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Abstract

In this paper we propose an algorithm to determine cubature rules
of algebraic degree of exactness δ on general polygons P, by means of
Matlab polyshape objects and near minimal rules on triangles, obtain-
ing by Caratheodory-Tchakaloff subsampling a PI (Positive Interior) final
formula with cardinality at most Nδ = (δ+ 1)(δ+ 2)/2. We test our algo-
rithm on polygons with different shape, and we also discuss an application
to the computation of the RMSWE (Root Mean Square Wavefront Error)
on obscured and vignetted pupils, in the framework of optical design by
numerical ray tracing for the LSST (Large Synoptic Survey Telescope).
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1 Introduction

In this paper we propose an algorithm that computes low-cardinality cubature
rules with Algebraic Degree of Exactness ADE = δ on a polygon P, that can
be defined by union, intersection and difference of other polygons, and can be in
general non-simple, multiply-connected or even disconnected. These rules are
of PI-type, where P stands for Positive weights and I for Interior nodes (i.e.,
all the cubature nodes are in the domain).

As a general strategy, we first construct and triangulate the polygon by the
Matlab polyshape routines, obtaining a number of triangles that is minimal or
almost minimal, and then we take a near minimal rule of PI-type with ADE = δ
on each triangle, thus determining a PI cubature rule on the whole P. Similar
techniques are not new, but the present approach has the advantage of treat-
ing very general polygons (to our knowledge this is the first time that Matlab
polyshape is used in a cubature package), as well as of using basic cubature
formulae whose cardinality is usually lower than that offered by other general
purpose codes.
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A further relevant improvement is given by compression of the cubature for-
mula into at most Nδ = (δ + 1)(δ + 2)/2 cubature nodes and positive weights,
by Caratheodory-Tchakaloff subsampling of discrete measures. This step con-
sists essentially in computing a nonnegative sparse solution to the corresponding
underdetermined moment system for the weights, which exists in view of a dis-
crete version of Tchakaloff’s Theorem, by standard mathematical programming
methods; cf. [18, 24] and the references therein.

We discuss a number of numerical tests, on polygons with different shape:
convex, concave, non-simple, multiply-connected. In particular, we apply the
method to the computation of the RMSWE (Root Mean Square Wavefront
Error) on a circular telescope pupil obscured and vignetted by several co-axial
disks (approximated by regular polygons with hundreds of sides), a problem
arising in optical design by numerical ray tracing for the LSST (Large Synoptic
Survey Telescope, cf. [1, 16]).

2 About the subdivision

One of the key points to determine a good cubature rule over a polygon P,
consists in partitioning P into simpler regions Ω1, . . . ,Ων and then applying a
known low-cardinality formula on each of them.

In [23], the authors considered the case of simple polygons, i.e. with non self-
intersecting boundary path, having the so called axis-property for which there
exists a base-line (say l), whose intersection with the polygon is connected,
and such that in addition each line orthogonal to it (say q) has a connected
intersection (if any) with the polygon, containing the point l ∩ q. This class
includes all convex polygons, for example by taking as l the line connecting a
pair of vertices with maximal distance, but also certain nonconvex polygons.
Once that this baseline is at hand, without the need of triangulators, a PI
formula can be obtained via Gauss-Green theorem together with univariate
Gaussian quadrature. If the baseline property does not hold, a cubature rule
can still be computed by another reference line, but without the warranty of
being of PI-type (some nodes can fall outside the domain and some weights can
be negative).

In order to enlarge the class of polygons for which a rule of PI-type can be
constructed, one can resort to minimal triangulation or quadrangulation algo-
rithms, cf. e.g. [11]. It is known indeed that any simple and simply connected
polygon with n vertices can be partioned into ν = n − 2 triangles, or into
(n− 2)/2 ≤ ν ≤ n− 2 quadrangles (some possibly degenerating into triangles)
where ν is often close to the lower bound. For example, any convex polygon is
trivially partitioned into ν = (n − 2) triangles by fixing a vertex and connect-
ing it to the non adjacent ones, or into ν = (n − 2)/2 quadrangles for n even
and ν = (n − 3)/2 quadrangles plus one triangle for n odd, simply by taking
quadruples of consecutive vertices. In general, while on simple and simply con-
nected polygons minimal (but very complicated) triangulation algorithms with
O(n) complexity are known, the most popular ones have typically a O(n log n)
complexity, cf. e.g. [4, 26]. Then by rules that are near minimal and of PI-
type on the simplex or alternatively of product Gaussian type, one can easily
achieve rules on each triangular or quadrangular subdomain of the partition,
and eventually a PI rule on the whole P.
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Working with polygons has become much simpler in Matlab, after the intro-
duction of the polyshape environment, that manages a polygon defined by 2-D
vertices via a polyshape object with properties describing its vertices, solid
regions, and holes. This new class includes several facilities. For instance,
it allows boolean operations, as intersection, difference, union, and symmetri-
cal difference between polygons. Furthermore it operates rotation, scaling and
translation of the given sets.

In this framework, one can triangulate any polygon P, that can be of very
general nature, even non-simple, or multiply-connected or disconnected (we no-
tice however that Matlab does not provide any reference about the triangulation
algorithms). We tested the quality of the triangulation {Ωi} on very different
polygonal domains P with n sides, achieving P = ∪νi=1Ωi with ν ≈ n and
very often ν = n − 2 (minimal triangulation) in the case of simple and simply
connected polygons.

The procedure turns out to be rather fast. In order to give a glimpse of
the performance, we considered several polygons with a number of vertices n
ranging from 100 to 20000; the tests have been performed in Matlab R2017b
on a 2,7 GHz Intel Core i5 with 16 GB 1867 MHz DDR3 memory. As regions,
given n equally spaced angles in [0, 2π] say tk = 2πk

n , with k = 1, . . . , n, we have
taken (see Figure 1)

1. a regular polygon P(1) whose n vertices are

vk = (cos(tk), sin(tk))

2. a polygonal cardioid P(2) whose n vertices are

vk = (cos(tk) · (1− cos(tk)), sin(tk) · (1− cos(tk)))

3. a polygonal Bernoulli lemniscate P(3) whose n vertices are

vk = (
√

2 cos(tk)/(1 + sin2(tk),
√

2 cos(tk) sin(tk)/(1 + sin2(tk))

Figure 1: From left to the right, the three polygons P(1), P(2, P(3) for n = 32,
and their triangulation.

Observe that the polygonal Bernoulli Lemniscate is non-simple, due to the
self intersection in the origin, but can be still correctly treated up to n = 1000.
From n = 2000 on, the number of triangles becomes inferior to n − 4 that
corresponds to the cardinality of the minimal triangulation.
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We made 10 tests for each subcase, computing in each one first a polyshape

object and then a triangulation. The average cputimes for the three polygons
P(1), P(2) and P(3) are listed in Table 1, respectively as tP and tT , an asterisk
meaning that the triangulation process presents warnings. The results show
that for polygons with less than n ≤ 3000 vertices the triangulation cputime is
negligible, while for n > 3000 the time tP needed for the polyshape construction
can be even dominant w.r.t. tT .

Table 1: Average triangulation cputimes on several polygonal domains; an as-
terisk means that the triangulation process presents warnings.

P(1) P(2) P(3)

vertices tP tT tP tT tP tT
100 4e-03 2e-03 3e-03 1e-03 3e-03 1e-03
500 4e-03 3e-03 4e-03 4e-03 4e-03 6e-03
1000 1e-02 6e-03 1e-02 1e-02 1e-02 2e-02
2000 4e-02 7e-03 5e-02∗ 4e-02∗ 2e-02∗ 5e-02∗

3000 8e-02 1e-02 8e-02∗ 6e-02∗ 4e-02∗ 1e-01∗

4000 1e-01 1e-02 2e-01∗ 9e-02∗ 7e-02∗ 2e-01∗

5000 2e-01 2e-02 2e-01∗ 1e-01∗ 1e-01∗ 3e-01∗

10000 8e-01 4e-02 1e+00∗ 5e-01∗ 5e-01∗ 1e+00∗

20000 4e+00 6e-02 4e+00∗ 1e+00∗ 2e+00∗ 3e+00∗

3 On the cubature nodes in the subdivision

Once a subdivision P = ∪ni=1Ωi is at hand, in order to have a PI cubature rule
on P, by the additivity of the integral operator, it is sufficient to define a PI rule
on each subdomain Ωi. In the present paper we shall focus on triangulations.

Now, since any triangle is bijectively mapped into any other by an affine
transformation, knowing a cubature rule on a reference triangle T ∗, after the
conversion of the nodes in barycentric coordinates, it is straightforward to
achieve one on each other possible triangle T by varying the weights propor-
tionally to their area. In other words, let T ∗ be the unit simplex with vertices
(0, 0), (0, 1), (1, 0), {φk}k=1,...,Nδ be a basis of the space of bivariate polynomials
Pδ of total degree not exceeding δ and cardinality Nδ = (δ + 1)(δ + 2)/2, and
assume that∫

T ∗
φk(x) dx =

m∑
i=1

w∗i φk(ξ∗i ) , ξ∗i ∈ T ∗ , w∗i > 0 , k = 1, . . . , Nδ , (1)

i.e. that the PI cubature rule {(ξ∗i , w∗i )} has ADE = δ.
Now, let ξ∗i = (x∗i , y

∗
i ) and denote by (x∗i , y

∗
i , 1 − x∗i − y∗i ) the barycentric

coordinates of ξ∗i , by µ(T ) the area of T , and by V1, V2, V3 its vertices. Being
µ(T ∗) = 1/2, the cubature rule on T with nodes

ξi = x∗i V1 + y∗i V2 + (1− x∗i − y∗i )V3, i = 1, . . . ,m

and weights

wi =
µ(T )

µ(T ∗)
w∗i = 2µ(T )w∗i , i = 1, . . . ,m
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has ADE = δ on T , i.e. integrates exactly each polynomial in Pδ on T .
In view of this well-known result, it is necessary to compute cubature rules

with a certain ADE only on the reference triangle T ∗. To his purpose, the more
appealing ones are the so called minimal rules, that have the lowest number of
nodes between PI rules with ADE = δ. Differently from the univariate case,
where they are the so-called Gaussian rules, only few multivariate minimal rules
are known; see e.g. [5].

In spite of this, the bibliography about PI rules with low cardinality for a
given ADE, say near minimal rules, is rather wide. A common technique for
their determination is the following. If the basis moments γk =

∫
T ∗ φk(x) dx,

k = 1, . . . , Nδ are known, one computes via numerical optimization the solutions
(ξi, wi), with i = 1, . . . ,m of the nonlinear problem (1) with m ≤ Nδ as low as
possible. This task is not an easy one, especially when the number of equations
Nδ becomes large (see, e.g., [27]). In order to lower the number of equations,
symmetries of the nodes allow to search the optimal set in a less general fam-
ily, as well as to solve smaller nonlinear systems. Variants of this successful
strategies provided many near minimal pointsets, even for rather large δ (see
e.g. [14, 17, 30, 32] with the references therein).

In Table 2 we have listed to the authors’ knowledge the best of these near
minimal rules, that are used to implement a PI formula with ADE = δ on any
triangle and eventually on any triangulated polygon P. Observe that one can
use any triangulation to determine a PI rule on P, but a minimal triangulation
has the advantage of keeping as low as possible the cardinality, since in any
triangle a fixed number of points is used.

All the minimal rules are stored as a Matlab file at [22], where we have cor-
rected the formulae whenever necessary in order to match (1) close to machine
precision. For higher degrees one can use the well-known Stroud conical rules
[13], whose cardinality is (δ + 1)2/4 for odd δ.

Table 2: Cardinality N∗δ of (near) minimal rules on triangles with ADE = δ.

δ N∗
δ δ N∗

δ δ N∗
δ δ N∗

δ δ N∗
δ

1 1 11 27 21 85 31 181 41 309
2 3 12 32 22 93 32 193 42 324
3 4 13 36 23 100 33 204 43 339
4 6 14 42 24 109 34 214 44 354
5 7 15 46 25 117 35 228 45 370
6 11 16 52 26 130 36 243 46 385
7 12 17 57 27 141 37 252 47 399
8 16 18 66 28 150 38 267 48 423
9 19 19 70 29 159 39 282 49 435
10 24 20 78 30 171 40 295 50 453

4 Caratheodory-Tchakaloff subsampling

The purpose of this section is to show how from a rule with high cardinality,
positive weights and ADE = δ, we can extract another one with the same
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degree of exactness, positive weights, but with cardinality equal at most to the
dimension Nδ of the polynomial space Pδ.

In some recent papers, the authors have applied a mathematical method
named CATCH (acronym of “Caratheodory-Tchakaloff” subsampling), for the
compression of discrete measures, proposing its application to discrete polyno-
mial Least Squares by sparse moment matching. In this framework, the method
selects from a large discretization of a given region a much smaller number of
(weighted) sampling points, even on a complex shape as can be the polygons
investigated in this paper, keeping numerically invariant the Least Squares ap-
proximation estimates.

The key theoretical tool is the following discrete version of the well-known
Tchakaloff theorem [28], that can be proved by Caratheodory theorem on finite-
dimensional conic/convex combinations [3]; cf. [18] and the references therein.

Theorem 1 Let µ be a (multivariate) measure whose support is a Pδ-determining
finite set X = {ξi} ⊂ Rk (i.e., a polynomial in Pδ vanishing there vanishes
everywhere in Rk), with corresponding positive weights (masses) λ = {λi},
i = 1, . . . ,M , M = card(X) > Nδ = dim(Pδ) =

(
δ+k
k

)
. Then, there exist a

cubature formula for the discrete measure µ, with nodes Tδ = {tj} ⊂ X and
positive weights w = {wj}, 1 ≤ j ≤ m, with m ≤ Nδ, such that∫

X

p(x)dµ =

M∑
i=1

λip(ξi) =

m∑
j=1

wjp(tj) , ∀p ∈ Pδ.

An interpretation of this theorem in the framework of cubature is:

• if we have at hand a PI rule, say (X,λ), with ADE = δ and cardinality
M > Nδ, then we can “compress” it into a PI rule, say (Tδ, w), with
cardinality not exceeding Nδ.

In order to implement the result, given any polynomial basis {φk} of Pδ,
define the Vandermonde-like matrix

V = Vn(X) = {φj(ξi)} , 1 ≤ i ≤M , 1 ≤ j ≤ Nδ , (2)

let γ = V Tλ the vector of moments of the polynomial basis {φj} with respect to
the original discrete measure and consider the underdetermined moment system
V Tu = γ. Theorem 1 then asserts that there exists a sparse nonnegative solution
u∗ to such a system, whose nonvanishing components (i.e., the weights {wj})
are at most Nδ and determine the corresponding reduced sampling points Tδ =
{tj} ⊆ X, that we may term Caratheodory-Tchakaloff (CATCH) points of X.

To our knowledge, essentially two approaches have been developed to get
these compressed rules, i.e. via Linear Programming (LP) via and Quadratic
Programming (QP); cf. [18, 24, 29] and the references therein.

Concerning the LP approach, it consists in solving (via the simplex-method){
min cTu
V Tu = γ , u ≥ 0 ,

(3)
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where the constraints identify a polytope (the feasible region) in RM and the
vector c is chosen to be linearly independent from the rows of V T , so that the
objective functional is not constant on the polytope [18, 29].

The QP based algorithm requires instead the solution of the NonNegative
Least Squares (NNLS) problem

‖V Tu∗ − γ‖2 = min{‖V Tu− γ‖2 , u ≥ 0} , (4)

in which u∗ can be obtained by the well-known Lawson-Hanson active set opti-
mization method [12], which determines a sparse solution to (4). Its application
gives a residual ε = ‖V Tu∗−γ‖2 that is extremely small, say < 10−14 for δ ≤ 30.

Our numerical experience in bivariate instances with presently available Mat-
lab software has shown that NNLS usually performs better than LP in comput-
ing the CATCH weights, at least for moderate degrees δ, cf. [18]. Consequently
all our codes are based on the application of Lawson-Hanson method to compute
the Caratheodory-Tchakaloff compressed rules.

We point out that there are several versions of NNLS codes available in
Matlab. One is the built-in function lsqnonneg, based on (a variant of) the
Lawson-Hanson algorithm while an open-source version is present in the package
NNLSlab in [21]. Other implementations are often obtained by MEX files and
will not be used here, since we wish to provide codes that can be immediately
used by standard Matlab users.

It should also be recalled that an algorithm termed Recursive Halving For-
est, based on a hierarchical SVD, has been proposed in [29] to compute the
compressed cubature nodes and weights. Performances are reported for large
scale problems (say that the order of Nδ is 103, 104). Unfortunately the software
is not available and thus cannot be applied here as comparison.

5 Examples and applications

In order to make some numerical tests, we first compare the results that we can
obtain via this new algorithm with those in [23], and next we show the effect
of Caratheodory-Tchakaloff subsampling in the compression of PI polygonal
cubature rules on polygons with different shape. Moreover, we propose a method
to obtain embedded rules on general polygonal domains.

Finally, we discuss an application in optics, namely the computation of the
RMSWE (Root Mean Square Wavefront Error) on a telescope pupil obscured
and vignetted by several co-axial disks (approximated by regular polygons with
a very large number of sides). This application is relevant to optical design by
numerical ray tracing for the LSST (Large Synoptic Survey Telescope).

5.1 Numerical tests

As in Section 1, all the tests have been performed in Matlab R2017b on a 2,7
GHz Intel Core i5 with 16 GB 1867 MHz DDR3 memory.

In [23], the method was tested on a convex and on certain concave polygon,
say Pconv and Pconc, achieving PI rules (see Figure 2 for the description of the
polygons, baselines and pointset distribution for algebraic degree of exactness
δ = 10).
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Figure 2: The pointsets for ADE = δ = 10 obtained by [23] on Pconv and Pconc
(in red the baseline).

In Table 3, we compare the cubature cardinality M
(old)
δ of the approach in

[23], with those of the present one before and after compression, say M
(new)
δ and

mδ respectively. From this table, it is evident compression via NNLS provides
a cubature pointset with cardinality (δ + 1)(δ + 2)/2, i.e. the dimension of the

polynomial space Pδ, and that the compression ratio M
(new)
δ /mδ depends on

the number of sides of the polygon.

Table 3: Cardinalities M
(old)
δ , M

(new)
δ , mδ, applying the algorithm proposed

in [23] and the one presented here before and after compression, on the two
polygons of Figure 2 with ADE = δ = 5, 10, . . . , 40.

Pconv Pconc
δ M

(old)
δ M

(new)
δ mδ M

(old)
δ M

(new)
δ mδ

5 180 28 21 235 49 21
10 660 96 66 870 168 66
15 1440 184 136 1905 322 136
20 2520 312 231 3340 546 231
25 3900 468 351 5175 819 351
30 5580 684 496 7410 1197 496
35 7560 912 666 10045 1596 666
40 9840 1180 861 13080 2065 861

Concerning the computational cost, determination of the two basic rules
rules is not an issue since it takes only a small fraction of the overall cputime
(less than 1% for δ in the order of tens). Compression using the Matlab built-
in routine lsqnonneg or the open-source NNLSlab is in general not too time
consuming for low degrees, while it becomes relevant (order of 101 seconds, more
than 99% of the overall cputime) for δ > 30.

In order to control ill-conditioning (which arises already at small exactness
degrees with the standard monomial basis), we used as proposed in [24] the
total-degree product Chebyshev basis {Tp(α1(x))Tq(α2(y))}, 0 ≤ p + q ≤ δ,
(x, y) ∈ [a1, b1]× [a2, b2] (the smallest cartesian rectangle containing the polyg-
onal domain), where Th(·) = cos(h arccos(·)) is the h-degree Chebyshev polyno-
mial and αi(s) = (2s−bi−ai)/(bi−ai), s ∈ [ai, bi], i = 1, 2. For the compression
we used in particular the software available from the package NNLSlab in [21].
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The relative gaps between the bivariate Chebyshev moments computed by the
Gauss-Green-based rule of [23], the present triangulation-based rule and the
compressed rule turn out to be not far from machine precision, say around
10−14-10−15, in all the tests.

To show the advantages of this new approach via polyshape triangulation,
we consider as examples two polygons P1 and P2, that we can think as discretiza-
tion of a quatrefoil, which could not be treated by the previous algorithms since
the domains are non-simple and have not the axis property.

More precisely, the polygon vertices are (cos(tk) · sin(2tk), sin(tk) · sin(2tk))),
where tk = 2kπ

Mi
, with k = 1, . . . ,Mi, i = 1, 1. In particular, we set M1 = 129,

and M2 = 513. The polygon P1 can be partioned in Ntri = 120 triangles, while
P2 in Ntri = 504 triangles.

Table 4: Cardinalities M
(new)
δ , M̃

(new)
δ of cubature rules obtained via trian-

gulation (with/without compression) on two non-simple polygons P1 and P2

approximating a quatrefoil, with ADE = δ = 5, 10, . . . , 35.

P1 P2

δ M
(new)
δ M̃

(new)
δ Ratioδ M

(new)
δ M̃

(new)
δ Ratioδ

5 840 21 40.0 3528 21 168.0
10 2880 66 43.6 12096 66 183.3
15 5520 136 40.6 23184 136 170.5
20 9360 231 40.5 39312 231 170.2
25 14040 351 40.0 58968 351 168.0
30 20520 496 41.4 86184 496 173.8
35 27360 666 41.1 114912 666 172.5

Figure 3: Compressed set at degree δ = 10, for three polygons with different
shape: convex, concave, non-simple (quatrefoil).

By a careful look at Table 4, we observe that the compression ratio Ratioδ =

M
(new)
δ /M̃

(new)
δ is almost constant. The reason is that at degree δ the cubature

rule has approximatively δ2/6 points for triangle (being near minimal), thus

M
(new)
δ ≈ Ntriδ2/6 and since the compressed set has cardinality M̃

(new)
δ ≈ δ2/2,

necessarily

Ratioδ =
M

(new)
δ

M̃
(new)
δ

≈ Ntri δ
2/6

δ2/2
=
Ntri

3
.

We finally observe that by Caratheodory-Tchakaloff subsampling we can
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determine embedded rules over a polygon P, i.e. cubature formulae Q(L), Q(H),

Q(L)(f) =

ML∑
j=1

w
(L)
j f(x

(L)
j ), Q(H)(f) =

MH∑
s=1

w(H)
s f(x(H)

s )

with different degree of exactness, say δQ(L) < δQ(H) , where {x(L)
j } ⊂ {x

(H)
s } (see

also [25]). A typical application is that they allow stopping criteria, based on
rules with different degrees of exactness δ1, δ2, with δ1 < δ2, with the property
that the nodes of the rule with ADE = δ1 are among those of the rule with
ADE = δ2. Their purpose is to minimize the number of function evaluations,
for providing an estimate of the cubature error at degree δ1; cf., e.g., [6] on the
concept of embedded cubature rule.

More generally, given a sequence of degrees δ1 < δ2 < · · · < δk, we can
compute the nested Caratheodory-Tchakaloff sequence {Tδj}

P ⊃ X ⊃ Tδk ⊃ Tδk−1
⊃ · · · ⊃ Tδ2 ⊃ Tδ1 (5)

together with the corresponding sequence of positive weight vectors, say wδj},
by solving backward the sequence of NLLS problems

compute u∗j−1 : ‖Aju∗j−1 − bj‖2 = min ‖Ajuj−1 − bj‖2 , uj−1 ≥ 0 , (6)

for j = k + 1, k, . . . , 2, where Aj = (Vδj−1(Tδj ))
t (cf. (2)), bj = Aju

∗
j , and we

set Tδk+1
= X, u∗k+1 = λ, (X,λ) being the starting cubature formula.

5.2 An application to optical design

As application of these new cubature formulae, we consider a problem arising
in optical design. The use of low-cardinality cubature in optical design began
with a classical paper by Forbes [9], who suggested to adopt product Gaussian
quadrature for efficient numerical ray tracing on circular or elliptical apertures
(pupils), to compute the Root Mean Square (RMS) Spot Size. Later, in [1] the
authors studied cubature methods based on prolate spheroidal wave functions
and Gaussian quadrature [31], to treat situations where the pupil is obscured
and vignetted (a feature that occurs, for example, in optical astronomy; see
Figure 4). We recall that such Gaussian quadrature approaches are currently
implemented within one of the most popular optical design software suites, the
Zemax OpticsStudio package [34], to compute for example one of the relevant
optical parameters, the Root Mean Square Wavefront Error (RMSWE, cf. e.g.
[19]), that is

RMSWEΩ =

(∫
Ω

W 2(x)
dx

A
−
(∫

Ω

W (x)
dx

A

)2
)1/2

, A = area(Ω) , (7)

where Ω is the pupil integration region and W the optical wavefront, usually
approximated by a low-degree truncated Zernike expansion.

In [1] the authors considered a 3-disks model for a LSST-like (Large Synoptic
Survey Telescope, [16]) aperture, where the main circular pupil has a large
central obscuration (about 62 per cent obscuration by diameter) as well as a
considerable vignetting (of up to 10 per cent by area), by two co-axial disks.
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The same model was then treated in [7] by subperiodic trigonometric Gaussian
quadrature, via domain splitting into circular (even asymmetric) sectors and a
truncated annulus.

The configurations become more complicated with the 5-disks model coped
here, that could not be treated by efficient numerical cubature within the
presently available optical design packages. In this model obscuration and vi-
gnetting are made by four co-axial disks, see Figure 4. The relevant region
is obtained by intersection with two larger external disks and subtraction of
two internal disks. There are several configurations, depending on the mutual
position of the co-axial disks centers and on the disk radii. All the disks are
approximated by regular polygons with a very large number of sides, so that the
non obscured region is polygonal and easily obtainable by Matlab polyshape

and the built-in routines intersect, union and subtract.

Figure 4: Cubature nodes for an obscured and vignetted telescope pupil at
exactness degree δ = 10; original formula (dots) and compressed formula (small
circles).

In the numerical example the main telescope pupil is the unit disk, the
two external clipping disks have centers (0,−0.1184), (0,−0.3761) and radii
1.0761, 1.2810, whereas the two internal obscuring disks have centers (0, 0),
(0,−0.1184) and radii 0.6210, 0.5663, respectively. The five circles have been
approximated by regular polygons with doubled sides from 100 up to 1600,
obtaing an approximate polygonal integration region, say P ≈ Ω (in grey in
Figure 4 corresponding to 800 sides per circle).

The integration test has been performed taking as waveform W (x) a linear
combination with uniform random coefficients of the first nine Zernike polyno-
mials Z0, . . . , Z8, as listed in [33], which allow to take into account the main
classical optical aberrations; thus, the resulting wavefront is a polynomial of
degree 4, and the integrand in (7) is a polynomial of degree δ = 8.

In Table 5 we show the average relative error over 1000 trials of the random
array of nine Zernike coefficients

Erel =
|RMSWEΩ − RMSWEP |

RMSWEΩ
,
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where RMSWEP has been computed by the compressed polygonal PI formula
discussed in the present paper for ADE = 8 (45 points), whereas the reference
value RMSWEΩ has been computed at machine precision via algebraic cubature
with ADE = 8 on set difference of disks (lunes) followed by subtraction of
such integrals on lunes from the integral on the underlying circular pupil, using
the formulae developed in [8] (we stress that such an approach, considered as
a unique cubature formula, would present some non-interior points and some
negative weights).

Table 5: Cubature construction cputime and average relative error over 1000
trials in computing the RMSWE for a random linear combination of the first nine
Zernike polynomials on the obscured and vignetted polygonal pupil of Figure 4
(the triangulation-based starting cubature formula is compressed into 45 nodes
and positive weights).

sides per circle 100 200 400 800 1600
pupil sides 204 403 800 1597 3188

card. triang.-based 3232 6416 12768 25520 50976
cubat. constr. time 0.06s 0.09s 0.16s 0.27s 1.00s

average Erel 2.9e-03 7.4e-04 1.8e-04 4.5e-05 1.1e-05

We see that error is of the order of 1/L2, where L is the number of sides of
the regular polygons approximating the disks, which is not surprising since this
is the expected error order on the pupil area. Already for L in the hundreds this
guarantees a reasonably accurate approximation of the RMSWE (error of about
0.01%), with a low computational cost. Finally, it is worth observing that the
present approach, based on polygonal boundary approximation, could be easily
applied to much more complicated pupil masking configurations of interest in
astronomical optics.
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