5th European Congress of Mathematics - Amsterdam, July 14-18 2008

# Near-optimal interpolation and quadrature in two variables: the Padua points

M. CALIARI<sup>*a*</sup>, S. DE MARCHI<sup>*a*</sup>, A. SOMMARIVA<sup>*b*</sup> AND <u>M. VIANELLO<sup>*b*</sup></u>

<sup>a</sup>Department of Computer Science, University of Verona, ITALY <sup>b</sup>Department of Pure and Applied Mathematics, University of Padua, ITALY

## Abstract

The Padua points, recently studied during an international collaboration at the University of Padua, are the first known near-optimal point set for bivariate polynomial interpolation of total degree. Also the associate algebraic cubature formulas are both, in some sense, near-optimal.

#### Which are the Padua points?

Chebyshev-Lobatto points in [-1, 1]

$$C_{n+1} := \{ \cos(j\pi/n), \ j = 0, \dots, n \}$$
  

$$\operatorname{card}(C_{n+1}) = n + 1 = \dim(\mathbb{P}_n^1)$$

Padua points in  $[-1, 1] \times [-1, 1]$ 

$$\operatorname{Pad}_{n} := (C_{n+1}^{\operatorname{odd}} \times C_{n+2}^{\operatorname{even}}) \cup (C_{n+1}^{\operatorname{even}} \times C_{n+2}^{\operatorname{odd}}) \subset C_{n+1} \times C_{n+2}$$

$$\operatorname{card}(\operatorname{Pad}_n) = \frac{(n+1)(n+2)}{2} = \operatorname{dim}(\mathbb{P}_n^2)$$

Alternative representation as self-intersections and boundary contacts of the generating curve

$$g(t) := (-\cos((n+1)t), -\cos(nt)), \quad t \in [0,\pi]$$

**FIGURE 1.** The Padua points with their generating curve for n = 12 (left, 91) points) and n = 13 (right, 105 points), also as union of two Cheby rids (red and blue bullets)



There are 4 families of such points, corresponding to successive rotations of 90 degrees.

#### Interpolation at the Padua points

trigonometric quadrature on the generating curve

algebraic cubature at the Padua points 
$$\xi \in Padua for the product Chebyshev measure$$

$$=$$
  $\frac{ax_1ax_2}{ax_2}$ 

#### The Lebesgue constant

$$\mathcal{L}_{\text{Pad}_n}: C([-1,1]^2, \|\cdot\|_{\infty}) \to \mathbb{P}^2_n([-1,1]^2, \|\cdot\|_{\infty})$$

Theorem (interpolation stability, cf. [1])

$$\|\mathcal{L}_{\operatorname{Pad}_{n}}\| = \max_{\boldsymbol{x} \in [-1,1]^{2}} \sum_{\boldsymbol{\xi} \in \operatorname{Pad}_{n}} |L_{\boldsymbol{\xi}}(\boldsymbol{x})| = \mathcal{O}(\log^{2}(n))$$

i.e., the Lebesgue constant has optimal order of growth [9].

Conjecture

$$\max_{\boldsymbol{x} \in [-1,1]^2} \sum_{\boldsymbol{\xi} \in \operatorname{Pad}_n} |L_{\boldsymbol{\xi}}(\boldsymbol{x})| \lesssim \frac{4}{\pi^2} \log^2(n)$$

and the max is attained at one of the vertices of the square.

Classical convergence estimate

$$\|\mathcal{L}_{\text{Pad}_n} f - f\|_{\infty} \le (1 + \|\mathcal{L}_{\text{Pad}_n}\|) \min_{n \in \mathbb{P}^2} \|f - p\|_{\infty} = o(n^{-p} \log^2(n))$$

for  $f \in C^p([-1,1]^2)$ , p > 0

## **Numerical implementation**

Representation of the interpolant at the Padua points in the product Chebyshev orthonormal basis

$$\mathcal{L}_{ ext{Pad}_n} f(oldsymbol{x}) = \sum_{|oldsymbol{j}| \leq n} c_{oldsymbol{j}}' \Theta_{oldsymbol{j}}(oldsymbol{x})$$

with coefficients

$$c'_{j} = c_{j} := \sum_{\xi \in \operatorname{Pad}_{n}} w_{\xi} f(\xi) \Theta_{j}(\xi) , \ c'_{(n,0)} = \frac{c_{(n,0)}}{2}$$

which are approximate Fourier-Chebyshev coefficients (with a correction for  $\boldsymbol{j} = (n, 0)$ )

Two different fast algorithms (cf. [3, 5]) using

- optimized matrix subroutines
- 2-dimensional Fast Fourier Transform (competitive and more stable at large degrees)

Other features

- extension to interpolation over rectangles
- practical convergence estimate

$$\|\mathcal{L}_{\mathrm{Pad}_n}f - f\|_{\infty} \lesssim \sum_{|\mathbf{j}|=n-2}^n |c_{\mathbf{j}}'| \|\Theta_{\mathbf{j}}\|_{\infty} \le 2 \sum_{|\mathbf{j}|=n-2}^n |c_{\mathbf{j}}'|$$

#### Numerical results on interpolation

#### **Nontensorial Clenshaw-Curtis cubature**

- integration of the interpolant at the Chebyshev-Lobatto points gives the 1D Clenshaw-Curtis quadrature formula
- integration of the interpolant at the Padua points gives a 2D nontensorial Clenshaw-Curtis cubature formula

$$I(f) := \iint_{[-1,1]^2} f(\boldsymbol{x}) \, d\boldsymbol{x} \approx I_{\operatorname{Pad}_n}(f) := \iint_{[-1,1]^2} \mathcal{L}_{\operatorname{Pad}_n} f(\boldsymbol{x}) \, d\boldsymbol{x}$$
$$= \sum c'_{\boldsymbol{j}} m_{\boldsymbol{j}} = \sum \lambda_{\boldsymbol{\xi}} f(\boldsymbol{\xi}) \, , \ \lambda_{\boldsymbol{\xi}} := w_{\boldsymbol{\xi}} \sum m'_{\boldsymbol{j}} \Theta_{\boldsymbol{j}}(\boldsymbol{\xi})$$

 $|\overline{j}| \leq n$ 

 $\boldsymbol{\xi} \in \operatorname{Pad}_n$ (exact for  $f \in \mathbb{P}_n^2$ ), via the Chebyshev moments

 $|\overline{j}| \leq n$ 

$$m_{\boldsymbol{j}} := \iint_{[-1,1]^2} \Theta_{\boldsymbol{j}}(\boldsymbol{x}) \, d\boldsymbol{x} = \int_{-1}^{1} T_{j_1}^*(t) \, dt \, \int_{-1}^{1} T_{j_2}^*(t) \, dt$$

The cubature weights  $\{\lambda_{\xi}\}$  are not all positive, nevertheless Theorem (cubature stability and convergence, cf. [8])

$$\lim_{n \to \infty} \|I_{\operatorname{Pad}_n}\| = \lim_{n \to \infty} \sum_{\boldsymbol{\xi} \in \operatorname{Pad}_n} |\lambda_{\boldsymbol{\xi}}| = \text{area of the square} = 4$$
  
and  $I(f) = I_{\operatorname{Pad}_n}(f) + o(n^{-p})$  for  $f \in C^p([-1, 1]^2), p \ge 0$ .

# Numerical results on cubature

• near-optimality: on non-entire integrands,  $I_{Pad_n}$  performs better than tensor-product Gauss-Legendre quadrature and even than the few known minimal formulas, see Fig. 3 right (similar to the well-known 1D phenomenon studied in [10])

• fast algorithm: computing the weights by a suitable matrix formulation (cf. [3]) is very fast in Matlab/Octave (e.g. less than 0.01 sec at n = 100 on a 2.4Ghz PC)

FIGURE 3. Cubature errors of tensorial and nontensorial cubature formulas versus the number of evaluations: CC=Clenshaw-Curtis, GL=Gauss-Legendre, MPX=Morrow-Patterson-Xu [11], OS=Omelyan-Solovyan (minimal) [6]. Left:  $f = (x_1 + x_2)^{20}$ ;  $f = \exp(x_1 + x_2)$ ;  $f = \exp(-(x_1^2 + x_2^2))$ Right:  $f = 1/(1 + 16(x_1^2 + x_2^2))$ ;  $f = \exp(-1/(x_1^2 + x_2^2))$ ;  $f = (x_1^2 + x_2^2)^{3/2}$ 





near-exactness in  $\mathbb{P}^2_{2i}$ namely, exactness in  $\mathbb{P}_{2n}^2 \cap (\operatorname{span}\{T_{2n}(x_1)\})^{\perp_{d_{\mu}}}$ 

#### Lagrange interpolation formula

$$\mathcal{L}_{\operatorname{Pad}_n} f(\boldsymbol{x}) = \sum_{\boldsymbol{\xi} \in \operatorname{Pad}_n} f(\boldsymbol{\xi}) L_{\boldsymbol{\xi}}(\boldsymbol{x}) , \ L_{\boldsymbol{\xi}}(\boldsymbol{\eta}) = \delta_{\boldsymbol{\xi}\boldsymbol{\eta}}$$

 $L_{\boldsymbol{\xi}}(\boldsymbol{x}) = w_{\boldsymbol{\xi}}(K_n(\boldsymbol{\xi}, \boldsymbol{x}) - T_n(\xi_1)T_n(x_1))$ 

 $T_n(\cdot) = \cos(n \arccos(\cdot))$  and  $K_n(\boldsymbol{x}, \boldsymbol{y})$  reproducing kernel of the product Chebyshev orthonormal basis

$$\Theta_{\boldsymbol{j}}(\boldsymbol{x}) = T_{j_1}^*(x_1) T_{j_2}^*(x_2) , \ \boldsymbol{j} = (j_1, j_2) , \ 0 \le |\boldsymbol{j}| = j_1 + j_2 \le r$$

$$K_n(\boldsymbol{x}, \boldsymbol{y}) = \sum_{|\boldsymbol{j}| \leq n} \Theta_{\boldsymbol{j}}(\boldsymbol{x}) \Theta_{\boldsymbol{j}}(\boldsymbol{y})$$

#### FIGURE 2. Six test functions from the Franke-Renka-Brown test set [7]; top: F1, F2, F3; bottom: F5, F7, F8.



#### TABLE 1. True and (estimated) interpolation errors for the test functions above.

| n  | $card(Pad_n)$ | $F_1$  | $F_2$  | $F_3$   | $F_5$   | $F_7$   | $F_8$   |
|----|---------------|--------|--------|---------|---------|---------|---------|
| 10 | 66            | 9E-2   | 4E-1   | 8E-3    | 4E-2    | 3E-1    | 1E-1    |
|    |               | (2E-1) | (6E-1) | (6E-2)  | (2E-1)  | (1E+0)  | (4E-1)  |
| 20 | 231           | 7E-3   | 6E-2   | 1E-5    | 6E-5    | 8E-6    | 3E-3    |
|    |               | (2E-2) | (8E-2) | (8E-5)  | (8E-4)  | (2E-4)  | (1E-2)  |
| 30 | 496           | 1E-4   | 1E-2   | 2E-8    | 1E-8    | 7E-13   | 2E-5    |
|    |               | (8E-4) | (1E-2) | (1E-7)  | (2E-7)  | (2E-11) | (1E-4)  |
| 40 | 861           | 3E-6   | 2E-3   | 2E-11   | 4E-13   | 4E-14   | 6E-8    |
|    |               | (1E-5) | (2E-3) | (2E-10) | (2E-11) | (8E-15) | (6E-7)  |
| 50 | 1326          | 1E-8   | 4E-4   | 1E-13   | 1E-15   | 7E-14   | 5E-11   |
|    |               | (8E-8) | (4E-4) | (4E-13) | (1E-15) | (1E-14) | (6E-10) |

#### References

- [1] L. BOS, M. CALIARI, S. DE MARCHI, M. VIANELLO AND Y. XU, Bivariate Lagrange interpolation at the Padua points: the generating curve approach, J. Approx. Theory 143 (2006).
- [2] L. BOS, S. DE MARCHI, M. VIANELLO AND Y. XU, Bivariate Lagrange interpolation at the Padua points: the ideal theory approach, Numer. Math. 108 (2007).
- [3] M. CALIARI, S. DE MARCHI, A. SOMMARIVA AND M. VIANELLO, Fast interpolation and cubature at the Padua points in Matlab/Octave, in preparation.
- [4] M. CALIARI, S. DE MARCHI AND M. VIANELLO, Bivariate polynomial interpolation on the quare at new nodal sets, Appl. Math. Comput. 162 (2005).
- [5] M. CALIARI, S. DE MARCHI AND M. VIANELLO, Padua2D: Lagrange Interpolation at Padua Points on Bivariate Domains, ACM Trans. Math. Software 35-3 (2008).
- [6] I.P. OMELYAN AND V.B. SOLOVYAN, Improved cubature formulae of high degree of exactness for the square, J. Comput. Appl. Math. 188 (2006).
- [7] R.J. RENKA AND R. BROWN, Algorithm 792: Accuracy tests of ACM algorithms for interpolation of scattered data in the plane, ACM Trans. Math. Software 25 (1999).
- [8] A. SOMMARIVA, M. VIANELLO AND R. ZANOVELLO, Nontensorial Clenshaw-Curtis cubature, Numer. Algorithms, published online 27 May 2008.
- [9] L. SZILI AND P. VERTESI, Some New Theorems on Multivariate Projection Operators, C.R. Acad. Bulgare Sci. 61 (2008).
- [10] L.N. TREFETHEN, Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Rev. 50 (2008).
- [11] Y. XU, Lagrange interpolation on Chebyshev points of two variables, J. Approx. Theory 87