives a guaranteed error bound in the approximation of the polynomial
minimum on S. In [23], the case S = [—1,1]¢ was treated, taking as X a
(mn + 1)4 Chebyshev-Lobatto grid, and proving that ¢ = 1/ cos(¢) in (@) with
¢ = w/(2m). The proof was based on the uniform spacing of the grid points
with respect to a suitable distance related to total degree polynomial spaces,
the Dubiner distance in the cube; see [11] and [4]. Embedding the problem in
tensor product polynomial spaces, one would obtain instead ¢ = 1/ cos?(&).

Here, we focus on the unit 2-sphere S = S2, and partially on the torus.
Indeed, global optimization on sphere and torus is a classical problem (see e.g.
[8, [13]), but apparently not studied yet in the framework of norming sets.

We begin by a tensorial trigonometric approach, which is natural working
with angular coordinates (latitude and longitude), where we get ¢ = 1/ cos?(£).
Such an approach is not peculiar to the sphere, and can for example be imme-
diately extended to polynomial optimization on the torus. Then, we’ll turn to



an approach tailored to polynomial spaces on the sphere, again by the relevant
notion of Dubiner distance and recent results on spherical polynomial meshes,
obtaining ¢ = 1/ cos(§).

2.1 Optimization on trigonometric grids

On the sphere S = S? it is natural to work with spherical coordinates, say

o (0, @) = (cos(9) cos(¢), cos(#) sin(¢), sin(9)) , (3)

where 6 is the latitude and ¢ the longitude. The key observation is that
if p € P3(S), then poo € T, ® T,, where T, denotes the space of uni-
variate trigonometric polynomials of degree not exceeding n. We recall that
dim(P3(S9)) = (n + 1)?, and dim(T,, ® T,,) = (2n + 1)2. In order to work with
trigonometric polynomial inequalities on the whole period, we take both the
angles 6, ¢ in [—7, 7]. In such a way the transformation o is no more injective
even eliminating the poles (every not polar point corresponds to two values of
the extended latitude).
We can now state and prove the following

Proposition 1 Let S = S? be the unit 2-sphere and X = 0(©pmp X O ), where
O, ={jn/s, —s < j < s—1} be 2s equally spaced angles in [—m,n]. Then

. . < 2 i 3 -
minp —min p < tan”(¢) (mgXp mslnp) . Ve PL(S) , & - (4)

Proof. It suffices resorting to the well-known trigonometric polynomial inequal-
ity proved by Ehlich and Zeller in [I2] (se also [5])

1

cos(nm/2s) It

HtH[O,QW] < 0, S>N, vt e T, . (5>
From (B)) with s =mn, m > 1, and the fact that poo € T,, ® T,,, it is immediate
to prove in view of the tensorial structure that

1

where X = 0(On X Opy), and then to conclude by Lemma 1. O

Observe that due to the structure of the transformation o (essentially spheri-
cal coordinates) the sampling points are not uniformly distributed on the sphere,
but cluster at the north and south pole. Moreover card(X) ~ 2m?n? for
mn — oo (in particular, for n fixed and m — o), with exact equality when the
poles are not in X (i.e., for mn odd).

It is worth stressing that this construction is not peculiar to the sphere.
Indeed, we can apply it to the torus, by resorting to the standard toroidal
coordinates

(0,6) = ((R+ rcos(f)) cos(¢), (R + rcos(f)) sin(¢), rsin(6)) , (7)

(0, ¢) € [—m, )%, where R is the major and r the minor radius of the torus, since
also in this case poo € T,, ® T,,. We may only observe that here card(X) =
4m?n? for any m,n, the transformation o being now injective.



2.2 Optimization on quasi-uniform points

In view of the highly nonuniform distribution of the sampling points in the
trigonometric grid approach, we may think to look for better distributed norm-
ing sets on the sphere. The main aid here comes from the notion of Dubiner
distance on a multidimensional compact set (or manifold) S C R?, that is

6(x,y) = sup

{ | arccos (p(z)) — arccos (p(y))|
p€EPL(S)

s deg(p) > 1. ols <1}
(8)
Such a distance was introduced by M. Dubiner in the seminal paper [11], and
together with the Markov distance and the Baran distance plays an important
role in multivariate polynomial approximation; see e.g. [4] and the references
therein for relevant properties and results.
Its role in the construction of norming sets for polynomial spaces can be

summarized by the following lemma (cf. [23])

Lemma 2 Let X be a compact subset of a compact set S C R? whose covering
radius ps(X) with respect to the Dubiner distance does not exceed &/n, where
£€(0,7/2) andn >1, i.e.

— = i < .
ps(X) = max d(z, X) = maxmin §(z,y) < &/n (9)

Then, X is a norming set like (1) for P4(S) with constant ¢ = 1/ cos(€).

Proof. We sketch the proof, that appears essentially in [2], for the only purpose
of clarifying the role of the Dubiner distance in the construction of norming sets.
Assume by no loss of generality that ||p||s = p(z¢) = 1 for some zy € S (possibly
normalizing and/or multiplying p by —1). By definition of Dubiner distance,
there exists y € X such that

[arecos (p(x0)) — arccos (p(y)| = | arccos (p(y)] < 99P) < ¢ <

vl 3

Then, since the inverse cosine function is monotonically decreasing, we get
p(y) > cos(€) > 0, and finally

p(y) 1
< . O
cosé T cosé Ipllx

Iplls =1<

We notice that Lemma 2 improves a similar inequality in [I8], where ¢ =
1/(1—-¢) with £ € (0,1) appears instead of ¢ = 1/ cos(§). This result was used in
[23], to show that a (mn + 1)¢ Chebyshev-Lobatto grid is a norming set for the
cube [—1,1]¢ with ¢ = 1/ cos(w/2m). Indeed, the Dubiner distance for the cube
is 0(x,y) = max {| arccos (1) — arccos (y1)|, . . ., | arccos (x4) — arccos (yq)|}, and
this is one of the few instances where it is explicitly known (the other ones are
the sphere, the ball and the simplex, see [4]).

Here we use the fact that the Dubiner distance on the sphere S = S? is
nothing but the classical geodesic distance

§(x,y) = arccos ((z,y)) , Va,y € S?, (10)



where (r,7) denotes the Euclidean scalar product in R?; cf. [I1]. This allows
to show that good covering configurations for the sphere are norming sets for
P3(S), and can be used for polynomial optimization in the spirit of Lemma 1.
We recall that a sequence of finite point configurations X,; C S2, with
cardinality M > 2, is termed a “good covering” of the sphere if its covering
radius with respect to the Euclidean distance in R3 satisfies the inequality

p(Xp) =max min |z —y| < (11)

€S yeX vV M ’

for some a > 0 (see, e.g., the excellent survey paper [14]). We can now give the
following

Proposition 2 Let S = S? be the unit 2-sphere and let {Xy} be a good cov-
ering of S. Take X = Xy with M = [g(mn)], where

20 4u® \’ 20\° 1
g(u)—(? 4u1) —(?> w(1+0w™)), u—oco. (12)
Then
. . 1 —cos(§) . 3 T
- <P - =—.
minp — minp < cos(®) (mgxp rnslnp) , YpelP(S) , ¢ 5 (13)

Proof. By () and elementary considerations of spherical geometry, for every
x € S there exists y(x) € X such that the estimate

S(arate) = 2avcsin (E=LL) < g arein ()

holds, provided that a/(2v/M) < 1 that is v/M > «/2, where ¢ is the geodesic
distance, which coincides with the Dubiner distance. In view of Lemma 2, to get
a norming set with constant ¢ = 1/ cos(€) it is sufficient to fulfill the inequality
§(xz,y(x)) < &/n, that is

7= ()
sin [ =] .
2VM ~ 2n
Now, by the elementary trigonometric inequality sin(¢) > ¢(1 — t/7) we have
that the former is satisfied if

@ & (1_ &
2WM T 2n 2 )’
which gives M > g(mn) by easy calculations. O

Observe that card(X) ~ (2a/m)?m?n? for mn — oo (in particular, for n
fixed and m — o0). In order to get a good point distribution for polyno-
mial optimization on the sphere, we can consider “quasi-uniform” coverings,
that are configurations with bounded ratio between the covering radius and
the point separation (mesh ratio). Indeed, these configurations provide a low
information redundancy. In [I4] several quasi-uniform configurations are dis-
cussed, in particular the zonal equal area configurations (the centers of zonal
equal area partitions of the sphere), that turn out to be both, quasi-uniform



and equidistributed in the sense of the surface area measure. They turn out
to be theoretically good covering with @ = 3.5 (but the numerical experiments
suggest o = 2.5, cf. [16]). Moreover, the Matlab toolbox [I7] provides efficient
algorithms for their computation.

Notice that with such configurations by Proposition 2 and the fact that
(1 —cos(€))/ cos(&) ~ £2/2, & — 0, we get a relative error bound on the polyno-
mial minimum &, ~ 72/(8m?), m — oo, with card(X) ~ (7/7)?m?n? ~ 5m?n?
quasi-uniform points (but in practice we can take o = 2.5 and thus approxi-
mately (5/7)?m?n? ~ 2.5 m?n? points).

In order to compare with the trigonometric grid approach of Proposition 1,
we may observe that there tan?(£) ~ &2, € — 0, and hence we have to replace m
by [v/2m] to get an error bound &, ~ 72/(8m?), m — oo, with a corresponding
cardinality card(X) ~ 2(v/2m)?n? = 4m?n?.

We may summarize the considerations above under a slightly different point
of view. For a fixed error tolerance £ > 0, in order to get a (1 —e&)-approximation
to the minimum of a trivariate polynomial of degree n on the sphere, setting e =
72 /(8m?), it is sufficient to sample at approximately 4(8/7%)n?e =1 ~ 3.24 n2e~!
trigonometric grid points (that is ~ 1.8ne~!/? equispaced nodes per spher-
ical coordinate), or alternatively (7/7)%(8/7%)n%e™1 ~ 5n?c~! quasi-uniform
points, the centers of a zonal equal area partition (but in practice we can take
(5/m)%(8/7%)n?c ! ~ 2n%c~! points). On the other hand, on the torus the same
error is attained with approximately 8(8/7%)n?c~! ~ 6.48 n%c~! trigonometric
grid points (that is ~ 2.55 ne~/2 equispaced nodes per toroidal coordinate).

For the purpose of illustration, we compute the minimum of the 4-th degree
trivariate polynomial

p(x1, 29, 23) = (21 — a)*(z2 — b)* + (x3 — ¢)?, (14)

on the unit sphere and on the torus with R = 1 and r = 1/3, where (a, b, ¢) is a
random point on each surface (obtained via a uniform bivariate random variable
in the corresponding angular coordinates); such a minimum is clearly zero. In
Table 1 we display, for some values of ¢, the average over 100 trials for (a, b, ¢)
of the relative errors

E = (n}%np - rnslnp) / (mgbxp — rnslnp) , (15)

where X is either a trigonometric grid with [1.8ne=1/?] = [7.2e~1/?] equis-
paced nodes per spherical coordinate, or a quasi-uniform mesh of the sphere (the
centers of a zonal equal area partition computed by [17]) with 2n?e =1 = 321
points. In the last row we report the average errors of minimization on a trigono-
metric grid of the torus, with [2.55ne~1/2] = [10.2 ¢~1/?] equispaced nodes per
toroidal coordinate; see the discussion above. Notice that in all instances ¢ turns
out to be an overestimate of the actual errors.

We may conclude by observing that the norming set approach, which is in
some sense a “brute force” optimization method, could be useful not only by its
direct application, but also to provide starting guesses for more sophisticated
optimization procedures, like for example that discussed in [13].



Table 1: Average errors over 100 trials for (a,b, c) in the global minimization of
the 4th-degree polynomial (I4]) by norming sets on sphere and torus.

€ 10-' 1072 1073 107¢
sphere E9  1e-3  4e5 3e6  3e-7
BT 5ed  6e-5  B5e-6 5T
torus  EI9  6e-4 2e-5h  8e-6 2e-T7
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