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Abstract

We discuss an algorithm for Tchakaloff-like compression of Quasi-
MonteCarlo (QMC) volume/surface integration on arbitrary union of balls
(multibubbles), that can be of interest in the field of biomolecular mod-
elling. The key tools are Davis-Wilhelmsen theorem on “Tchakaloff sets”
for positive linear functionals on polynomial spaces, and Lawson-Hanson
algorithm for NNLS. We also provide the corresponding Matlab package.
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1 Introduction

Numerical modelling by finite collections of disks, balls and spheres is relevant
within different application fields. Problems involving intersection, union and
difference of such geometrical objects arise for example in molecular modelling,
computational geometry, computational optics, wireless network analysis; cf.,
e.g., [3, 4, 15, 21, 24, 26, 29] with the references therein. A basic problem is the
computation of areas and volumes of such sets, followed by the more difficult
task of computing volume and surface integrals there by suitable quadrature
formulas.

The numerical quadrature problem on intersection and union of planar disks
has been recently treated in [33, 35], providing low-cardinality algebraic formulas
with positive weights and interior nodes. Though relevant literature and soft-
ware are devoted to the computation of volumes and surface areas of arbitrary
union of balls, mainly in the molecular modelling field, there are apparently
few numerical integration codes on such domains. On the other hand, numeri-
cal integration on molecular surfaces, modelled as the surface of union of balls
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Figure 1: Compressed QMC points (red) extracted from low-discrepancy points (grey) on the
surface of ball union at degree n = 9. Left: 200 points extracted from about 8200 (3 balls),
compression ratio 43; Right: 220 points extracted from about 69000 (100 balls), compression ratio
over 300.

such as van der Waals and Solvent Accessible Surfaces, is important in several
biomolecular physics problems; cf. e.g. [1, 2, 26, 29] with the references therein.

In this paper, we contribute to fill the gap by providing compressed Quasi-
Montecarlo (QMC) formulas for volume and surface integration on union of
balls, along the lines of [16]. Such formulas preserve the approximation power
of QMC up to the best uniform polynomial approximation error of a given
degree to the integrand, but using a much lower number of sampling points; see
Figure 1 for two examples with QMC sampling compression. The key tools are
Davis-Wilhelmsen theorem on the so-called “Tchakaloff sets” for positive linear
functionals and Lawson-Hanson algorithm for NNLS, which allows to extract a
set of “equivalent” re-weighted nodes from a huge low-discrepancy sequence.

We stress that differently from [16], the present approach is able to com-
press not only QMC volume integration, but also QMC integration on compact
subsets of algebraic surfaces (in particular, the surface of a union of balls which
is a subset of a union of spheres). Notice that one of the main difficulties in
surface instances, consists in adapting the compression algorithm to work on
spaces of polynomials restricted to an algebraic variety, finding an appropriate
polynomial basis. Indeed, to our knowledge the present work is the first at-
tempt in this direction within the QMC framework. It is also worth stressing
that the method could be easily adapted to models involving arbitrary unions of
ellipsoids instead of balls, or unions of polyhedra, or even a combination of such
objects, with the advantage of avoiding difficult trackings of the complicated
resulting surface geometry.

The paper is organized as follows. In Section 2, we discuss theoretical and
computational issues of QMC compression for volume and surface integration in
R3. In Section 3 we describe our implementation, presenting several numerical
tests. The open-source codes are freely available at [17].
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2 Compressed QMC formulas

Compression of QMC formulas is nothing but a special instance of discrete
measure compression, a topic which has received an increasing attention in the
literature of the last decade, in both the probabilistic and the deterministic
setting. Indeed, several papers and some software have been devoted to the
extraction of a smaller set of re-weighted mass points from the support of a high-
cardinality discrete measure, with the constraint of preserving its moments up
to a given polynomial degree; cf., e.g., [19, 20, 25, 27, 32, 38] with the references
therein.

From the quadrature point of view, this topic has a strong connection with
the famous Tchakaloff theorem [37] on the existence of low-cardinality formulas
with positive weights. On the other hand, Tchakaloff theorem itself is contained
in a somewhat deeper but somehow overlooked result by Wilhelmsen [39] on the
the discrete representation of positive linear functionals on finite-dimensional
function spaces (which generalizes a previous result by Davis [7]). Indeed, only
quite recently this theorem has been rediscovered as a basic tool for positive
cubature via adaptive NNLS moment-matching, cf. [16, 23, 34, 36].

Theorem 1. (Davis, 1967 - Wilhelmsen, 1976) Let Ψ be the linear span of
continuous, real-valued, linearly independent functions {ϕj}j=1,...,N defined on
a compact set Ω ⊂ Rd. Assume that Ψ satisfies the Krein condition (i.e. there
is at least one f ∈ Ψ which does not vanish on Ω) and that L is a positive linear
functional on Ψ, i.e. L(f) > 0 for every f ∈ Ψ, f ≥ 0 not vanishing everywhere
in Ω.

If {Pi}∞i=1 is an everywhere dense subset of Ω, then for sufficiently large m,
the set Xm = {Pi}i=1,...,m is a Tchakaloff set, i.e. there exist weights wk > 0,
k = 1, . . . , ν, and nodes {Tk}k=1,...,ν ⊂ Xm ⊂ Ω, with ν = card({Tk}) ≤ N ,
such that

L(f) =

ν∑
k=1

wkf(Tk) , ∀f ∈ Ψ . (1)

As an immediate consequence, we may state the following

Corollary 1. Let λ be a positive measure on Ω, such that supp(λ) is determin-
ing for Pd

n(Ω), the space of total-degree polynomials of degree not exceeding n,
restricted to Ω (i.e., a polynomial in Pd

n(Ω) vanishing there vanishes everywhere
on Ω). Then the thesis of Theorem 1 holds for L(f) =

∫
Ω
f dλ.

Indeed, the integral of a nonnegative and not everywhere vanishing poly-
nomial f ∈ Pd

n(Ω) must be positive (otherwise f would vanish on supp(λ)).
Observe that the classical version of Tchakaloff theorem corresponds to

L(f) = LINT(f) =

∫
Ω

f(P ) dP ,

with Ψ = Pd
n(Ω) and

N = Nd
n = dim(Pd

n(Ω)) . (2)
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From now on we shall concentrate on the 3-dimensional case (d = 3), though
most considerations could be extended in general dimension. Notice that the for-
mulation of Davis-Wilhelmsen theorem is sufficiently general to include volume
integrals, i.e. Ω is the closure of a bounded open set and N = dim(Pd

n(R3)) =(
n+3
3

)
= (n+1)(n+2)(n+3)/6, as well as surface integrals on compact subsets

of an algebraic variety (in this case dP = dσ for the surface measure). In the
latter case the dimension of the polynomial space could collapse, for example
with Ω = S2 ⊂ R3 we have N = (n+ 1)2 <

(
n+3
3

)
= (n+ 1)(n+ 2)(n+ 3)/6.

On the other hand, Wilhelmsen theorem can also be applied to a discrete
functional like a QMC formula applied to f ∈ C(Ω)

L(f) = LQMC(f) =
µ(Ω)

M

M∑
i=1

f(Pi) ≈
∫
Ω

f(P ) dP , (3)

where
XM = {Pi}i=1,...,M , M > N ,

is a low-discrepancy sequence on Ω, and µ(Ω) can be either a volume or a surface
area. Typically one generates a low-discrepancy sequence of cardinality say M0

on a bounding box or bounding surface B ⊇ Ω, from which the low-discrepancy
sequence on Ω is extracted by a suitable in-domain algorithm. We observe that
if µ(Ω) is unknown or difficult to compute (as in the case of union of balls), it
can be approximated as µ(Ω) ≈ µ(B)M/M0.

Positivity of the functional for f ∈ Ψ = P3
n(Ω) is ensured whenever the set

XM is P3
n(Ω)-determining, i.e. polynomial vanishing there vanishes everywhere

on Ω, or equivalently dim(P3
n(XM )) = N = dim(P3

n(Ω)), or even

rank(VM ) = N , (4)

where
VM = V (n)(XM ) = [ϕj(Pi)] ∈ RM×N (5)

is the corresponding rectangular Vandermonde-like matrix. Notice that, XM

being a sequence, for every k ≤ M we have that

Vk = V (n)(Xk) = [(VM )ij ] , 1 ≤ i ≤ k , 1 ≤ j ≤ N . (6)

The full rank requirement for VM is not restrictive, in practice. In the case of
volume integrals, i.e. when Ω is a three-dimensional domain (a union of balls in
the present context), the probability that det(VN ) = 0 dealing with uniformly
distributed points is null, as recently proved in [8]. The same holds true for
integration on smooth surfaces admitting an analytic parametrization, cf. [18].
Though the present surface context corresponds to a more complicated instance,
since the surface of a union of balls has singularities, we have still numerical evi-
dence that the full rank requirement is always satisfied, working with uniformly
distributed points with respect to the surface measure (see Remark 1 below).
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By Theorem 1, when M ≫ N we can then try to find a Tchakaloff set Xm,
with N ≤ m < M , such that a sparse nonnegative solution vector u exists to
the underdetermined moment-matching system

V t
mu = p = V t

Me , e =
µ(Ω)

M
(1, . . . , 1)t . (7)

In practice, we solve (7) via Lawson-Hanson active-set method [22] applied
to the NNLS problem

min
u≥0

∥V t
mu− p∥2 , (8)

accepting the solution when the residual size is small, say

∥V t
mu− p∥2 < ε (9)

where ε is a given tolerance. The nonzero components of u then determine the
nodes and weights of a compressed QMC formula extracted from Xm, that is
{wk} = {ui : ui > 0} and {Tk} = {Pi : ui > 0}, giving

L∗
QMC(f) =

ν∑
k=1

wkf(Tk) , ν ≤ N ≪ M , (10)

where L∗
QMC(f) = LQMC(f) for every f ∈ P3

n(Ω).
Notice that existence of a representation like (10) for m = M is ensured

by Caratheodory theorem on finite-dimensional conic combinations, applied to
the columns of V t

M (cf. [27] for a full discussion on this point in the general
framework of discrete measure compression). In such a way, however, we would
have to work with a much larger matrix, that is we would have to solve directly

min
u≥0

∥V t
Mu− p∥2 . (11)

On the contrary, solving (8) on an increasing sequence of smaller problems
m := m1,m2,m3, . . . with m1 < m2 < m3 < · · · ≤ M ,

min
u≥0

∥V t
mj

u− p∥2 , j = 1, 2, 3, . . . , m1 ≥ N , (12)

corresponding to increasingly dense subsets Xm1 ⊂ Xm2 ⊂ · · · ⊆ XM (say,
“bottom-up”), until the residual becomes sufficiently small, could substantially
lower the computational cost. Indeed, as shown in [16] for volume integrals,
with a suitable choice of the sequence {mj} the residual becomes extremely
small in few iterations, with a final extraction cardinality much lower than M .

Concerning the approximation power of QMC compression, following [16] it
is easy to derive the following error estimate

|L∗
QMC(f)− LINT(f)| ≤ EQMC(f) + 2µ(Ω)En(f ;X)

≤ EQMC(f) + 2µ(Ω)En(f ; Ω) , (13)
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valid for every f ∈ C(Ω), where EQMC(f) = |LQMC(f)−LINT(f)| and En(f ;K) =
infϕ∈P3

n(K) ∥f − ϕ∥K , with ∥g∥K denoting the sup-norm of a bounded function
on the discrete or continuous compact set K.

The meaning of (13) is that the compressed QMC functional L∗
QMC retains

the approximation power of the original QMC formula, up to a quantity propor-
tional to the best polynomial approximation error to f in the uniform norm on
X (and hence by inclusion in the uniform norm on Ω). We recall that the latter
can be estimated depending on the regularity of f by multivariate Jackson-like
theorems, cf. e.g. [28] for volume integrals where Ω is the closure of a bounded
open set.

On the other hand, we do not deepen here the vast and well-studied topic of
QMC convergence and error estimates, recalling only that (roughly) the QMC
error EQMC(f) is close to O(1/M) for smooth functions, to be compared with the

O(1/
√
M) error of MC. For basic concepts and results of QMC theory like dis-

crepancy, star-discrepancy, Hardy-Krause variation, Erdös-Turán-Koksma and
Koksma-Hlawka inequalities, we refer the reader to devoted books like e.g. [14].

Remark 1. The QMC compression algorithm can be easily extended to the
case where Ω (either a volume or a surface) is the finite union of nonoverlap-
ping subsets, say Ω = ∪L

ℓ=1Ωℓ, such that sequences of low-discrepancy points
are known on bounding sets Bℓ ⊃ Ωℓ. In this case the overall QMC points
are X = ∪L

ℓ=1Yℓ, with Yℓ = {Pℓ,i}Mℓ
i=1 and M = card(X) =

∑L
ℓ=1 Mℓ, where

Yℓ are the low-discrepancy points of Bℓ lying in Ωℓ. We stress that the low-
discrepancy points have to be chosen alternatively in order to produce an evenly
distributed sequence XM on the whole Ω, picking the first point in each Ωℓ,
then the second point in each Ωℓ and so on, i.e. constructing the sequence
{P1,1, P2,1, . . . , PL,1, P1,2, P2,2, . . . , PL,2, . . .}.

Moreover, by additivity of the integral the QMC functional becomes

LQMC(f) =

L∑
ℓ=1

Mℓ∑
i=1

wℓ,if(Pℓ,i) ≈
L∑

ℓ=1

∫
Ωℓ

f(P ) dP =

∫
Ω

f(P ) dP , (14)

where wℓi = µ(Ωℓ)/Mℓ, i = 1, . . . ,Mℓ, and hence the QMC moments in (7) have
to be computed with such weights.

3 Implementation and numerical tests

In order to show the effectiveness of the bottom-up compression procedure de-
scribed in the previous section, we briefly sketch a possible implementation and
we present some numerical tests for both, volume and surface integration on
arbitrary union of balls.

Indeed, we compare “Caratheodory-Tchakaloff” compression of multivariate
discrete measures as implemented in the general-purpose package dCATCH [13],
with the bottom-up approach. All the tests have been performed with a CPU
AMD Ryzen 5 3600 with 48 GB of RAM, running Matlab R2022a. The Matlab
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codes and demos, collected in a package named Qbubble, are freely available at
[17].

Below, we first give some highlights on the main features of the implemented
algorithm. These are essentially:

• for volume integrals we simply take Halton points of the smaller bounding
box

[a1, b1]× [a2, b2]× [a3, b3] ⊃ Ω

and select those belonging to Ω; for surface integrals we follow the pro-
cedure sketched in Remark 1, taking on each sphere Bℓ low-discrepancy
mapped Halton points by an area preserving transformation (see (19) in
Section 3.2 below), and then selecting those belonging to the surface;

• in view of extreme ill-conditioning of the standard monomial basis, we
start from the product Chebyshev total-degree basis of the smaller bound-
ing box for Ω (for either volumes or surfaces), namely

pj(x, y, z) = Tα1(j) (σ1(x))Tα2(j) (σ2(y))Tα3(j) (σ3(z)) , j = 1, . . . , J ,

where J = (n + 1)(n + 2)(n + 3)/6, σi(t) = 2t−bi−ai

bi−ai
, i = 1, 2, 3, and

j 7→ α(j) corresponds to the graded lexicographical ordering of the triples
α = (α1, α2, α3), 0 ≤ α1 + α2 + α3 ≤ n;

• for surface integrals we determine a suitable polynomial basis by comput-
ing the rank and then possibly performing a column selection by QR fac-
torization with column pivoting of the trivariate Chebyshev-Vandermonde
matrix;

• in order to cope with ill-conditioning of the Vandermonde-like matrices
Vmj

(that increases with the degree), we perform a single QR factorization
with column pivoting Vmj

= Qmj
Rmj

to construct an orthogonal polyno-
mial basis w.r.t. the discrete scalar product ⟨f, g⟩Xmj

=
∑mj

i=1 f(Pi)g(Pi)

and substitute Vmj by Qmj in (12); consequently the QMC moments p in
(7) have to be modified into (R−1

mj
)tp (via Gaussian elimination);

• the (modified) bottom-up NNLS problems (12) are solved by the recent im-
plementation of Lawson-Hanson active-set method named LHDM, based
on the concept of “Deviation Maximization” instead of “column pivoting”
for the underlying QR factorizations, since it gives experimentally a speed-
up of at least 2 with respect to the standard Matlab function lsqnonneg

(cf. [9, 11, 12]).

In the next subsections we present several numerical tests, to show the effec-
tiveness of the bottom-up approach for volume and surface QMC compression
on union of balls.
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3.1 Volume integration on union of balls

In this subsection we consider volume integration on union of balls, namely

Ω =

s⋃
j=1

B(Cj , rj) (15)

where B(Cj , rj) ⊂ R3 is the closed 3-dimensional ball with center Cj and radius
rj . Here we generate a sequence of Halton points in the smallest Cartesian
bounding box for Ω and, then, we select those belonging to the union, say
X = {Pi}, simply by checking that ∥Pi − Cj∥2 ≤ rj for some j.

More precisely, we consider the following (see Figure 1)

• first example: union of the 3 balls with centers C1 = (0, 0, 0), C2 =
(0, 1.3,−0.2), C3 = (2.5, 0, 1) and radii r1 = 1.4, r2 = 0.9, r3 = 1, respec-
tively;

• second example: union of 100 balls with randomly chosen and then fixed
centers in [0, 2]3 and radii in [0, 2, 0.6].

The results concerning application of the bottom-up approach are collected
in Table 1, where we compress QMC volume integration by more than one mil-
lion of Halton points, preserving polynomial moments up to degree 3, 6, 9, 12, 15
(the moments correspond to the product Chebyshev basis of the minimal Carte-
sian bounding box for the ball union).

We start from 2,400,000 Halton points in the bounding box and we set m1 =
2N and mj+1 = 2mj , j ≥ 1. The residual tolerance is ε = 10−10. The compar-
isons of the present bottom-up compression algorithm, for short Qbu

c , are made
with a global compression algorithm that works on the full Halton sequence
XM , namely the general purpose discrete measure compressor dCATCH devel-
oped in [13], which essentially solves directly (11) by Caratheodory-Tchakaloff
subsampling as proposed in [32, 27].

In particular, we display the cardinalities and compression ratios, the cpu-
times for the construction of the low-discrepancy sequence (cpu Halton seq.) and
those for the computation of the compressed rules, where the new algorithm
shows speed-ups from about 6 to more than 24 in the present degree range,
ensuring moment residuals always below the required tolerance in at most 3
iterations. It is worth stressing a phenomenon already observed in [16], that
is possible failure of QdCATCH

c which in some cases give much larger residuals
than Qbu

c .
In order to check polynomial exactness of the QMC compressed rules, in

Figure 2 we show the relative QMC compression errors and their logarithmic
averages (i.e. the sum of the log of the errors divided by the number of trials)
over 100 trials of the polynomial

g(P ) = (ax+ by + cz + d)n , P = (x, y, z) (16)
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where a, b, c, d are uniform random variables in [0, 1]. Moreover, in Table 2
we show the integration relative errors on three test functions with different
regularity, namely

f1(P ) = |P −P0|5 , f2(P ) = cos(x+ y+ z) , f3(P ) = exp(−|P −P0|2) (17)

where P0 = (0, 0, 0) ∈ Ω, the first being of class C4 with discontinuous fifth
derivatives whereas the second and the third are analytic. The reference values
of the integrals have been computed by a QMC formula starting from 108 Halton
points in the bounding box.

We see that the compressed formulas on more than one million points show
errors of comparable order of magnitude, that as expected from estimate (13)
decrease while increasing the polynomial compression degree until they reach a
size close to the QMC error.

deg 3 6 9 12 15

card. QMC M = 1,128,709

card. QdCATCH
c 20 84 220 452 806

card. Qbu
c 20 84 220 455 816

compr. ratio 5.6e+04 1.3e+04 5.1e+03 2.5e+03 1.4e+03

cpu Halton seq. 9.0e-01s

cpu QdCATCH
c 3.4e+00s 1.9e+01s 4.9e+01s 1.4e+02s 3.1e+02s

cpu Qbu
c 2.2e-01s 9.0e-01s 2.4e+00s 5.7e+00s 2.6e+01s

speed-up 15.4 21.1 20.5 24.4 11.9

mom. resid. QdCATCH
c 8.9e-12 8.9e-12 8.9e-12 ⋆ 5.1e-06 ⋆ 1.1e-05

mom. resid. Qbu
c

iter. 1 4.55e-16 1.51e-02 1.63e-01 3.81e-01 7.12e-01
iter. 2 1.12e-15 1.85e-15 3.62e-15 8.06e-15

deg 3 6 9 12 15

card. QMC M = 1,195,806

card. QdCATCH
c 20 83 220 450 795

card. Qbu
c 20 84 220 455 816

compr. ratio 5.6e+04 1.3e+04 5.1e+03 2.8e+03 1.5e+03

cpu Halton seq. 1.3e+00s

cpu QdCATCH
c 3.4e+00s 2.3e+01s 6.5e+01s 1.5e+02s 3.7e+02s

cpu Qbu
c 2.5e-01s 8.7e-01s 2.6e+00s 9.5e+00s 6.7e+01s

speed-up 13.8 26.6 25.0 15.7 5.6

mom. resid. QdCATCH
c 1.1e-11 ⋆ 1.2e-05 1.1e-11 ⋆ 5.6e-05 ⋆ 7.3e-05

mom. resid. Qbu
c

iter. 1 2.08e-16 9.41e-02 4.99e-01 1.51e+00 1.78e+00
iter. 2 1.32e-15 2.20e-15 4.72e-15 8.30e-02
iter. 3 7.32e-15

Table 1: Compression of QMC volume integration on the union of 3 balls (top) and 100 balls
(bottom), in a bounding box with 2,400,000 Halton points.
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3 6 9 12 15
10-11

10-10

10-9

Polynomial integrals matching between QMC and CQMC_v2

(a)

3 6 9 12 15
10-11

10-10

10-9

10-8

10-7

10-6

10-5
Polynomial integrals matching between QMC and dCATCH

(b)

3 6 9 12 15
10-11

10-10

Polynomial integrals matching between QMC and CQMC_v2

(c)

3 6 9 12 15
10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4
Polynomial integrals matching between QMC and dCATCH

(d)

Figure 2: QMC compression relative errors and their logarithmic average (circles) over 100 trials
of random polynomials for the bottom-up algorithm (left) and dCATCH (right) on the union of 3
balls (top) and 100 balls (bottom). Note that the scales of the left and right figure are different.
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deg 3 6 9 12 15

EQMC(f1) 3.5e-04

EdCATCH(f1) 1.3e-01 3.4e-04 3.5e-04 3.5e-04 3.5e-04

Ebu(f1) 2.3e-03 3.2e-04 3.5e-04 3.5e-04 3.5e-04

EQMC(f2) 7.3e-04

EdCATCH(f2) 2.4e+00 7.0e-02 4.3e-03 7.3e-04 7.3e-04

Ebu(f2) 7.5e-01 3.7e-03 4.8e-04 7.4e-04 7.3e-04

EQMC(f3) 8.7e-05

EdCATCH(f3) 7.1e-01 1.4e-01 9.4e-03 2.1e-03 1.1e-04

Ebu(f3) 5.8e-01 2.8e-02 1.5e-02 9.5e-04 2.5e-05

deg 3 6 9 12 15

EQMC(f1) 1.1e-04

EdCATCH(f1) 8.3e-02 8.8e-05 1.1e-04 1.1e-04 1.1e-04

Ebu(f1) 1.7e-03 9.8e-05 1.1e-04 1.1e-04 1.1e-04

EQMC(f2) 1.7e-04

EdCATCH(f2) 2.9e-01 8.7e-04 1.6e-04 1.7e-04 1.7e-04

Ebu(f2) 5.6e-02 1.5e-04 1.7e-04 1.7e-04 1.7e-04

EQMC(f3) 2.2e-04

EdCATCH(f3) 2.3e-01 2.3e-03 8.4e-04 2.3e-04 2.2e-04

Ebu(f3) 6.1e-03 3.6e-03 1.2e-04 2.3e-04 2.2e-04

Table 2: Errors of compressed QMC volume integration on the union of 3 balls (top) and 100
balls (bottom); the reference values are computed via QMC starting from 108 Halton points in the
bounding box.

3.2 Surface integration on union of balls

We turn now to surface integration, on a domain Ω that is the boundary of an
arbitrary union of balls, namely

Ω = ∂

s⋃
j=1

B(Cj , rj) =

s⋃
j=1

∂B(Cj , rj)\
s⋃

j=1

◦
B(Cj , rj) , (18)

i.e. the set of all points lying on some sphere ∂B(Cj , rj), j = 1, . . . , s, but not
internally to any of the balls B(Ck, rk), k ̸= j. We present two examples, corre-
sponding to the same centers and radii considered above for volume integration,
i.e. the surface of the union of 3 balls and of 100 balls in Section 3.1. Notice
that Ω is a subset of an algebraic surface, i.e. the union of the corresponding
spheres. Though the polynomial spaces dimension could be computed theoreti-
cally by algebraic geometry methods (cf., e.g., [6]), we do not enter this delicate
matter here, since the algorithm computes numerically such a dimension by a
rank revealing approach on a Vandermonde-like matrix.

In this case we have applied the extension discussed in Remark 1, construct-
ing an evenly distributed sequence XM on the whole Ω by taking a large number
of low discrepancy points on each sphere ∂B(Cj , rj), and then selecting those
belonging to the portions of the sphere that contribute to the surface of the
union, that are those not internal to any other ball. Namely, we have taken on
each sphere the mapped Halton points from the rectangle [−1, 1]× [0, 2π] by the
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area preserving transformation

(t, ϕ) 7→ Cj + rj(
√

1− t2 cos(ϕ),
√
1− t2 sin(ϕ), t) , (19)

which preserves also the low-discrepancy property. The points are finally or-
dered by picking alternatively one point per active portion of the surface of the
union, with a local weight attached to each point. An illustration of compressed
points extracted starting from 4000 mapped Halton points on each sphere is
given in Figure 1.

In Table 3 we report for this surface integration examples the same quan-
tities appearing in Table 1 for the volume integration, where we use again the
dCATCH code in [12] to compress the QMC formula on the whole XM , since
also that algorithm was conceived to work with polynomial spaces possibly re-
stricted to algebraic surfaces. Here we start from 500,000 mapped Halton points
on each sphere in the 3 balls example, and from 60,000 in the 100 balls instance,
obtaining a sequence of about one million low-discrepancy points on the cor-
responding ball union surfaces. As before we set mj+1 = 2mj , j ≥ 1 with
m1 = 2N and ε = 10−10.

Again we get impressive compression ratios, and speed-ups varying from
about 5 to more than 16. Moreover, the bottom-up algorithm gives always a
residual below the given tolerance, whereas dCATCH turns out to be more
prone to failure (see the residuals for degree n = 15 in the example with 3 balls
and degrees n = 9, 15 in the example with 100 balls).

The logarithmic average errors concerning surface integration of the random
polynomial (16), restricted to the boundary of the union, are plotted in Figure
3. In Table 4 we show the surface integration errors for the three test functions
in (17), where P0 is a suitably chosen point on the surface of the ball union. We
see again that the compressed formulas on more than one million points show
errors of comparable order of magnitude, that as expected from estimate (13)
decrease while increasing the polynomial compression degree, until they reach
a size close to the QMC error.
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