On the Superlinear Convergence
of the Secant Method

Marco Vianello and Renato Zanovello

This note is devoted to filling a gap present in most of the numerical analysis
textbooks, concerning the discussion on the superlinear convergence of the secant
method.

Let us consider the secant method for the numerical solution of f(x) = 0 (cf,,
e.g. [2, §6.4])
‘xn = ‘xn—l
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It is well known that the method converges, for sufficiently good initial approxi-
mations x; and x,, if f'(£) =+ 0 and f(x) has a continuous second order derivative
(at least in a neighborhood of the zero £). It is also known (cf., e.g., [1, §3.5]) that
the fundamental three-term recurrence relation holds
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where e, = £ — x,,, and where fl1,,...,1,] denotes the mth divided difference at
the points 1,...,1,, (cf, e.g., [1, §2.3]). From (2) follows
leqsql = cole,l le,_4l
1] f7(£x)
c, = =|= s £, econh(x,_,,x,, &), 1, € conh{x,_,,x.), (3

conh(t,, ..., 1,) denoting the open convex-hull of the points t,,...,1,,.

However, the determination of the order of convergence and of the asymptotic
error constant is carried out unsatisfactorily in most of the textbooks. Indeed,
either the discussion is heuristic in nature, or, having assumed that

L
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for some positive constants p and C, their respective values are deduced.

Anyway for a rigorous treatment the usual reference is the classical book by
Ostrowski [3], where, in addition, hypotheses on the third derivative f*(x) are
introduced in order to study the asymptotic behavior.

In [4] the superlinear convergence property is proved without resorting to the
third derivative, but such a proof is long and complex because of its generality,
being addressed to a wide class of iterative methods.

The purpose of this note is to provide a rigorous and quite simple proof of the
superlinear convergence of the secant method, under natural assumptions on f(x).

758 SUPERLINEAR CONVERGENCE OF THE SECANT METHOD [October



y=flx)

e ——— —
]

Figure 1. The Secant Method for finding roots, It is classically known that under mild restrictions,
convergence is superlinear, and the errors satisfy a simple (Fibonacci-like) recurrence. There is a simple
and elegant proof of this fact.

Following [1, §3.5, p. 103], setting y, = le,|/le,_,I", n = 1 with p > 0, it is
immediately seen from (3) that
AT e L nz1 (5)

if p is the positive solution of t*—¢—1=10, ie. p is the “golden ratio”
(1 + v5)/2. Now, assuming f"(£) # 0, we'll prove that

1/
LI f7(€)
limy, = |=|=— =C. (6
Lf@} ’
Taking logarithms in (5) and defining z, = In(y,), @, = In(c,), we get the new
first order linear difference equation

1
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that can be immediately solved by recurrence, obtaining

z,= [—l] _ zZ,+4,, nz2, (8)
P

where

=) P

Since p > 1, {z,} (and hence {y,}) converges if and only if {§,) converges.
At this point it is clear that the problem can be reduced to studying the
asymptotic behavior of a sequence like

=2 ]J
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where

lima,=a and Y, Ibl <=, (11)
[

J =il

The sequence defined by (10) 15 wsually termed the convolution of the two
sequences {a,} and {b ). It naturally appears. for instance, as general term in the
Cauchy product of the series T, . b,

Now we'll prove that

lim e, = ab. b=} b, (12)

R=%* i=0

exploiting essentially the approach used in proving the well-known Cesaro’s
theorem for sequences. A second. more abstract proof of (12), which we omit for
brevity, could be given by the well-known dominated convergence theorem.

Proof: Without any loss of generality we can assume @ = 0 in (11}, In fact

[} =
U'“_ﬂb= Efﬂ"_r_ﬂ}bl_ﬂ E bj
J=10 f==]
and by the summability of {5} the second term in the right-hand side above is
infinitesimal as n — =. Let us split the sum (10} in the following way

o

L
T, = E an—;'b_l + 2 a, —jb_.l" {13]

J=10 J=m=]

where m = 0, n = m + 1. Fix £ > 0. In view of (11) we can determine two positive
indexes

E
v,( &) such that |a,| < ﬁ fork z v,
(¢) such that T 1l < —
v.{ £) such that A et
k. M

where M is an upper bound for |a,| and B = L7_,|b,|. It follows from (13) with
m + 1 = v, that

lo,| <e fornzw(e)=w, +v,. =

Going back to the sequence {S,} defined in (9) we finally obtain from (3), (5),
(12)

p ;
= | 1/ .
ot Und
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lim §, = ( lim a,) i (—-:-?-)J = In(e)

= i — j=0

1
where ¢ = < |f"(£)/f'(£)| and hence by (8)

limy, = lim exp(z,) =c"/7 # 0,
H=x

H=x

i.e.. the secant method has order of convergence p = (1 + V5 )/2 and asymptotic

error constant
1/
i : !
= — .
2
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A last remark has to be made. The discussion above is based on the assumption
fr(&) + 0. If, on the contrary, f"(£) = 0, excluding the trivial case that the method
yields the root in a finite number of steps, we have f"(£,) # 0 for all #n. Then
lim, __In(c,) = —= and hence C = lim, _,, v, = 0. Thus the convergence order
of the secant method may be greater than p. To conclude we can say, following
e.g. [4], that the convergence of the secant method is superlinear.
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