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Abstract

We show that Lasserre measure-based hierarchies for polynomial opti-

mization can be implemented by directly computing the discrete minimum

at a suitable set of algebraic quadrature nodes. The sampling cardinality

can be much lower than in other approaches based on grids or norm-

ing meshes. All the vast literature on multivariate algebraic quadrature

becomes in such a way relevant to polynomial optimization.
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1 Introduction

In the seminal paper [12], Lasserre proposed a new paradigm for the computa-
tion of the minimum of a polynomial on a multidimensional compact set, based
on minimizing the expectation with respect to sets of probability measures whose
densities are SOS (Sum of Squares) polynomials.

Since the problem can be ultimately rewritten as a semidefinite program,
which in turn is equivalent by duality to a matrix eigenvalue problem, we report
the following fundamental result that best summarizes the construction from the
point of view of the present paper (cf. [7, 8] with the references therein).

In what follows we shall denote by P
n
d (K) the space of real n-variate poly-

nomials of total degree not exceeding d, restricted to a polynomial determining
compact set K ⊂ R

n (i.e., polynomials vanishing there vanish everywhere), with
dimension N = N(d, n) = dim(Pn

d (K)) =
(

d+n
n

)

.

Theorem 1 Let K ⊂ R
n be a compact set with nonempty interior, µ a finite

Borel measure supported by K, and {pj}, 1 ≤ j ≤ N , a (degree ordered) µ-
orthonormal basis for P

n
d (K), that is span{pj , 1 ≤ j ≤ N(r, n)} = P

n
r (K),

∗Work partially supported by the DOR funds and the biennial project BIRD163015 of the

University of Padova, and by the GNCS-INdAM. This research has been accomplished within

the RITA “Research ITalian network on Approximation”.
1corresponding author: marcov@math.unipd.it

1



0 ≤ r ≤ d, and
∫

K
pj(x) pk(x) dµ = δjk (to fix ideas, the standard monomial ba-

sis with the degree lexicographical order, orthonormalized by the Gram-Schmidt
process). Moreover, let f be a fixed n-variate polynomial, fmin its global mini-
mum on K, and A the N ×N symmetric matrix

Af = (ah,k) , ah,k =

∫

K

f(x) ph(x) pk(x) dµ , 1 ≤ h, k ≤ N . (1)

Then, the sequence f sos
d = λmin(Af ) (the minimal eigenvalue of Af ) is

nonincreasing and

lim
d→∞

Ed = 0 , Ed = f sos
d − fmin ≥ 0 . (2)

Moreover, if µ is the Lebesgue measure then Ed = O(1/
√
d) for compact sets

satisfying an interior cone condition (cf. [10]) and Ed = O(1/d) for convex
bodies (cf. [7]), whereas Ed = O(1/d2) if K = [−1, 1]n and µ is the Chebyshev
measure (cf. [8]; see also Table 1 in [5] for a summary).

From the algorithmic point of view, one may think to compute the matrixAf ,
and then its minimal eigenvalue by standard numerical linear algebra algorithms
[15], in order to approximate the global minimum of a polynomial. In the case of
the Chebyshev measure on [−1, 1]n, the elements of Af are known analytically,
as soon as one has at hand the coefficients of representation of f in the n-variate
Chebyshev basis of degree deg(f); cf. [9].

It should be recalled that the general setting of the method does not require
a µ-orthonormal basis, since f sos

d turns out to be the minimal generalized eigen-
value of the couple (Af , G), where G is the Gram matrix of the chosen basis.
For example, using the ordered monomial basis, the elements of Af and G can
be computed by the standard moments of µ on K; cf. [8].

Alternatively, when available one may think to use an algebraic quadrature
formula for µ onK with degree of exactness 2d+deg(f), to compute the elements
of Af and G, or simply of Af when a µ-orthonormal basis is at hand.

However, as we show in the next section, in a quadrature-type approach
knowing orthonormal bases as well as computing matrices and minimal eigen-
values is ultimately not necessary. In fact, simply resorting to the existence of a
µ-orthonormal basis (which always holds in view of the Gram-Schmidt process),
we shall prove that the discrete minimum of f on the quadrature nodes directly
gives a convergent approximation to the global minimum, say f quadr

d such that

fmin ≤ f quadr
d ≤ f sos

d .

2 Quadrature-based optimization

The main result of the present paper is summarized by the following:

Theorem 2 Let K and µ as in Theorem 1, f a polynomial and d0 = deg(f).
Given a sequence of algebraic quadrature formulas {(xi(r), wi(r))} with nodes
xi(r) ∈ K and positive weights wi(r), 1 ≤ i ≤ M(r), r ≥ 0, namely

M(r)
∑

i=1

wi(r) p(xi(r)) =

∫

K

p(x) dµ , ∀p ∈ P
n
r (K) , (3)
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then the discrete minimum

f quadr
d = min{f(xi(rd)) , 1 ≤ i ≤ M(rd)} , rd = 2d+ d0 , (4)

is such that fmin ≤ f quadr
d ≤ f sos

d and hence it converges to fmin as d → ∞,
with an error bounded by Ed in (2).

Remark 1 Before proving the theorem, an observation is in order. In general,
the sequence of discrete minima f quadr

d is not monotonic. But if we use a
sequence of nested quadrature formulas, that is {(xi(r)} ⊂ {(xi(r + 1)}, then
f quadr
d becomes nonincreasing like f sos

d .

Proof of Theorem 2. For a fixed d, consider the degree ordered µ-orthonormal
basis {pj} of P

n
d (K), 1 ≤ j ≤ N , obtained by applying the Gram-Schmidt

orthonormalization process to the standard monomial basis with the degree
lexicographical order.

Consider now the M × N (rectangular) Vandermonde-like matrix in the
orthonormal basis computed at the quadrature nodes {xi(rd)}, namely V =
(pj(xi(rd))), 1 ≤ i ≤ M = M(rd), 1 ≤ j ≤ N (observe that M ≥ N by
the well-known Möller’s lower bound in multivariate quadrature theory, namely
M(r) ≥ dim(Pn

⌈r/2⌉(K)), cf. [13]).

By exactness of the quadrature formula we can write (for notational simplic-
ity we drop the dependence of nodes and weights on rd)

ak,h =

∫

K

f(x) pk(x) ph(x) dµ =

M(rd)
∑

i=1

wi f(xi) pk(xi) ph(xi) ,

which with in matrix form becomes

Af = V tDwDfV = (
√

DwV )tDf (
√

DwV ) = QtDfQ ,

where Dw and Df are the diagonal M ×M matrices of the weights and of the
values of f at the nodes, respectively, and the matrix Q =

√
DwV is orthogonal

by µ-orthonormality of the polynomial basis and exactness of the formula at
degree 2d+ d0 ≥ 2d. Indeed, for a general basis QtQ = G, the Gram matrix of
the basis with respect to (the scalar product associated with) the measure µ.

Recalling the notion of Rayleigh quotient of a symmetric matrix C and its
properties (cf. [15])

RC(v) = vtCv/vtv , v 6= 0 ,

setting y = Qv and observing that yty = vtv by orthogonality of Q, we get

f sos
d = λmin(Af ) = min

v∈RN
RAf

(v) = min
y∈S

RDf
(y)

≥ min
y∈RM

RDf
(y) = min

1≤i≤M
f(xi) = f quadr

d ≥ fmin ,

where S ⊂ R
M is the subspace spanned by the columns of Q. Observe that

the same reasoning applied to the max, gives the chain of interval inclusions
[λmin(Af ), λmax(Af )] ⊇ [min1≤i≤M f(xi),max1≤i≤M f(xi)] ⊇ [fmin, fmax]. �
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Remark 2 We have just given a proof of Theorem 2 based on the spectral
features of the matrix Af . An even simpler proof (that has been suggested
by an anonymous referee who we wish to thank) can be directly obtained by
resorting to the original definition of Lasserre’s measure-based bound, namely

f sos
d = min

{
∫

K

f(x) q(x) dµ :

∫

K

q(x) dµ = 1 , q ∈ sos , deg(q) ≤ 2d

}

, (5)

where q ∈ sos means that q is a sum of squares of polynomials. Indeed, let q∗ be
an optimal sos polynomial for the definition (5) of f sos

d . Using the quadrature
rule {(xi(rd), wi(rd))} which is exact for integrating polynomials of degree at
most 2d+ d0, we get

∫

K

f(x) q∗(x) dµ =

M(rd)
∑

i=1

wi(rd) f(xi(rd)) q
∗(xi(rd))

≥ f quadr
d

M(rd)
∑

i=1

wi(rd) q
∗(xi(rd)) = f quadr

d

∫

K

q∗(x) dµ = f quadr
d . (6)

Observe that both the proofs work only for positive weights.

Though the proofs of Theorem 2 are elementary (given Theorem 1 that
relies on a deep algebraic-analytic theory), the result is quite meaningful. It
says essentially that:

• the nodes of any positive algebraic quadrature formula for any finite Borel
measure supported by any compact set K (with nonempty interior), in any
dimension, are good discrete sets to approximate the extremal values of a
polynomial on K.

As a consequence, all the vast theoretical and computational literature on
multivariate positive algebraic quadrature over domains with different geome-
tries, becomes now relevant to polynomial optimization; with no pretence of
exhaustivity see, e.g., the classical survey papers [3, 4], and the more recent
[11, 14, 20, 22, 26], with the references therein.

In practice, Theorem 2 shows that the quadrature-based approach to poly-
nomial optimization is a discrete sampling method. The convergence rates are
(at least) those of the corresponding Lasserre measure-based hierarchies, which
up to now have been estimated only for special classes of compact sets and
special measures (see the last statement in Theorem 1).

Several sampling methods based on grids or norming meshes have been stud-
ied in the recent literature, cf. e.g. [6, 17, 18, 25, 28] with the references therein.
An interesting feature of quadrature-based optimization is that the cardinality
of the quadrature formulas needed to ensure a given error size, can be much
lower than the cardinality of the relevant optimization grids or meshes.

Consider for example box-constrained minimization on the Chebyshev norm-
ing grids studied in [17], where it is proved that an error O(1/s2) is obtained
with approximately (sd0)

n Chebyshev sampling points, that is a cardinality
O((d0/

√
ε)n) is needed to guarantee an error size ε.

On the contrary, using a product Gaussian formula for the Chebyshev mea-
sure, which has degree of exactness 2d+d0 with approximately (d+d0/2)

n points,
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we get an error size ε with only O((1/
√
ε)n) Chebyshev sampling points. Since

for both norming sets and quadrature we are using Chebyshev grids, this could
partially explain why the actual errors in the numerical examples of [17] turn
out to be much lower than the prescribed tolerance.

Remark 3 Observe that both, the norming grid approach and the product
Gaussian formula approach, have an exponential computational complexity in
n for fixed degree d. On the contrary, the complexity of computing the measure-
based bound is polynomial in n for fixed d, since it reduces to computing
the minimal eigenvalue of a matrix of size O(nd); cf. [12]. The latter prop-
erty holds however only if the matrix Af is explicitly known (or computable
with a polynomial complexity). This is the case when the integrals of prod-
ucts of basis polynomial triplets pi(x) pj(x) pk(x) are known analitycally, such
as for example with the product Chebyshev measure of the cube, as well as
the coefficients of f in the basis; cf. [9]. Indeed, if f =

∑

k ck pk(x), then
aij =

∑

k ck
∫

K
pi(x) pj(x) pk(x) dµ.

Clearly, positive quadrature formulas with low cardinality M(r) at a given
degree of exactness r are of great interest in view of efficiency, also in the present
optimization context. The existence of minimal formulas, i.e. formulas that
attain Möller’s lower cardinality bound M(r) ≥ dim(Pn

⌈r/2⌉(K)), is still an open
problem not only for general domains and measures but even in standard cases
(e.g., the Lebesgue measure in the cube), except very few instances; cf., e.g.,
[4, 13, 27].

On the other hand, existence of formulas with positive weights satisfying
the bound M(r) ≤ dim(Pn

r (K)) is guaranteed on any domain and measure by
Tchakaloff Theorem, originally proved for the Lebesgue measure [24], and then
extended to general measures (cf., e.g., [19]). Though the proofs of Tchakaloff
Theorem are typically nonconstructive, when an algebraic quadrature formula
of higher cardinality is already known it is a direct consequence of Caratheodory
Theorem on finite-dimensional conical combinations [2], applied to the columns
of the corresponding underdetermined moment system. Moreover, it can be
conveniently implemented, at least in low dimension, by extracting a subset of
re-weighted nodes via Linear or Quadratic Programming; cf. [16, 20, 22] for
a discussion on the theoretical and computational aspects of such “quadrature
compression” methods.

In order to make some numerical examples, we work out the minimization of
two classical bivariate test polynomials of degree d0 = 4, namely the Styblinski-
Tang function

f1(x1, x2) =

2
∑

i=1

(

1

2
(10xi − 5)4 − 8(10xi − 5)2 +

5

2
(10xi − 5)

)

, (7)

whose global minimum in [0, 1]2 is f1(0.209, 0.209) = −78.33198, and the Rosen-
brock function

f2(x1, x2) = 100(4.096x2−2.048−(4.096x1−2.048)2)2+(4.096x1−3.048)2 , (8)

whose minimum is f2
(

3048
4096 ,

3048
4096

)

= 0. The maxima are f1(1, 1) = 250 and
f2(0, 0) = 3905.93; cf. [10].
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In the first example we take K = [0, 1]2 and the (transformed) bivariate
Chebyshev measure dµ = 1

4 ((1 − t21)(1 − t22))
−1/2dx1dx2, ti = 2xi − 1; in this

case by Theorem 1 the error of Lasserre upper bound is Ed = O(1/d2). As
quadrature points of exactness degree 2d+d0 = 2d+4 = 2(d+2) we choose the
(transformed) Padua Points of degree d+3, which give a near-minimal positive
formula for the Chebyshev measure with cardinality (d + 4)(d + 5)/2, Möller’s
lower bound being (d+3)(d+4)/2 (incidentally, this property is one of the key
features to prove that they are an optimal set for polynomial interpolation on
the square; cf. [1]). See Figure 1-top for an idea of the distribution of the Padua
Points, which are essentially the union of two Chebyshev-Lobatto subgrids.

In Figure1-bottom we display the relative gaps (f quadr
d −fmin)/(fmax−fmin)

for d = 1, 2, . . . , 200, which oscillate since the quadrature formula at the Padua
Points is not nested, but exhibit as expected a decay of order O(1/d2).

In the second example K ⊂ [0, 1]2 is a convex polygon, whereas in the third
it is a nonconvex polygon, both containing the minimum and maximum points
of f1 and f2 in [0, 1]2, and dµ = dx1dx2 is the Lebesgue measure; see Figures 2
and 3. Here we start from a high-cardinality quadrature formula for polygons
obtained via triangulation [21], and then compress it into (2d + 5)(2d + 6)/2
Tchakaloff Points with exactness degree 2d + 4, by the algorithm in [22]. We
stress that existence of a minimal (or near-minimal) formula is not known in
these cases, and even existing its computation would be quite challenging.

On the other hand, also computation of Tchakaloff Points, which requires
a sparse nonnegative solution of a very large underdetermined moment system
(the number of rows is the dimension of the exactness polynomial space, the
number of columns the cardinality of the starting quadrature formula), though
based on Linear or Quadratic Programming, is a costly procedure which can
work essentially in low dimension; cf. [16]. It should be stressed, however, that
the Tchakaloff Points, like the nodes of any algebraic quadrature formula, are
independent of the polynomial to be minimized, and can be computed once and
for all on a given compact set.

In Figures 2 and 3 (bottom) we report the relative gaps corresponding to
nested Tchakaloff Points of increasing degree of exactness (cf. [23] for the com-
putation of nested formulas, in the Least Squares approximation framework).
We can see that the gaps are, differently from the previous example, a nonin-
creasing sequence (with possible long constant pieces), a quite natural behavior
due to the nested structure.

A final observation is in order. As already pointed out with other discrete ap-
proaches based on grids or norming meshes, polynomial optimization by quadra-
ture points can be viewed as a sort of brute-force approach, that could be useful
when only a rough estimate of the extremal values is needed, or as starting guess
for more sophisticated optimization algorithms.

Conclusions. We have shown that Lasserre’s measure based hierarchies for
polynomial optimization can be implemented by discrete minimization at the
nodes of any positive algebraic quadrature formula. This is, to our knowl-
edge, the first application of quadrature theory within polynomial optimization
theory. In this framework, the use of minimal (if feasible) or more generally
low-cardinality formulas is of great interest.
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Figure 1: top: 45 Padua Points of exactness degree 14 (d = 5); bottom: relative
gap of approximate minimization at the Padua Points and best fitting by α/d2

(upper graph: f1, α = 12.78; lower graph: f2, α = 0.056).
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Bull. Sci. Math. 81 (1957), 123–134.

[25] M. Vianello, Subperiodic Dubiner distance, norming meshes and trigono-
metric polynomial optimization, Optim. Lett. 12 (2018), 1659–1667 .

[26] H. Xiao and Z. Gimbutas, A numerical algorithm for the construction of
efficient quadrature rules in two and higher dimensions, Comput. Math.
Appl. 59 (2010), 663–676.

[27] Y. Xu, Minimal cubature rules and polynomial interpolation in two vari-
ables, J. Approx. Theory 164 (2012), 6–30.

[28] J.F. Zhang and C.P. Kwong, Some applications of a polynomial inequality
to global optimization, J. Optim. Theory Appl. 127 (2005), 193–205.

10

http://www.math.unipd.it/~alvise/software.html

	Introduction
	Quadrature-based optimization

