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Abstract

In view of a discrete version of Tchakaloff theorem on the exis-
tence of positive algebraic quadrature formulas, we can com-
pute Tchakaloff points that are compressed sampling sets for
multivariate quadrature and least squares.

Discrete Tchakaloff theorem

THEOREM 1 Let u be a positive measure with compact support in
R and P2 be the space of real d-variate polynomials of total degree
< n, restricted to supp(u). Then there are m < N = dim(P4)
points T,, = {t;} C supp(p) and positive real numbers w = {w;}
such that
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e originally proved for absolutely continuous measures by
the Bulgarian mathematician V.L. Tchakaloff (1957), then
extended to more general measures, cf. e.g. [5]

e we may term 7, = {t;} C supp(u) a set of Tchakaloff
points (of degree n)

e key fact: the measure can be discrete, e.g., the integral
can be a quadrature formula itself!

Error estimates

in practice we find a nonzero moment residual (6)

V' = bl == >0 @)
(effect of rounding errors, tolerance in the NNLS solver, ...)

e error estimate (with a y-orthonormal basis {p;} in (4)-(7)):
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E,(f) can be estimated by the regularity of f on a compact set
K D X satisfying a Jackson inequality

Compressed quadrature

let ;1 be a discrete measure with finite support X = {z;} and
masses (weights) A = {\;}
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if card(X) = M > N, by Tchakaloff theorem
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special cases: positive quadrature formulas on  C R? like (9)

e we are replacing a long sum by a shorter one where the
re-weighted nodes are a subset T, = {t;} C X = {x;}

e Compression Ratio: CR = M/m > M/N > 1 (even >> 1)

but the proof of Tchakaloff theorem is not constructive: how
can we select the nodes and compute the new weights?

Answer: quadratic programming!

Algebraic quadrature for nonstandard regions
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e.g.: high-cardinality formulas by domain splitting (¢(z) = 1)
e regions bounded by circle arcs (ray tracing in optics [1, 6])
e polygons/polyhedra (applic. to FEM and CFD, cf. e.g. [11])

Figure 1: algebraic quadrature by splitting and compression by Tchakaloff points (o) for an
obscured telescope lens (n = 5, CR & 5) and a 14-side nonconvex polygon (n = 20, CR = 7)

Table 1: Compression Ratio (CR) and moment residual on the regions above; CR tends to
stabilize being asymptotically proportional to the number of integration elements

degn 5 10 15 20 25 30
new card m 21 66 136 231 351 496
obscured old card M 108 282 603 957 1498 2032
telescope lens CR 5.1 4.3 4.4 4.1 4.3 4.1
res £ le-15 3e-15 5e-15 le-14  9e-15 1le-14
14-side old card M 208 468 1053 1573 2548 3328
polygon CR 9.9 71 7.7 6.8 7.3 6.7

res & 2e-17  2e-17  2e-17  4e-17 3e-16  1le-16
Athlon 64 2.4Ghz cpu (sec) 0.04 0.14 0.39 1.37 401 13.30

note: Tchakaloff points of low-discrepancy sets can be used to
compress 2d and 3d QMC integration, cf. [2]

Least square example

Figure 2: extraction of 153 Tchakaloff points (o) for CLS (n = 8) from ~ 3700 Halton points
on the union of 3 disks: CR ~ 24

Table 2: CR, moment residual and ¢2(X) reconstruction error for the Gaussian f1 (u,v) =
exp(—p?) and the power function fa(u,v) = p?, p = /(u — 1/2)2 + (v — 1/2)2

degn 2 4 6 8 10 12
m 15 45 91 153 231 325
CR 246 82 40 24 16 11

rese  4.9e-14 12e-13 34e-13 43e-13 8.8e-13  2.5e-12
£2-err f1 LS 3.0e-03  8.2e-05 1.7e-06 2.7e-08 3.5e-10 3.9e-12
CLS  33e-03 8.6e-05 17e-06 2.7e-08 3.5e-10 3.9e-12
£=-err fo LS 1.2e-01  1.5e-02 4.2e-03 1.6e-03 7.2e-04 3.7e-04
CLS  13e-01 1.6e-02 4.4e-03 1.7e-03 7.6e-04 3.8e-04

Implementation by NonNegative Least Squares

let fix a polynomial basis span{p,...,py} = P% and the
Vandermonde-like matrix

V=(vy)=(pj(a;)), 1<i<M,1<j<N 4)

e the underdetermined moment system
Viu=b=V'A 5)
has a nonnegative sparse solution by Tchakaloff theorem

e sparsity cannot be recovered by ¢! Compressed Sensing
(min ||ul]y), since ||u||; = [|All1 = p(X) is constant

e sparse solution by NonNegative Least Squares (NNLS)

w* ||V —b||2=min||[V'u—bl2, u>=0 (6)

the nonzero components of u* are the weights {w;} in
(3) and identify the Tchakaloff points 7, = {t;}; cf. [7]
(univariate) and [10] (multivariate)

e we can use a standard NNLS solver like the Lawson-
Hanson active set method, which recovers sparse solu-
tions (optimized Matlab implementation in [9])

Compression of least squares

basic (? identity: let X = {z;} be a discrete sampling set and
A= (1,...,1);if card(X) = M > dim(P%,), replacing p by p*
in (3) there are m < dim(P4, ) Tchakaloff points such that
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e Least Squares (LS) of degree n at X

If = Lx fllecx) = 1171’61%){} If = pllex) < VM E(f) (11)

e Compressed Least Squares (CLS) of degree n at Ty, C X
If = L%, fllez, @) = min | f = plle, 1. (12)
pePy

e note: CLS are Weighted Least Squares of degree n at
Tchakaloff points of degree 2n

by (10) (and (8) for a nonzero moment residual), cf. [10, 12]
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(13)
ie, for e <« 1/v/M the LS and CLS reconstruction error esti-
mates in (?(X) have substantially the same size!

similarly: compression of Weighted Least Squares, cf. [10]

Compression of polynomial meshes

a polynomial mesh of a polynomial determining compact set

K C R%is a sequence of finite subsets X,, C K such that
Pl ry < ColIplle=x,.y - VP € P, (14)

where C,, = O(n®), M,, = card(X,,) = O(n®) (a > 0, 3 > d)

polynomial meshes, introduced in the seminal paper [4] by
Calvi and Levenberg, have good computational features, e.g.

e extension by algebraic transforms, finite union and product
e contain computable near optimal interpolation sets [3]
e are near optimal for uniform LS approximation, namely [4]

I Lx, |l = supszo {1 Lx, fll oo o)/ | fll ooy } < Coo /M, (15)

several known meshes have high-cardinality, even with g = d
e.g. on polygons/polyhedra or smooth convex sets, cf. [3, 8]

if M,, > dim(P{,), taking the CLS operator (12) at Tchakaloff
points T, C X,,, we have

ILE || < Cile) = Cu /M, (1 _e Mn)fl/2 (16)

as long as M, < g~! the estimates of LS and CLS operator
norms almost coincide! and 7, itself is a polynomial mesh

Il oo i) = IL%, Pl i) S Ci(€) [Pl zny » VP € Pt (17)

Figure 3: polynomial mesh and compression by Tchakaloff points on a smooth convex set
(n =5,CR=971/66 ~ 15); numerically evaluated LS () and CLS (o) operator norms
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