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Abstract

We make a further step in the open problem of unisolvence for unsymmetric Kansa collocation, proving
that the MultiQuadric Kansa method with fixed collocation points and random fictitious centers is almost
surely unisolvent, for stationary convection-diffusion equations with mixed boundary conditions on general
domains. For the purpose of illustration, the method is applied in 2D with fictitious centers that are local
random perturbations of predetermined collocation points.
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1. Introduction

In the recent paper [15] a further step has been made in the open problem of unisolvence for unsymmetric
Kansa collocation, proving that collocation matrices for elliptic equations by Polyharmonic Splines (without
polynomial addition) with fixed collocation points and random fictitious centers are almost surely invertible.
Domains and boundary conditions are general (mixed type). The proving technique (by induction on
determinants) is based on the fact that Polyharmonic Splines are real analytic but have a singularity at the
center, that can be exploited to prove the key property of linear independence of the functions involved in
collocation.

In the present note we extend such unisolvence result to the case of Kansa collocation by Multiquadrics,
widely studied and applied after the pioneering work of E.J. Kansa [8, 9]; cf. e.g. [4, 6, 13, 18] with the
references therein. The proof is more difficult with respect to Polyharmonic Splines, since MultiQuadrics are
everywhere analytic so real singularities cannot be exploited to prove linear independence of the involved
functions. Indeed, we have to resort to a complex embedding in order to to exploit the presence of complex
singularities.

We prove the result for stationary convection-diffusion equations on general domains with mixed Dirichlet-
Neumann boundary conditions. A key aspect is that the centers are kept distinct from the collocation points
and randomly chosen, so that the framework is different from [1, 5] where the classical (but tricky) case
of random collocation points coinciding with the centers was considered, for the Poisson equation with
purely Dirichlet boundary conditions. Indeed, the present framework allows to include in a simple way the
Neumann conditions.

Moreover, the fictitious centers are any continuous random vector, so that in practice they can be chosen
as local random perturbations of both the interior and the boundary fixed collocation points, ensuring in any
case almost sure unisolvence of the collocation process. The collocation points can be taken deterministically,
for example with a uniform or quasi-uniform distribution in the interior and on the boundary of the domain.
Determining sufficient conditions for unisolvence is relevant, since it is well-known after Hon and Schaback
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[7] that it could not hold in the purely deterministic case, but there is still a substantial lack of theoretical
results on this subject.

The paper is organized as follows. In Section 2 we give the main theoretical result, based on a quite
general lemma on unisolvence of interpolation in analytic function spaces. In Section 3 we present a couple
of numerical examples, showing the practical applicability of randomized Kansa collocation with fictitious
centers, chosen as local random perturbations of predetermined collocation points.

2. Unisolvence of MQ Kansa collocation

We consider stationary convection-diffusion equations with constants coefficients and mixed boundary
conditions  Lu(P ) = ∆u(P ) + ⟨∇u(P ), v⃗(P )⟩ = f(P ) , P ∈ Ω ⊂ Rd ,

Bu(P ) = χΓ1
(P )u(P ) + χΓ2

(P )∂νu(P ) = g(P ) , P ∈ ∂Ω ,
(1)

where Ω is a bounded domain (connected open set), P = (x1, . . . , xd), ∆ = ∂2
x1

+ · · ·+ ∂2
xd

is the Laplacian,

∇ = (∂x1 , . . . , ∂xd
) denotes the gradient, v⃗(P ) a velocity field and ⟨·, ·⟩ the inner product in Rd, ∂ν = ⟨∇, ν⃗⟩

is the normal derivative at a boundary point, and χ denotes the indicator function. The boundary is indeed
splitted in two disjoint portions, namely ∂Ω = Γ1 ∪ Γ2, and g(P ) = χΓ1

(P )g1(P ) + χΓ2
(P )g2(P ), where g1

and g2 are given functions defined on those portions of the boundary. If Γ2 = ∅ or Γ1 = ∅ we recover purely
Dirichlet or purely Neumann conditions, respectively. Observe that for notational simplicity we have taken
the diffusion coefficient equal to 1, with no loss of generality since otherwise we can absorb it in v⃗ and f .
As known, equation (1) models the steady state of convection-diffusion with an incompressible flow. We
do not make here any restrictive assumption on the domain Ω and on the functions v⃗, f and g, except for
those ensuring well-posedness and sufficient regularity of the solution (for example that the domain has a
Lipschitz boundary, cf. e.g. [17] with the references therein).

We study the discretization of the convection-diffusion problem above by unsymmetric Kansa collocation
using MQ (MultiQuadric) RBF (Radial Basis Functions) of the form {ϕCj (P )}, 1 ≤ j ≤ N ,

ϕC(P ) = ϕ(∥P − C∥) , ϕ(r) =
√

1 + (εr)2 , r ≥ 0 , (2)

where C = (c1, . . . , cd) is the RBF center and ∥ · ∥ the Euclidean norm. As known, the so-called “shape
parameter” ε > 0 can be used to control the trade-off between conditioning and accuracy; cf. e.g. [4, 6, 12]
with the references therein.

The collocation points will be fixed, whereas the centers will be chosen as a random vector. The approach
where centers are distinct from the collocation points is known as collocation by “fictitious centers” in the
literature, differently from the classical method, originally proposed in the pioneering work by E.J. Kansa
[8, 9], where centers and collocation points coincide. Methods based on fictitious centers are an active
research subfield in the literature on Kansa collocation (essentially in the least squares framework), cf. e.g.
[2, 3, 20]. The possibility of taking separate collocation and center points allows more flexibility, both from
the theoretical as well as the computational point of view. In particular, we will be able to prove almost
sure unisolvence of the discretized problem.

Seeking a solution of the form uN (P ) =
∑N

j=1 ajϕCj
(P ) we get the linear system

KN

 a1
...

aN

 =

 (f(Pi))i

(g(Pk))k

 , KN =

 LϕCj (Pi)

BϕCj
(Pk)

 ∈ RN×N , (3)

where 1 ≤ i ≤ NI , NI + 1 ≤ k ≤ N , 1 ≤ j ≤ N , C1, . . . , CN are the centers, {P1, . . . , PNI
} ⊂ Ω are

NI distinct internal collocation points, and {PNI+1, . . . , PN} ⊂ ∂Ω are NB = N − NI distinct boundary
collocation points.
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Observe that taking the partial derivatives with respect to the P = (x1, . . . , xd) variables, we easily get
(cf. e.g. [6])

∇ϕC(P ) = (P − C)
ϕ′(r)

r
, ∆ϕC(P ) = ϕ′′(r) + (d− 1)

ϕ′(r)

r
, r = ∥P − C∥ , (4)

so that

LϕC(P ) = ϕ′′(r) + (d− 1 + ⟨P − C, v⃗(P )⟩) ϕ′(r)

r
, P ∈ Ω , (5)

BϕC(P ) = χΓ1
(P )ϕ(r) + χΓ2

(P )⟨P − C, ν⃗(P )⟩ ϕ
′(r)

r
, P ∈ ∂Ω . (6)

In the particular case of MQ we have

ϕ′(r)

r
= ε2(1 + (εr)2)−1/2 , ϕ′′(r) = −ε4r2(1 + (εr)2)−3/2 + ε2(1 + (εr)2)−1/2 . (7)

We prove now a preliminary lemma on interpolation by analytic functions, that will be relevant below.

Lemma 2.1. Let A ⊆ Rd, be an open connected set and {fj}1≤j≤N be linearly independent real analytic
functions in A.

Then the set of non-unisolvent N -uples for interpolation in span{f1, . . . , fN} has null Lebesgue measure
in AN .

Proof. Consider determinant of the interpolation matrix

D(P1, . . . , PN ) = det ([fj(Pi)]1≤i,j≤N ) ,

as a function of (P1, . . . , PN ) ∈ AN . Such a function is analytic in AN since analytic functions form an
algebra. Notice that AN is open and connected, being a product of open connected sets (cf. e.g. [16]). By
a known general result on interpolation by linearly independent continuous functions (cf. [13]), there exist
N -uples in AN such that D(P1, . . . , PN ) does not vanish. Hence D is not identically zero in AN . In view of
a fundamental theorem in the theory of real analytic functions (cf. e.g. [14]), then the zero set of D in the
open connected set AN has null Lebesgue measure. □

We are now ready to state and prove the following

Theorem 2.1. Let KN be the MQ Kansa collocation matrix in (3) for the convection-diffusion problem (1),
where {Pi , 1 ≤ i ≤ NI} ⊂ Ω and {Pk , NI +1 ≤ k ≤ N} ⊂ ∂Ω are any two fixed sets of distinct internal and
boundary collocation points, respectively, and X = (C1, . . . , CN ) a continuous random vector with probability
density σ(X) ∈ L1

+(RdN ).
Then the matrix KN is almost surely nonsingular.

Proof. The key observation is that, once fixed the set of distinct collocation points {Pi}, the matrix KN

can be seen as the transpose of the interpolation matrix at the points C1, . . . , CN , with the functions

f1(C) = LϕC(P1), . . . , fNI
(C) = LϕC(PNI

),

fNI+1(C) = BϕC(PNI+1), . . . , fN (C) = BϕC(PN ) . (8)

Such functions are real analytic in A = RdN , in view of (4)-(7) and the analyticity in r ∈ R of the
univariate function (1 + (εr)2)s, s ∈ R. In order to apply Lemma 2.1, we have to prove that the functions
f1(C), . . . , fN (C) are linear independent.

Now, assume that they were dependent. Then, there is an everywhere vanishing linear combination,
F (C) =

∑N
j=1 αjfj(C) ≡ 0, with αℓ ̸= 0 for some ℓ. Take the line C(t) = Pℓ + tU with any fixed unit

vector U = (u1, . . . , ud), then the univariate analytic function F (C(t)) is identically zero in R and thus
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its complex extension F (C(z)) is identically zero in C. Notice that the functions (1 + ε2∥Pj − C(z)∥)s =
(1 + ε2∥Pj − Pℓ − zU∥2)s for s = 1/2,−1/2,−3/2, appearing in the complex extension of the functions
fj(C(z)), correspond to the branch of the fractional powers which is positive on the real positive axis.
Moreover, ∥Pj−Pℓ−zU∥2 has to be seen as the complex extension of the corresponding real function, hence
not the complex 2-norm but the sum of the squares of the complex components.

Then (1 + ε2∥Pℓ −C(z)∥2)s = (1 + ε2z2)s presents two branching points at z = ±i/ε, whereas for j ̸= ℓ
the functions (1 + ε2∥Pj − Pℓ − zU∥2)s are analytic at z = ±i/ε, since the complex numbers

1 + ε2∥Pj − Pℓ − (±i/ε)U∥2 = 1 + ε2
d∑

h=1

(Pj − Pℓ ∓ iU/ε)2h

= 1 + ε2
d∑

h=1

[(Pj − Pℓ)
2
h ∓ 2i(Pj − Pℓ)huh/ε− u2

h/ε
2]

= ε2
d∑

h=1

(Pj − Pℓ)
2
h ∓ 2iε

d∑
h=1

(Pj − Pℓ)huh

have positive real part. But F (C(z)) ≡ 0 means that fℓ(C(z)) is a linear combination of the functions
fj(C(z)), j ̸= ℓ, and this gives immediately a contradiction, since the latter are analytic at the branching
points present in fℓ(C(z)) by (5)-(7).

At this point we can apply Lemma 2.1, obtaining that the set of N -uples of centers X = (C1, . . . , CN )
for which the collocation matrix KN is singular, has null Lebesgue measure in RdN . Consequently, it has
null measure with respect to any absolutely continuous measure with respect to the Lebesgue measure, and
hence the matrix KN is almost surely nonsingular for any distribution of centers by a continuous probability
measure with density σ(X) ∈ L1

+(RdN ). □

Remark 2.1. It is worth observing that the possible center distribution is more general than that assumed in
[15], where the fictitious centers are a sequence of i.i.d. (indipendent identically distributed) random points.
Indeed in the present framework the multivariate probability density may not even be a product density.

3. Numerical examples

Though the main purpose of the present work is theoretical, making a further step within the theoretical
open problem of Kansa collocation unisolvence, the method of random fictitious centers can be conveniently
adopted with suitable cautions and tricks. Indeed, while the random center distribution in Theorem 2.1
is quite general and the random centers could be placed in principle anywhere, still ensuring almost sure
unisolvence, in practice the method works much better with centers located near the collocation points.
On the other hand, it is well-known that the MQ collocation matrices can be severely ill-conditioned and a
specialized literature exists on different approaches to cope with ill-conditioning, such as for example shape
parameter optimization, extended precision arithmetic, RBF-QR method; cf., e.g., [6, 10, 11, 12] with the
references therein.

For the mere purpose of illustration we present some simple numerical examples, concerning the solu-
tion of convection-diffusion equations with mixed boundary conditions on a square, by randomized Kansa
collocation with MultiQuadrics, implemented in Matlab. We consider the convection-diffusion problem (1)
on Ω = (0, 1)2. In all the test problems, the set of fixed collocation points C = {Pj}1≤j≤N is a uniform grid
on the square, in lexicographic order. Using a Matlab notation, the random fictitious centers

X = C + (2 ∗ rand(N, 1)− 1) ∗ δ

are obtained by local random perturbation of the collocation points via additive uniformly distributed
random points in (−δ, δ)2; see Fig. 1. The accuracy is measured by the geometric mean of Root Mean

Square Errors RMSEav = exp
(

1
m

∑m
l=1 log10

(√∑
j (uj − ũj,l)2/N

))
obtained by m random centers arrays
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Figure 1: 441 collocation grid points (left) and the random fictitious centers distribution (right) for δ = 0.01.

Table 1: RMSE geometric mean over 100 trials of N random fictitious centers, with different convection velocities v⃗ and
perturbation radius δ (shape parameter ε = 2.5).

v⃗ = (0, 0) v⃗ = (1, 1)
N δ = 0.1 δ = 0.01 δ = 0.001 δ = 0 δ = 0.1 δ = 0.01 δ = 0.001 δ = 0
121 2.9e-01 6.9e-02 6.8e-02 6.9e-02 3.4e-01 7.1e-02 7.3e-02 7.2e-02
441 4.7e-02 7.9e-03 1.8e-03 1.4e-03 6.2e-02 8.2e-03 1.7e-03 1.5e-03
961 1.4e-03 9.6e-04 4.5e-04 3.4e-05 1.7e-03 9.1e-04 4.5e-04 3.5e-05
1681 4.3e-05 9.8e-06 1.0e-05 7.5e-06 4.7e-05 1.2e-05 1.2e-05 6.3e-06

v⃗ = (1, 100) v⃗ = (100, 100)
N δ = 0.1 δ = 0.01 δ = 0.001 δ = 0 δ = 0.1 δ = 0.01 δ = 0.001 δ = 0
121 6.1e+00 5.1e+00 3.1e+00 3.1e+00 1.6e-01 8.3e-02 4.7e-01 3.9e-01
441 2.4e+00 6.5e-01 1.1e-01 6.5e-02 1.4e-02 5.9e-03 3.7e-03 4.2e-03
961 7.7e-02 3.7e-02 2.4e-02 1.5e-03 8.5e-04 4.9e-04 2.5e-04 1.2e-04
1681 3.1e-03 8.1e-04 7.9e-04 2.1e-04 4.8e-05 2.3e-05 1.8e-05 1.9e-05

{Xl}, l = 1, . . . ,m, where uj and ũj,l are the exact and approximate solutions at the collocation node Pj ,
respectively. In the tests, we have run m = 100 trials.

We have imposed mixed-type boundary conditions in (1), by the splitting

Γ1 = {x1 = 0, 0 ≤ x2 ≤ 1} ∪ {x1 = 1, 0 ≤ x2 ≤ 1} ,

Γ2 = {x2 = 0, 0 < x1 < 1} ∪ {x2 = 1, 0 < x1 < 1} .

The right-hand sides f and g are defined by selecting as reference solution u(x1, x2) = sin(2πx1)+cos(2πx2).
The numerical results are collected in Table 1, where we have taken different values of δ and different

convection velocities, which make the problem ranging from pure diffusion to mildly convection-dominated
instances, and we have found heuristically a value of the shape parameter ε, which roughly minimizes the
errors. For strongly convection-dominated problems with high Péclet number, more specific discretization
techniques should be adopted, that go beyond the scope of the present paper; cf. e.g. [19] with the references
therein.

We can observe that for the smallest values of δ the errors approach the size of those corresponding to
classical collocation with X = C, which can be considered a limit case, whose unisolvence is however not
covered by the present theory. For larger values of δ, e.g. δ = 0.1, the errors are not satisfactory, which could
be due to the fact that the separation distance of centers decreases as well as their fill distance increases,
thus worsening both, the collocation matrix conditioning as well as the approximation power.
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