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Abstract

In view of a discrete version of Tchakaloff theorem on the exis-
tence of positive algebraic quadrature formulas, we can com-
pute Tchakaloff points that are compressed sampling sets for
multivariate quadrature and least squares.

Discrete Tchakaloff theorem

THEOREM 1 Let µ be a positive measure with compact support in
R

d and P
d
n be the space of real d-variate polynomials of total degree

≤ n, restricted to supp(µ). Then there are m ≤ N = dim(Pd
n)

points Tn = {tj} ⊆ supp(µ) and positive real numbers w = {wj}
such that

∫

Rd

p(x) dµ =

m
∑

j=1

wj p(tj) , ∀p ∈ P
d
n (1)

• originally proved for absolutely continuous measures by
the Bulgarian mathematician V.L. Tchakaloff (1957), then
extended to more general measures, cf. e.g. [5]

• we may term Tn = {tj} ⊆ supp(µ) a set of Tchakaloff
points (of degree n)

• key fact: the measure can be discrete, e.g., the integral
can be a quadrature formula itself!

Compressed quadrature

let µ be a discrete measure with finite support X = {xi} and
masses (weights) λ = {λi}

∫

Rd

f(x) dµ =

M
∑

i=1

λi f(xi) (2)

if card(X) = M > N , by Tchakaloff theorem

M
∑

i=1

λi p(xi) =

m
∑

j=1

wj p(tj) , ∀p ∈ P
d
n (3)

special cases: positive quadrature formulas on Ω ⊂ R
d like (9)

• we are replacing a long sum by a shorter one where the
re-weighted nodes are a subset Tn = {tj} ⊂ X = {xi}

• Compression Ratio: CR = M/m ≥ M/N > 1 (even ≫ 1)

but the proof of Tchakaloff theorem is not constructive: how
can we select the nodes and compute the new weights?

Answer: quadratic programming!

Implementation by NonNegative Least Squares

let fix a polynomial basis span{p1, . . . , pN} = P
d
n and the

Vandermonde-like matrix

V = (vij) = (pj(xi)) , 1 ≤ i ≤ M , 1 ≤ j ≤ N (4)

• the underdetermined moment system

V t
u = b = V t

λ (5)

has a nonnegative sparse solution by Tchakaloff theorem

• sparsity cannot be recovered by ℓ1 Compressed Sensing
(min ‖u‖1), since ‖u‖1 = ‖λ‖1 = µ(X) is constant

• sparse solution by NonNegative Least Squares (NNLS)

u
∗ : ‖V t

u
∗ − b‖22 = min ‖V t

u− b‖22 , u � 0 (6)

the nonzero components of u
∗ are the weights {wj} in

(3) and identify the Tchakaloff points Tn = {tj}; cf. [7]
(univariate) and [10] (multivariate)

• we can use a standard NNLS solver like the Lawson-
Hanson active set method, which recovers sparse solu-
tions (optimized Matlab implementation in [9])

Error estimates

in practice we find a nonzero moment residual (6)

‖V t
u

∗ − b‖2 = ε > 0 (7)

(effect of rounding errors, tolerance in the NNLS solver, ...)

• error estimate (with a µ-orthonormal basis {pj} in (4)-(7)):
∣

∣

∣

∣

∣

M
∑

i=1

λi f(xi)−
m
∑

j=1

wj f(tj)

∣

∣

∣

∣

∣

≤ CεEn(f) + ε ‖f‖ℓ2
λ
(X) , (8)

En(f) = min
p∈Pd

n

‖f − p‖ℓ∞(X) , Cε = 2
(

µ(X) + ε
√

µ(X)
)

En(f) can be estimated by the regularity of f on a compact set
K ⊃ X satisfying a Jackson inequality

Algebraic quadrature for nonstandard regions

∫

Ω

p(x) σ(x) dx =
M
∑

i=1

λi p(xi) =
m
∑

j=1

wj p(tj) , ∀p ∈ P
d
n (9)

e.g.: high-cardinality formulas by domain splitting (σ(x) ≡ 1)

• regions bounded by circle arcs (ray tracing in optics [1, 6])
• polygons/polyhedra (applic. to FEM and CFD, cf. e.g. [11])

Figure 1: algebraic quadrature by splitting and compression by Tchakaloff points (◦) for an
obscured telescope lens (n = 5, CR ≈ 5) and a 14-side nonconvex polygon (n = 20, CR ≈ 7)
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Table 1: Compression Ratio (CR) and moment residual on the regions above; CR tends to
stabilize being asymptotically proportional to the number of integration elements

deg n 5 10 15 20 25 30
new card m 21 66 136 231 351 496

obscured old card M 108 282 603 957 1498 2032
telescope lens CR 5.1 4.3 4.4 4.1 4.3 4.1

res ε 1e-15 3e-15 5e-15 1e-14 9e-15 1e-14
14-side old card M 208 468 1053 1573 2548 3328

polygon CR 9.9 7.1 7.7 6.8 7.3 6.7
res ε 2e-17 2e-17 2e-17 4e-17 3e-16 1e-16

Athlon 64 2.4Ghz cpu (sec) 0.04 0.14 0.39 1.37 4.01 13.30

note: Tchakaloff points of low-discrepancy sets can be used to
compress 2d and 3d QMC integration, cf. [2]

Compression of least squares

basic ℓ2 identity: let X = {xi} be a discrete sampling set and
λ = (1, . . . , 1); if card(X) = M > dim(Pd

2n), replacing p by p2

in (3) there are m ≤ dim(Pd
2n) Tchakaloff points such that

‖p‖2ℓ2(X) =
M
∑

i=1

p2(xi) =
m
∑

j=1

wj p
2(tj) = ‖p‖2ℓ2w(T2n)

(10)

• Least Squares (LS) of degree n at X

‖f − LXf‖ℓ2(X) = min
p∈Pd

n

‖f − p‖ℓ2(X) ≤
√
M En(f) (11)

• Compressed Least Squares (CLS) of degree n at T2n ⊂ X

‖f − Lw

T2n
f‖ℓ2w(T2n) = min

p∈Pd
n

‖f − p‖ℓ2w(T2n) (12)

• note: CLS are Weighted Least Squares of degree n at
Tchakaloff points of degree 2n

by (10) (and (8) for a nonzero moment residual), cf. [10, 12]

‖f − Lw

T2n
f‖ℓ2(X) .

(

1 +
(

1− ε
√
M

)−1/2
) √

M En(f)

(13)
i.e., for ε ≪ 1/

√
M the LS and CLS reconstruction error esti-

mates in ℓ2(X) have substantially the same size!

similarly: compression of Weighted Least Squares, cf. [10]

Least square example

Figure 2: extraction of 153 Tchakaloff points (◦) for CLS (n = 8) from ≈ 3700 Halton points
on the union of 3 disks: CR ≈ 24
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Table 2: CR, moment residual and ℓ2(X) reconstruction error for the Gaussian f1(u, v) =

exp(−ρ2) and the power function f2(u, v) = ρ3, ρ =
√

(u− 1/2)2 + (v − 1/2)2

deg n 2 4 6 8 10 12
m 15 45 91 153 231 325
CR 246 82 40 24 16 11

res ε 4.9e-14 1.2e-13 3.4e-13 4.3e-13 8.8e-13 2.5e-12
ℓ2-err f1 LS 3.0e-03 8.2e-05 1.7e-06 2.7e-08 3.5e-10 3.9e-12

CLS 3.3e-03 8.6e-05 1.7e-06 2.7e-08 3.5e-10 3.9e-12
ℓ2-err f2 LS 1.2e-01 1.5e-02 4.2e-03 1.6e-03 7.2e-04 3.7e-04

CLS 1.3e-01 1.6e-02 4.4e-03 1.7e-03 7.6e-04 3.8e-04

Compression of polynomial meshes

a polynomial mesh of a polynomial determining compact set
K ⊂ R

d is a sequence of finite subsets Xn ⊂ K such that

‖p‖L∞(K) ≤ Cn ‖p‖ℓ∞(Xn) , ∀p ∈ P
d
n (14)

where Cn = O(nα), Mn = card(Xn) = O(nβ) (α ≥ 0, β ≥ d)

polynomial meshes, introduced in the seminal paper [4] by
Calvi and Levenberg, have good computational features, e.g.

• extension by algebraic transforms, finite union and product
• contain computable near optimal interpolation sets [3]
• are near optimal for uniform LS approximation, namely [4]

‖LXn
‖ = supf 6=0

{

‖LXn
f‖L∞(K)/‖f‖L∞(K)

}

≤ Cn

√

Mn (15)

several known meshes have high-cardinality, even with β = d
e.g. on polygons/polyhedra or smooth convex sets, cf. [3, 8]

if Mn > dim(Pd
2n), taking the CLS operator (12) at Tchakaloff

points T2n ⊂ Xn , we have

‖Lw

T2n
‖ . C∗

n(ε) = Cn

√

Mn

(

1− ε
√

Mn

)−1/2

(16)

as long as
√
Mn ≪ ε−1 the estimates of LS and CLS operator

norms almost coincide! and T2n itself is a polynomial mesh

‖p‖L∞(K) = ‖Lw

T2n
p‖L∞(K) . C∗

n(ε) ‖p‖ℓ∞(T2n) , ∀p ∈ P
d
n (17)

Figure 3: polynomial mesh and compression by Tchakaloff points on a smooth convex set
(n = 5, CR = 971/66 ≈ 15); numerically evaluated LS (∗) and CLS (◦) operator norms
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