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Abstract

We construct cubature methods on scattered data via resampling on the
support of known algebraic cubature formulas, by different kinds of adaptive
interpolation (polynomial, RBF, PUM). This approach gives a promising
alternative to other recent methods, such as direct meshless cubature by
RBF or least-squares cubature formulas.
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1. Introduction

The problem of computing integrals of multivariate functions on standard
or nonstandard domains via function sampling is ubiquitous in scientific and
technological applications. There is a vast literature on the construction of
cubature formulas exact in specific function spaces, especially polynomial
spaces, where the sampling has to be accomplished on suitable set of nodes.
We do not even attempt to give an overview of this specialized literature,
referring the reader to some classical or more recent monographs and surveys,
such as for example [13, 37, 67].

On the other hand, it is a common situation that the data are scattered
and still one would like to obtain an integration method from such data.
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One of the most popular approaches, especially in high-dimension, is QMC
(Quasi MonteCarlo) method, provided that the sampling is made on low-
discrepancy node sequences; again, we only mention within the vast QMC
literature an excellent survey like [31]. While QMC has the advantage of not
suffering from the curse of dimensionality, it is however scarcely accurate and
thus not the best choice in low dimension.

Numerical cubature from scattered data constructed to be exact on suit-
able function spaces, typically in low dimension, has received some attention
in recent years. Indeed, we may quote methods based on meshless interpo-
lation, namely by Radial Basis Functions (RBF), apparently considered for
the first time in [61, 62] and then further developed in [12, 40, 63], or by
RBF-FD (radial basis function-generated finite difference) [36] used to ap-
proximate integrals over curved surfaces with boundaries [54] and over the
surface of a sphere [55] that was generalized to arbitrarily shaped smooth
closed surfaces [56]. Another approach, based on ℓ1 or ℓ2 minimization of
the weights under polynomial moment-matching conditions, was proposed in
[38], where it was shown to be more accurate than MC and QMC integration.

Differently, here we construct cubature methods on scattered data via
resampling on the support of known algebraic cubature formulas, by adaptive
interpolation of different kinds. The paper is organized as follows. In Section
2, we describe the fundamentals of our approach and the different kinds of
interpolation adopted. In Section 3, we discuss a number of cubature tests,
showing that the present method can be a valid alternative to the scattered
integration methods quoted above.

2. Cubature by adaptive scattered interpolation

The basic idea of our approach is the following. Given an algebraic cu-
bature rule with positive weights and interior nodes (PI rule) on a compact
domain Ω ⊂ Rs

IΩ(f) =

∫
Ω

f(P )w(P ) dP ≈ Qn(f) =
ν∑

k=1

wk f(Ξk), (1)

which is exact for f ∈ Pn (the space of multivariate polynomials of total
degree not exceeding n, with ms = dim(Pn) =

(
n+s
s

)
), and a suitable inter-

polant on a scattered set X = {P1, . . . , PN} ⊂ Ω, say Ψ = Ψf,X : Ω → R, we
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approximate the cubature rule as

Qn(f) =
ν∑

k=1

wk f(Ξk) ≈ Qn(Ψ) =
ν∑

k=1

wk Ψ(Ξk). (2)

Notice that Ψ could be a standard global interpolant such that Ψ(Pi) = f(Pi),
1 ≤ i ≤ N , but also a function pointwise defined by local interpolation on
a suitable subset of the scattered points, in a moving interpolation fashion
(see for example Subsection 2.1).

We stress that in this approach we do not approximate the integral of
f by the integral of the interpolant, which is the standard way to construct
a cubature formula via interpolation, rather we consider the values of the
interpolant at the cubature nodes of a known formula as perturbations of
the function values there. In other words, we use the interpolant only as
an approximate evaluator of the integrand at the cubature nodes, that is to
approximate the cubature formula. This approach has already been used to
approximate Gaussian quadrature formulas by various local or global inter-
polants from univariate equispaced sampling, see for example [50, 46, 25, 26].
See also product integration rules with a similar algorithm [27, 42, 43].

Now, denoting by p∗n ∈ Pn the best uniform polynomial approximation to
f ∈ C(Ω), we can write

IΩ(f)−Qn(Ψ) = (IΩ(f)− IΩ(p
∗
n)) + (IΩ(p

∗
n)−Qn(p

∗
n))

+(Qn(p
∗
n)−Qn(f)) + (Qn(f)−Qn(Ψ)), (3)

and then, observing that the second summand is null by polynomial exactness
of the cubature formula, we get

|IΩ(f)−Qn(Ψ)| ≤ IΩ(|f − p∗n|) +Qn(|p∗n − f |) +Qn(|f −Ψ|)

≤ ∥w∥L1

(
2En(f ; Ω) + max

k
|f(Ξk)−Ψ(Ξk)|

)
, (4)

where En(f ; Ω) = infp∈Pn ∥f − p∥∞,Ω.
We recall that the infinitesimal order of En(f ; Ω) can be estimated on the

so-called Jackson compact sets, that are compact domains for which there
exist a positive integer kj, j = 0, 1, 2, . . . , and a constant cj(f) (depending
on the partial derivatives of f up to order j), such that if f ∈ Ckj(Ω) a
Jackson-like inequality holds, of the form En(f) ≤ cj(f)n

−j. Two basic
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examples are hypercubes with kj = j+1 and Euclidean balls with kj = j. In
particular a sufficient condition is that Ω be Whitney regular (that is, there
exists a number C ≥ 1 such that any two points x, y ∈ Ω can be joined by
a rectifiable curve in Ω of length bounded by C|x − y|; for more details see
[32, 72]) and admits a Markov polynomial inequality; cf. [53] for a survey of
known results on Jackson sets.

Therefore, taking into account that the scattered interpolation nodes are
fixed, by increasing n, it follows from equations (3)-(4), that the error of
the approximate cubature Qn(Ψ) will stagnate on the size of the maximum
interpolation error at the cubature nodes. Such an error depends on the
choice of the interpolant, on the regularity of f , and it is a not-decreasing
function of n bounded above by max

P∈Ω
|f(P )−Ψ(P )|.

The reason for working with algebraic cubature is that Positive Interior
(PI) formulas exact in polynomial spaces are available in a variety of domains.
We cannot give here an extended bibliography, but we may quote some rel-
evant items. For example, minimal or near-minimal formulas are known,
at least up to certain degrees, on standard domains like squares/cubes,
disks/balls and triangles/tetrahedra, cf. [13, 14, 37, 35, 67, 68] with the ref-
erences therein. On the other hand, low-cardinality formulas of PI type have
been constructed on linear polygons/polyhedra [44, 66], on domains with
spline and NURBS boundaries [65], and on several domains corresponding
to a trigonometric polynomial parametrization of the boundary such as for
example circular segments, sectors, zones, lunes, as well as disk intersection
and union, cf. [15, 16, 64] with the references therein. Many of these for-
mulas use a NNLS implementation of Tchakaloff-like compression, cf. e.g.
[29, 30, 52]. Other constructions of algebraic PI formulas on multidimen-
sional domains can be found e.g. in [45, 48], only to quote some recent
contributions (see indeed the references therein). Thus, instead of trying to
construct a cubature formula directly supported at the scattered sites, as
done for example in [12, 38], we use indirectly the scattered data to approx-
imate one within such a vast and still growing body of available algebraic
rules.

As a preliminary study, below we briefly recall and study numerically
several different adaptive interpolation methods on scattered data, comparing
their approximation power on some test functions. Adaptivity is indeed the
key to obtain high accuracy from such interpolants. We stress that here we
are mainly interested in accuracy rather than computational efficiency, since
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our main goal will be approximating integrals as accurately as possible by
the fixed scattered data.

2.1. Adaptive moving polynomial interpolation
We discuss a pointwise evaluation method by adaptive local polynomial

interpolation. In order to clarify its theoretical base, we state the main
error estimate result, reformulating the theorem in [23]. Indeed, such a theo-
rem concerns pointwise numerical differentiation of arbitrary order via local
interpolation, whereas here we are merely interested in pointwise function
evaluation. For simplicity, we restrict to bivariate functions.

Below we denote by Pd the space of bivariate polynomials of total degree
not exceeding d with dimension md = dim(Pd) = (d+1)(d+2)/2, by Bh(P )
the closed Euclidean ball of radius h centered at P = (x, y), by Dα = ∂α1

x ∂α2
y

the differentiation operator with respect to bi-indexes α = (α1, α2) of length
|α| = α1 + α2 (lexicographically ordered), and by Cd,1(K) the space of Cd

functions with Lipschitz-continuous derivatives of length d on a compact
domain K ⊂ R2 (the closure of a bounded open connected set), equipped
with the seminorm

∥f∥Cd,1(K) = sup

{
|Dαf(P )−Dαf(Q)|

∥P −Q∥2
: P,Q ∈ K, P ̸= Q, |α| = d

}
. (5)

Moreover, we adopt the usual notation with multi-indices where powers
are interpreted componentwise, Pα = xα1yα2 .

Theorem 1. Let Ω ⊂ R2 be a convex body, f ∈ Cd,1(Ω), and πh,d ∈ Pd the
interpolating polynomial of f at a unisolvent subset

Xd = {ξ1, . . . , ξmd
} ⊂ Nh = Bh(P ) ∩ Ω. (6)

Then the following pointwise error estimate holds

Eh,d(P ) =
∣∣f(P )− πh,d(P )

∣∣ ≤ λh,d(P )Ch,d h
d+1, (7)

Ch,d =
2d

(d− 1)!
∥f∥Cd,1(Nh) , λh,d(P ) = ∥ρ1(V −1

h,d )∥1,

where ρ1 denotes the first row of the inverse Vandermonde matrix in the
scaled monomial basis centered at P

Vh,d =
[
((ξi − P )/h)α

]
, 1 ≤ i ≤ md, |α| ≤ d. (8)
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For a proof of this result, based on local approximation by Taylor formula,
we refer the reader to [23]. We stress that λh,d(P ) is nothing but the Lebesgue
function of Xd evaluated at the neighborhood of the center P , where the
representation as 1-norm of the first Vandermonde row comes from the choice
of the polynomial basis. The result above can be extended to non-convex
domains that satisfy the well-known “Whitney regularity” property [71, §2],
by a “curved” version of the Taylor formula, cf. e.g. [51, Ch.8]. In this case
estimate (7) is qualitatively the same, since the Taylor formula remainder is
still O(hd+1) (we do not give a proof for the sake of concision).

The algorithm here adopted (2-dimensional moving interpolation), which
is a derivation of the algorithm DISC proposed in [24] where we refer the
reader for all details, works adaptively on the radius h and the degree d,
trying to minimize (an estimate of) the pointwise evaluation error. The local
interpolation points Xd are “discrete Leja points” extracted from X ∩Nh (we
recall that X are the fixed scattered sites), that are points aimed at maxi-
mizing the Vandermonde determinant modulus. They are selected greedily
by standard Gaussian elimination with row pivoting on the local transposed
Vandermonde matrix, following the method of [2] for stable multivariate
polynomial interpolation.

The choice of discrete Leja points as local interpolation points is suggested
by several features. First, being aimed at maximizing (in a greedy way) the
Vandermonde determinant modulus, they guarantee unisolvency, provided
that the local scattered points X ∩Nh are Pd-determining (i.e., polynomials
in Pd vanishing there vanish everywhere, or equivalently the corresponding
rectangular Vandermonde matrix is full-rank, that is X ∩ Nh contains a
unisolvent interpolation set). Though this is not true in general with any
scattered sample, it is almost surely verified with uniformly distributed points
with respect to any continuous density, as recently proved in [28] for general
interpolation by a.e. analytic functions.

The second reason for the choice of discrete Leja points is interpolation
stability. Indeed, their choice tries to keep small the entries of the inverse
Vandermonde matrix (which are cofactors divided by the Vandermonde de-
terminant), and thus also the relevant row 1-norm in estimate (7). We ob-
serve also that the choice of a monomial basis centered at P , and scaled by
the ball radius, allows to control the Vandermonde matrix conditioning, at
least up to moderate interpolation degrees (say around degree 10).

The third important feature of discrete Leja points is that they form a se-
quence, differently from other extremal interpolation sets like discrete Fekete
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Figure 1: Pointwise evaluation errors (circles) and estimates (asterisks), in logarithmic
scale, by adaptive moving interpolation of Franke’s test function on 100 Sobol test points
in [0, 1]2, ordered by distance from the boundary, using 800 (left) and 1600 (right) Halton
interpolation points (solid line: mean error; dashed line: mean estimate).

points [2]. This means that the first mk among md Leja points are unisolvent
for degree k = 1, 2, . . . , d, a feature that is exploited by the algorithm DISC
in [24] to compute a pointwise a posteriori error estimate.

In order to show the performance of moving interpolation, in Figure 1
we report the pointwise error and the error estimate in [24] for the well-
known Franke’s test function, by moving interpolation on 800 and 1600 Hal-
ton points in [0, 1]2. These quantities are computed for 100 Sobol evaluation
points, ordered by increasing distance from the boundary. The Sobol points
form a low discrepancy quasi-random sequence and are designed to generate
a sample that is uniformly distributed over the unit hypercube [60, 3]. Ob-
serve that in most cases the estimate is close to the actual error and only in
few cases it substantially overestimates or underestimates the error, by one
or seldom two orders of magnitude. The resulting mean estimate (dashed
line) turns out to be a good approximation of the mean error (solid line); as
expected, both decrease by increasing the number of sampling points. No-
tice that the errors above the mean tend to occur near the boundary. This
boundary effect, already observed in [23, 24], can be explained by observing
that near the boundary, the neighborhoods Nh = Bh(P ) ∩ Ω contain less
sampling points. Consequently, the maximum local interpolation degree be-
comes smaller and at the same time the quality of the Leja-like interpolation
points can be worse.
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2.2. Adaptive LOOCV RBF interpolation
We now provide a brief overview on adaptive LOOCV RBF interpolation

recalling basic notions on RBF theory, which is useful for scattered data
approximation; for further details, see [34, 70].

Suppose that we are given a compact domain Ω ⊂ Rs, a scattered point set
X = {P1, . . . , PN} ⊂ Ω, and the corresponding data (or function) value set
F = {f1, . . . , fN} ⊂ R that is obtained by possibly sampling any (unknown)
function f : Ω → R.

Considering a RBF ϕ : [0,∞) → R that is strictly conditionally positive
definite of order m (SCPDm) [33], if we set ϕi(P ) = ϕ(||P − Pi||2), we can
find a unique interpolating function Ψ : Ω → R of the form

Ψ(P ) =
N∑
i=1

ciϕi(P ) +
N+M∑
i=N+1

ciπi−N(P ), (9)

where {πk}Mk=1 generate a basis for the M =
(
m−1+s
m−1

)
-dimensional linear space

Ps
m−1 of s-variate real valued polynomials of total degree less than or equal

to m − 1, and || · ||2 is the Euclidean norm. The coefficients c1, . . . , cN+M

are determined by enforcing the interpolation conditions Ψ(Pi) = fi, for
i = 1, . . . , N . Since these conditions lead to a system of N linear equations
in the N + M unknowns ci, one usually adds the M additional conditions∑N

i=1 ciπk(Pi) = 0, k = 1, . . . ,M , to ensure a unique solution. Moreover,
from theory it is known that a SCPD0 function is strictly positive definite
(SPD), and so in this case the polynomial in (9) is omitted [33].

Solving the interpolation problem for a SCPDm function ϕ leads to a
symmetric linear system

Mc = y, (10)
where

M =

[
A B
BT O

]
, y =

[
f
0

]
.

The interpolation matrix M in (10) has entries Aki = ϕ(||Pk − Pi||2), Bkj =
πj(Pk), with k, i = 1, . . . , N , j = 1, . . . ,M , and O is a M ×M zero matrix.
Moreover, c = [c1, . . . , cN+M ]T , f = [f1, . . . , fN ]

T and 0 is a zero vector of
length M . Notice that for a SPD function ϕ the matrix reduces simply to
M = A, and the polynomial part vanishes.

In literature, many RBFs are scaled by a shape parameter ε > 0 such
that

ϕε(r) = ϕ(εr) = ϕ(ε||P − Pi||2), ∀P, Pi ∈ Ω.
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Hereinafter, for the sake of simplicity, we keep implicit (unless strictly nec-
essary) the dependence on ε, referring to ϕi(P ) as ϕε(r). For such RBFs the
choice of a “good”, or possibly an “optimal”, shape parameter is a crucial task,
but also a big issue (see e.g. [10] and references therein). Some examples of
popular SCPD RBFs together with their smoothness and abbreviation are
listed as follows [33]:

ϕε(r) =



exp(−ε2r2), Gaussian C∞(GA)

(1 + ε2r2)−1/2, Inverse MultiQuadric C∞(IMQ)

(1 + ε2r2)1/2, MultiQuadric C∞(MQ)

max (1− εr, 0)4 (4εr + 1), Wendland C2(W2).

All these functions are SPD, except for MQ that is SCPD1. GA, IMQ and
MQ are globally supported, while W2 is compactly supported and its support
is [0, 1/ε], see [70].

However, as remarked in [34, Ch.11], from a correct reformulation of the
so-called uncertainty or trade-off principle due to Schaback [58] we know
that using a standard basis one cannot have high accuracy and stability at
the same time. Indeed, when interpolating target functions by RBFs, the best
accuracy is typically achieved in the flat limit ε → 0, but in this case the
interpolation matrix might be severely ill-conditioning. Thus, in order to get
trustworthy results, in the literature several techniques have been proposed
to guide us in a suitable selection of the RBF shape parameter (see e.g. [34,
Ch.14] and [41, 59]).

A popular strategy for estimating the RBF shape parameter ε is the
LOOCV method. It was originally introduced in RBF interpolation by Rippa
[57], and more lately has widely been used and extended in many other fields
(see e.g. [5, 6, 49]).

In the LOOCV technique the shape parameter is selected by minimizing a
cost function that collects the errors for a sequence of partial fits to the data
[10]. To estimate the unknown true error, we split the data into two parts: a
training data set consisting of N − 1 data to obtain a “partial interpolation”,
and a validation data set that contains a single (remaining) data used to
compute the error. After repeating in turn this procedure for each of the N
given data, the result is a vector of error estimates and the cost function is
used to optimally determine the value of ε.

For this discussion, we define by X [k] = {P1, . . . , Pk−1, Pk+1, . . . , PN},
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and F [k] = {f1, . . . , fk−1, fk+1, . . . , fN}, the sets of points and corresponding
values with the removed data (Pk, fk), denoted by the superscript [k]. All
other quantities are represented similarly.

The key idea of LOOCV is to predict the parameter ε by the partial RBF
interpolant to the data (X [k], F [k]), i.e.,

Ψ[k](P ) =
N∑

i=1, i̸=k

c
[k]
i ϕi(P ) +

N+M∑
i=N+1

c
[k]
i πi−N(P ). (11)

The interpolant (11) enables us to find the error ek(ε) = fk − Ψ[k](Pk), k =
1, . . . , N , removing in turn each point Pk and comparing then the resulting fit
with the known value at the removed point fk. This error can be computed
more efficiently by simply using the rule [57]

ek(ε) =
ck

M−1
kk

, (12)

where ck is the kth coefficient deriving from the solution of the full RBF
system (10), and M−1

kk is the kth diagonal element of the matrix M−1. This
formulation needs to only solve a single linear system, considering the entire
data set (X,F ).

In summary, the problem is solved by minimizing the LOOCV cost func-
tion [10]

LOOCV(ε) = ||e(ε)||∞ = max
k=1,...,N

∣∣∣∣ ck

M−1
kk

∣∣∣∣ ,
where e(ε) = [ek(ε)]k=1,...,N and ||·||∞ denotes the ∞-norm, even if in principle
any norm is enabled.

2.3. BLOOCV RBF-PUM
We now introduce the basic theory for an adaptive RBF-PUM interpola-

tion, which is based on the BLOOCV scheme [11]. Since inverting the kernel
matrix in (10) is computationally expensive when the amount of data highly
increases, an effective way to overcome this issue is to partition the open
bounded domain Ω into p overlapping subdomains {Ωj}pj=1 which form an
open bounded cover of Ω, that is Ω ⊆

⋃p
j=1 Ωj. So the interpolation problem

is locally decomposed into p (smaller) subproblems, where the subdomains
of the PU covering consist of overlapping balls of radius δj, see [4].
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The idea of PUM comes originally from the context of PDEs [1], then
gaining popularity in the RBF community in various fields of applied math-
ematics (see e.g. [7, 47, 69]). The PUM has indeed some features that makes
it particularly suitable for the approximation of large and irregularly dis-
tributed scattered data sets. In particular, it enables us to efficiently solve
a local interpolation problem on each PU subdomain and thus to construct
the global approximant by gluing together the local contributions using some
weight functions. To achieve that, we need those weights to be a family of
compactly supported, non-negative, and continuous functions wj : Ωj → R,
with supp(wj) ⊆ Ωj, such that

p∑
j=1

wj (P ) = 1, P ∈ Ω.

Once we choose the partition of unity {wj}pj=1, we form the global interpolant

Ψ(P ) =

p∑
j=1

Ψj(P )wj(P ), P ∈ Ω, (13)

which is a weighted sum of p local RBF interpolants Ψj : Ωj → R, i.e.

Ψj(P ) =

Nj∑
i=1

cjiϕ
j
i (P ), (14)

where ϕj
i (P ) = ϕεj(||P − P j

i ||2), P
j
i ∈ Xj = X ∩ Ωj, and Nj = |Ωj|. The

interpolant (14) represents the local version of (9) in the special case of SPD
RBFs, and it is uniquely found by solving the linear system associated with
the subdomain Ωj, i.e.,

Ajcj = fj,

where (Aj)ki = ϕεj(||P
j
k − P j

i ||2), k, i = 1, . . . , Nj, cj = [cj1, . . . , c
j
Nj
]T , fj =

[f j
1 , . . . , f

j
Nj
]T ; for a generalization to SCPDm functions, see [69]. Moreover,

from [11] it is known that the accuracy of the global fit (13) strongly depends
on the choices of the shape parameter εj and the radius δj.

The LOOCV technique discussed in Subsection 2.2 can thus be extended
to search the optimal values of εj and δj in each PU subdomain. It con-
sists in computing in every subdomain Ωj, for each couple of (ε, δ) and
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k ∈ {1, . . . , Nj}, the interpolation error ejk(ε, δ) of the partial RBF inter-
polant Ψ[k]

j evaluated at the point P j
k , fitted on the point set X [k]

j = Xj \{P j
k}

and the data value set F [k]
j = Fj \ {f j

k}. To avoid this computation, by suit-
ably adapting (12), the local error is defined as follows:

ejk(ε, δ) =
cjk

(A−1
j )kk

.

Hence, the optimal value of (εj, δj) is the one that minimizes the error
function [10]

LOOCVj(ε, δ) = max
k=1,...,Nj

∣∣∣∣∣ cjk
(A−1

j )kk

∣∣∣∣∣ .
2.4. Multinode Shepard method

The Multinode Shepard (MS) method is an accurate procedure for re-
constructing functions from scattered data. It is the generalization of the
Little’s idea that consists in improving the classic Shepard method by acting
in two ways: modifying the classical point-based weight functions and defin-
ing instead a normalized blend of locally linear interpolating polynomials
with triangle-based weight functions which depend on the product of inverse
distances to the three vertices of the corresponding triangle [20]. We assume
that Ω ⊂ Rs, s ≥ 2, is a region, X = {Pi}Ni=1 ⊂ Ω is a finite set of pairwise
distinct scattered points and F = {fi}Ni=1 is a set of associated real numbers,
obtained by sampling a continuous function f : Ω → R. By working with
local interpolating polynomials of total degree d ∈ N of s variables, we let
md =

(
s+d
d

)
the dimension of such a polynomial space. To define the multin-

ode Shepard method, we need the existence of a set S = {σj}Sj=1 ⊂ X, which
is a covering of the set X, i.e.

S⋃
j=1

σj = X,

and such that each σj = {Pj1 , . . . , Pjmd
} is unisolvent for polynomial interpo-

lation of total degree d. As proven in [28], such a set S exists for almost all
choices of the interpolation nodes. The local interpolation polynomial πj(P )
based on σj = {Pj1 , . . . , Pjmd

} is represented as

πj(P ) =

md∑
i=1

ℓj,i(P )fji , P ∈ Rs,
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where
ℓj,i (P ) =

∑
α∈Ns

0
|α|≤d

a(i)α

(
P − P

(b)
j

)α

, P ∈ Rs,

are the Lagrange basis polynomials satisfying

ℓj,i(Pjk) = δik =

{
1, i = k,
0, i ̸= k,

written, using a multi-index notation, in the Taylor basis centered at the
barycenter P

(b)
j of σj [22]. Similarly to the triangular [20] (s = 2, d = 1),

the hexagonal [19] (s = 2, d = 2) and the tetrahedral Shepard methods [8]
(s = 3, d = 1), the MS method is obtained by combining the polynomials
ℓj,i (P ), i = 1, . . . , N, j = 1, . . . , S with the MS basis function [18]

Wµ,j (P ) =

md∏
l=1

∥P − Pjl∥
−µ
2

S∑
k=1

md∏
l=1

∥P − Pkl∥
−µ
2

, µ > 0 , P ∈ Rs, (15)

as follows

Ψµ (P ) =
N∑
i=1

∑
j∈Ji

Wµ,j (P ) ℓj,i (P ) fi, (16)

where Ji = {j ∈ {1, . . . , S} : Pi ∈ σj}. The functions Wµ,j (P ) are a partition
of unity and the MS approximant interpolates on all the scattered points Pi,
i = 1, . . . , N and reproduces polynomial of degree less than or equal to d.

Results on the approximation order of the MS method can be found in
[18]. By denoting with Rr(Q) = {P ∈ Rs : ||P −Q||∞ ≤ r} the axis-aligned
closed cube with center Q and edge length 2r, we set

h′ = inf{r > 0 : ∀P ∈ Ω, ∃σj ∈ S : Rr(P ) ∩ σj ̸= ∅}, (17)

h′′ = inf{r > 0 : ∀σj ∈ S, ∃P ∈ Ω : σj ⊂ Rr(P )}, (18)

and finally
h = max{h′, h′′}. (19)

The positive real number h is clearly a measure of the fill distance of the
points in X and of the largeness of subsets’ σj diameters: h decreases if the

13



number of a rather uniform distribution of scattered points increases and the
diameters of the subsets σj remain relatively small. We further let

M = sup
P∈Ω

#{σj ∈ S : Rh(P ) ∩ σj ̸= ∅}, (20)

the maximum number of subsets σj with at least one point in some cube
with edge length 2h. Small values of M , in correspondence of small values
of h, imply that there are no clusters of subsets of the covering S. Under
the hypothesis of compactness and convexity of the region Ω, if µ > s+d+1

md
,

in [18] it is proven that

||f −Ψµ (P ) ||∞ ≤ CM ||f ||d,1hd+1,

where C is a positive constant and

||f ||d,1 = sup

{
|Dνf(P )−Dνf(Q)|

||P −Q||2
, P,Q ∈ Ω, ν ∈ Ns

0, |ν| = d

}
,

provided that f is differentiable with partial derivatives of order d Lipschitz-
continuous. The constant C is explicitly computed; it is directly proportional

to
(
1 + max

j=1,...,S
||πj||∞

)
by a factor which depends only on s, S, d, md and

µ. To maintain max
j=1,...,S

||πj||∞ small [21], a convenient procedure consists

in considering, for each scattered point, the set of md + q, q > 0, nearest
points and in choosing, among them, the subset of md discrete Leja points
by the procedure introduced in [2] detailed in section 2.1. Finally, the result
on the order of convergence holds with a slightly different constant in the
case of non-convex domains (even multiply connected domains) by using the
“Whitney regularity” property, in line with what is observed in section 2.1
(see also [32]).

3. Cubature tests

In this section we compare cubature by adaptive scattered interpolation
via suitable PI algebraic rules as in (1)-(2), with two relevant methods pro-
posed in the recent literature, namely RBFCUB in [12] (based directly on
LOOCV optimized RBF integration over polygons) and Glaubitz’s LS-CF in
[38] (based on ℓ2 weight minimization under polynomial moment matching
conditions). To our knowledge, this is the first systematic comparison of

14



0 5 10 15 20 25 30 35 40

dex

10
-15

10
-10

10
-5

10
0

PUM

SCATTINT

MQ

MSHEP9

DISC

LS-CF

RBFCUB

EXRULE

0 5 10 15 20 25 30 35 40
10

-15

10
-10

10
-5

10
0

PUM

SCATTINT

MQ

MSHEP9

DISC

LS-CF

RBFCUB

EXRULE

0 5 10 15 20 25 30 35 40

dex

10
-15

10
-10

10
-5

10
0

PUM

SCATTINT

MQ

MSHEP9

DISC

LS-CF

RBFCUB

EXRULE

0 5 10 15 20 25 30 35 40

dex

10
-15

10
-10

10
-5

10
0

PUM

SCATTINT

MQ

MSHEP9

DISC

LS-CF

RBFCUB

EXRULE

Figure 2: Comparison of scattered cubature methods on 400 Halton points for the test
functions f1 (top left) and f2 (top right), f3 (bottom left) and f4 (bottom right); the hor-
izontal lines correspond to RBFCUB with MultiQuadrics and to LS-CF method, whereas
the grey dotted line to the underlying algebraic rule with exact function values. The x-axis
reports the exactness degree (dex) of the underlying (almost-)minimal algebraic rule and
the y-axis the relative cubature errors in the logarithmic scale (log(erel)).

different approaches for numerical cubature by scattered data, in particular
concerning how much accuracy is obtainable from the data. All the numer-
ical tests have been performed by the Matlab package SCATTCUB, freely
available along with the corresponding demos at [9].

In Figures 2-3 we plot the relative cubature errors versus the exactness
degree of the underlying (almost-)minimal algebraic rule for the square (such
rules have been collected from the literature and inserted in the package [9]).
We consider two smooth instances, namely the popular Franke’s test function
in Ω = [0, 1]2

f1 =
3

4
exp(−((9x−2)2+(9y−2)2)/4)+

3

4
exp(−((9x+1)2/49+(9y+1)/10))
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Figure 3: As in Figure 2 on 800 Halton points. The x-axis reports the exactness degree
(dex) of the underlying (almost-)minimal algebraic rule and the y-axis the relative cubature
errors in the logarithmic scale (log(erel)).
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Figure 4: Halton points on a circular lune and an asymmetric circular annulus (black
dots), and cubature nodes of an algebraic rule of degree 12 (in magenta).

+
1

2
exp(−((9x− 7)2 + (9y − 3)2)/4)− 1

5
exp(−((9x− 4)2 + (9y − 7)2)),

and a test function in Ω = [−1, 1]2 from [38]

f2 =
1

(1 + x2)(1 + y2)
,

together with two power functions of finite regularity in Ω = [0, 1]2, namely

f3 = ((x− x0)
2 + (y − y0)

2)3/2 , f4 = ((x− x0)
2 + (y − y0)

2)7/2,

with (x0, y0) = (0.5, 0.5), where f3 ∈ C2(Ω) and f4 ∈ C6(Ω). The reference
values of the integral have been computed by the Matlab built-in adaptive
routine integral2.

The compared methods are Matlab’s basic Scattered Interpolation (SCAT-
TINT), adaptive moving interpolation (DISC, §2.1), adaptive LOOCV RBF
interpolation with MultiQuadrics (MQ, §2.2), BLOOCV RBF-PUM (PUM,
§2.3), Multinode Shepard method with local interpolation degree 9 (MSHEP9,
§2.4). The horizontal lines correspond to RBFCUB with MultiQuadrics [12]
and to LS-CF method [38], whereas the grey dotted line to the underlying
algebraic rule with exact function values. The choice of MultiQuadrics comes
from a number of numerical tests, not reported for brevity, where they have
shown to be more accurate than the other RBF considered (Gaussians, IMQ
and Wendland C2).

We see that adaptive moving interpolation and Multinode Shepard follow
closely the underlying algebraic rule, until the error stalls around the error
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Figure 5: As in Figure 2 on Halton points of the circular lune of Figure 4, extracted from
800 Halton points of the bounding box. The x-axis reports the exactness degree (dex) of
the underlying (almost-)minimal algebraic rule and the y-axis the relative cubature errors
in the logarithmic scale (log(erel)).
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Figure 6: As in Figure 2 on Halton points of the asymmetric circular annulus of Figure 4,
extracted from 800 Halton points of the bounding box. The x-axis reports the exactness
degree (dex) of the underlying (almost-)minimal algebraic rule and the y-axis the relative
cubature errors in the logarithmic scale (log(erel)).
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generated by interpolation. It is interesting to observe that higher interpola-
tion errors at the boundary (see Figure 1) are there compensated by smaller
algebraic cubature weights, preserving the overall cubature accuracy.

Both adaptive moving interpolation and Multinode Shepard at error stalling
turn out to be more accurate than Glaubitz’s LS-CF method, especially with
regular integrands where the error goes up to two-three orders of magnitude
below. In the comparison with RBFCUB, the situation is similar with the less
regular integrands f3 and f4, whereas RBFCUB gives quite accurate results
with the smooth integrands f1 and f2. Also PUM method is able to follow
on average the underlying algebraic rule until stalling, whereas LOOCV MQ
turns out to be quite accurate with the smooth integrands and less accurate,
similarly to RBFCUB, with the less regular integrands.

In order to show the flexibility of the methods, we give also integration
examples on two nonstandard domains with curved boundaries, namely a
circular lune (non-convex domain) and an asymmetric circular annulus (mul-
tiply connected domain), see Figure 4, using the algebraic cubature formulas
developed in [15, 16] via subperiodic trigonometric Gaussian quadrature. In
these cases RBFCUB is not applicable, being restricted to linear polygons.
On the other hand, we have modified the code LS-CF, to work with the ap-
propriate polynomial moments on such curved domains (this option is not
present in the original package [39]). Concerning adaptive moving polyno-
mial interpolation by the code DISC, since the domains are nonconvex one
should check that they are Whitney regular (cf. §2.1). Indeed, depending on
their position inside the lune (or the annulus), two points can be joined either
by the corresponding segment if it does not intersect the lune’s shorter side
(or the internal disk of the annulus), or by the curve formed by two pieces of
the segment joined by the (shortest) subarc between the intersection points.
The length of such a curve is in any case bounded by π/2 times the length
of the segment, thus the domains are Whitney regular.

Similar considerations with respect to square domains can be done, with
adaptive moving interpolation and Multinode Shepard confirming a better
accuracy compared to LS-CF. It should be stressed, as already observed, that
we have here privileged maximal accuracy obtainable from not a huge number
of fixed data, rather than computational efficiency. Indeed, in the presence
of a very high number of scattered points, PUM and LS-CF are faster and
could be methods of choice in order to control the computing time.
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Conclusion and future work. We have constructed cubature methods
on scattered data via resampling on the support of known algebraic cuba-
ture formulas, by adaptive interpolation of different kinds, such as moving
polynomial interpolation at Leja-like points, LOOCV RBF, Multinode Shep-
ard and BLOOCV RBF-PUM. These methods are compared with the most
recent approaches to scattered cubature in the literature, namely LOOCV
optimized RBF integration over polygons and Glaubitz’s LS-CF (based on
ℓ2 weight minimization under polynomial moment matching conditions).

To our knowledge, this is the first systematic comparison of different ap-
proaches for numerical cubature by scattered data, in particular concerning
how much accuracy is obtainable from the data. The numerical results con-
firm that adaptive interpolation applied to known Positive-Interior algebraic
cubature formulas can provide valid alternatives to the existing methods,
with higher flexibility concerning the shape of integration domains. Exten-
sion to three-dimensional integration problems appears natural and will be
object of future research.
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