
Polynomial approximation on pyramids,

cones and solids of rotation ∗

S. De Marchi and M. Vianello 1

Dept. of Mathematics, University of Padova (Italy)

April 29, 2013

Abstract

Given a planar compact set Ω where a weakly admissible mesh
(WAM) is known, we compute WAMs and the corresponding discrete
extremal sets for polynomial interpolation on solid (even truncated)
cones with base Ω (with pyramids as a special case), and on solids
corresponding to the rotation of Ω around an external coplanar axis
by a given angle.
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1 Introduction

In the seminal paper [8], the notion of admissible mesh for multivariate poly-
nomial approximation has been introduced. A (weakly) admissible mesh is
a finite norming set, with respect to the infinity-norm, for polynomials of
a fixed degree on a given (polynomial determining) compact set. In recent
years, there has been increasing attention to this notion in the approxi-
mation theory and numerical literature, due to the deep connections with
multivariate polynomial interpolation and approximation.

For example, in [8] it has been shown that WAMs are nearly optimal
for polynomial least squares approximation in the uniform norm. On the
other hand, discrete extremal sets (of Fekete and Leja type) extracted from
such meshes show good Lebesgue constants and behave asymptotically as
the corresponding continuous extremal sets; we refer the reader, e.g., to the
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technical papers [2, 3, 4, 18], and to the excellent survey [1] on the state of the
art in multivariate polynomial interpolation and approximation. It is also
worth observing that such discrete extremal sets have begun to play a role
in the numerical PDEs context, concerning spectral element and collocation
methods; cf., e.g., [14, 21].

We recall that a weakly admissible mesh (WAM) is a sequence of finite
subsets of a multidimensional compact set, say An ⊂ K ⊂ C

d, such that

‖p‖K ≤ C(An) ‖p‖An
, ∀p ∈ P

d
n(K) , (1)

where both C(An) and card(An) increase at most polynomially with n;
here and below, Pd

n(K) denotes the space of d-variate polynomials of degree
not exceeding n (restricted to K), and ‖f‖X the sup-norm of a function f
bounded on the (discrete or continuous) set X. Observe that necessarily
card(An) ≥ dim(Pd

n(K)).
When C(An) is bounded we speak of an admissible mesh. Among their

properties, we quote that WAMs are preserved by affine transformations,
and can be constructed incrementally by finite union and product. More-
over, we recall that unisolvent interpolation point sets, with slowly (at most
polynomially) increasing Lebesgue constant, are WAMs, with C(An) equal
to the Lebesgue constant and card(An) = dim(Pd

n(K)). Concerning these
and other basic features of WAMs, we refer the reader to [4, 8].

In the present note, which is mainly of computational character, we
construct real 3-dimensional WAMs, on two classes of solid compact sets
corresponding to a given planar compact, say Ω, where a WAM is known.

The first class are solid cones with base Ω and vertex x∗, i.e., the sets
formed by all the segments connecting x∗ with a point of Ω (pyramids,
i.e., cones with polygonal base, being a subclass), along with the truncated
cones obtained by cutting with a plane parallel to the base. The second
are solids of rotation with cross section Ω and (external) axis α, i.e., the
sets obtained by the rotation of Ω by a given angle, even smaller than 2π,
around a coplanar line α. In this case, we resort to some recent results on
trigonometric interpolation on subintervals of the period, cf. [6, 9].

We show that the (numerically evaluated) infinity-norms of the polyno-
mial least squares approximation corresponding to the whole meshes, are
much lower than the theoretical estimates given in [8]. Moreover, using the
results developed in [2, 3, 4, 18] and the numerical code [19], we are able to
compute from the meshes discrete extremal sets for polynomial interpola-
tion, along with numerical estimates of their Lebesgue constants.

2 Cones and solids of rotation

In this section we state and prove the main result, in a geometric fashion.
We do not make here a distinction between cones and pyramids, since the
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latter are cones with a polygonal base.

Theorem 1 Let Ω ⊂ R
3 be a planar compact set where a 2-dimensional

WAM, say An, is known, cf. (1). Let x∗ be a point in R
3 not belonging

to the plane of Ω; let α be a line in R
3 lying on the plane of Ω and not

intersecting Ω (or intersecting Ω only at the boundary), and let θ∗ ∈ (0, 2π]
a given angle. Then, the following hold:

(i) (cones) the cone C with base Ω and vertex x∗, that is the pencil of the
segments joining x∗ with each point of Ω, has a WAM, say Bn, with
C(Bn) = O(C(An) log n) and card(Bn) = 1 + ncard(An), given by the
union of the n + 1 Chebyshev-Lobatto points of the segments joining
x∗ with each of the points of An; if we consider the truncated cone
obtained by cutting the cone with a plane parallel to the base, then the
WAM is given by the union of the Chebyshev-Lobatto points of the cut
segments, and has cardinality (n+ 1)card(An);

(ii) (solids of rotation) the solid of rotation R obtained by rotating Ω
around the axis α by an angle θ∗ has a WAM, say Bn, with C(Bn) =
O(C(An) log n) and card(Bn) = (2n + 1)card(An), given by the union
of the 2n+ 1 copies of An corresponding to rotating An by the angles

θj =
θ∗

2
+ 2arcsin (ξj sin(θ∗/4)) ∈ (0, θ∗) , (2)

where {ξj} are the classical Chebyshev points in (−1, 1), i.e., the zeros
of the Chebyshev polynomial T2n+1(·)

ξj = cos

(

(2j − 1)π

2(2n + 1)

)

, j = 1, 2, . . . , 2n+ 1 .

Proof. We first prove (i). Given a polynomial p ∈ P
3
n and a point x belonging

to the cone, the restriction of p to the pencil segment σ(x) corresponding to
x, is a univariate polynomial and thus the following inequality holds

|p(x)| ≤ Λn ‖p‖Xn(σ(x)) , Xn(σ(x)) = {τj(σ(x)) , j = 0, . . . , n} , (3)

where {τj(σ(x))} are n + 1 Chebyshev-Lobatto points of the segment (or-
dered in such a way, for example, τ0 = x∗ and τn ∈ Ω), and Λn = O(log n)
the Lebesgue constant of Chebyshev-Lobatto interpolation of degree n (which
is invariant under affine transformations).

Then, we get

‖p‖C ≤ Λn ‖p‖⋃
x Xn(σ(x)) = Λn ‖p‖⋃

j Ωj
, (4)
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where

Ωj = {τj(σ(x)) , x ∈ C} = {τj(σ(y)) , y ∈ Ω} , j = 0, . . . , n. (5)

Observe that, by the intercept theorem of Thales of Miletus applied to each
pair of segments of the pencil, the points τj(σ(x)) for a given j are all
coplanar, thus the sets Ωj belong to planes parallel to the plane of Ω, and
are affine transformations of Ω. It follows that a polynomial p ∈ P

3
n restricted

to Ωj is a bivariate polynomial satisfying the polynomial inequality

‖p‖Ωj
≤ C(An) ‖p‖Yn,j

, Yn,j = {τj(σ(y)) , y ∈ An} , j = 0, . . . , n ,

since the constant in (1) is invariant under affine transformations, and finally
by (4)

‖p‖C ≤ Λn ‖p‖
⋃

j Ωj
≤ ΛnC(An) ‖p‖

⋃
j Yn,j

, (6)

i.e., Bn =
⋃n

j=0 Yn,j =
⋃

y∈An
Xn(σ(y)) is a WAM for the cone C. The

assertion on the cardinality of Bn follows immediately by subtracting the
repetitions of the the vertex. In the case of a truncated cone, we can follow
exactly the reasoning above, with the only difference that the Chebyshev-
Lobatto points are those of the subsegments corresponding to the cut.

To prove (ii), we consider cylindrical coordinates, say ((r, t), θ),

(x1, x2, x3) = φ((r, t), θ) = (r cos θ, r sin θ, t) , φ : Ω× [0, θ∗] → R ,

with respect to the (oriented) axis α that, with no loss of generality can
be taken as the x3 axis, x = (x1, x2, x3). In such coordinates, a polyno-
mial p ∈ P

3
n becomes a tensor product polynomial, algebraic in (r, t), and

trigonometric in θ, say q((r, t), θ), with q ∈ P
2
n

⊗

Tn, where Tn denotes the
space of univariate trigonometric polynomials of degree not exceeding n.

Since the underline transformation into cylindrical coordinates is surjec-
tive, R = φ(Ω × [0, θ∗]), we have

‖p‖R = ‖q‖Ω×[0,θ∗] . (7)

Now, for every ((r, t), θ) ∈ Ω× [0, θ∗] we can write the chain of inequalities

|q((r, t), θ)| ≤ C(An) max
(r,t)∈An

|q((r, t), θ)|

≤ C(An) max
(r,t)∈An

Λn max
θ∈Θn

|q((r, t), θ)| = C(An)Λn ‖q‖An×Θn
, (8)

where Θn = {θj , j = 1, . . . , 2n+1} (cf. (2)) is a set of suitable angular nodes
for trigonometric interpolation on subintervals of the period, and Λn =
O(log n) their Lebesgue constant, which is invariant with respect to the
angular interval; cf. [6, 9]. From (7)-(8) immediately follows

‖p‖R ≤ C(An)Λn ‖p‖φ(An×Θn) , (9)
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i.e., Bn = φ(An × Θn) (that corresponds to 2n + 1 copies of An rotated by
the angles θj) is a WAM for the solid of rotation R. �

Remark 1 It is clear that (i) of Theorem 1 can be extended in a straight-
forward way to “cylindroids”, that are truncated cones where the vertex x∗

is taken at infinity. In such instances, the segments σ(x) are all parallel and
the sets Ωj, Yn,j are simply translations of Ω and An, respectively (cf. [10]
for the case of the standard cylinder).

Remark 2 Since Theorem 1 refers to planar compacts where a WAM is
known, it is worth recalling that any polynomial determining compact Ω ⊂
C
2 admits trivially a WAM with (n + 1)(n + 2)/2 cardinality (its Fekete

points), but also an admissible mesh of cardinality O((n log n)2), an exis-
tence result recently proved in [1, Prop.23]. Such admissible meshes, how-
ever, being formed by Fekete points of suitable degree, are difficult to com-
pute. On the other hand, real (weakly) admissible meshes with optimal
cardinality O(n2) are known constructively in several instances, not only on
basic geometries, such as the triangle and the disk (cf. [5, 6]), but for exam-
ple also on convex and concave polygons, circular sections (such as sectors
and zones), convex and even starlike bodies with C2 boundary [12, 13, 20].
Admissible meshes with near optimal cardinality can be constructed on pla-
nar convex bodies, and on fat subanalytic compacts; cf. [13, 17].

3 Numerical results

A number of theoretical and computational results have pointed out in the
last years that WAMs are relevant structures for multivariate polynomial
approximation.

Let us term LAn
the projection operator C(K) → P

d
n(K) defined by

polynomial least squares on a WAM, and IFn
the projection operator defined

by interpolation on Fekete points of degree n extracted from a WAM (Fekete
points are points that maximize the absolute value of the Vandermonde
determinant). Concerning their operator norms with respect to ‖ · ‖K , in [8]
it is proved that

‖LAn
‖ / C(An)

√

card(An) , ‖IFn
‖ ≤ C(An) dim(Pd

n(K)) , (10)

which show that WAMs with slowly increasing constants C(An) and car-
dinalities, are sets of choice for multivariate polynomial approximation.
Weakly admissible and even admissible meshes with O(nd) cardinality are
known to exist for several d-dimensional compacts, and in some cases are
also easily computable; cf., e.g., [2, 5, 7, 13, 20].

The extraction of Fekete points from a WAM is a NP-hard problem, but
two greedy algorithms, resting on basic matrix factorization methods, can
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be successfully adopted. Working on rectangular Vandermonde matrices in
a suitable polynomial basis, by QR factorization with pivoting one com-
putes the so-called “approximate Fekete points”. On the other hand, LU
factorization with pivoting allows to compute the so-called “discrete Leja
sequences”; cf. [3, 18].

Both these families show good interpolation properties; moreover, it has
been proved that they behave asymptotically as the “true” Fekete points,
namely that the associated discrete measure converges to the pluripotential
equilibrium measure of the compact [1, 2, 3].

On the other hand, all the numerical tests have shown that bounds (10)
for the projection operators are by large overestimates of the actual norms
(even using the approximate sets), cf., e.g., [2, 5].

We present some numerical results concerning the present 3-dimensional
framework; the corresponding set of Matlab functions and demos can be
downloaded from [11]. In Figures 1 and 3, we plot the WAM and the approx-
imate Fekete points extracted from them, for a pyramid with quadrangular
base, a truncated cone with circular base, and a portion of a torus with cir-
cular cross-section. The 3-dimensional WAMs have been constructed as in
Theorem 1, starting from the 2-dimensional meshes studied in [5, 12], which
have card(An) ≈ n2 and C(An) ≈ ( 2

π
log n)2. Notice that the mesh points

(and thus the approximate Fekete points) lie on a pencil of segments in the
conical instances, and on a bundle of parallel circular arcs in the toroidal
instance.

In Figures 2 and 4 the norms of the interpolation (top) and least squares
(bottom) operators are shown (they have been evaluated numerically on a
finer control WAM of degree 4n). Such norms turn out to be much lower
than the bounds (10).

However, it is not always possible to use a theoretical WAM for prac-
tical computations, especially in the present 3-dimensional instances, when
the 2-dimensional meshes on Ω are already huge at moderate degree. For
example, if Ω is a polygon, then by triangulation and finite union we can
obtain a WAM that has constant C(An) ≈ ( 2

π
log n)2, but with cardinality

card(An) ≈ mn2, where m is the number of sides, which would led to a
WAM for the cone or the solid of rotation with card(Bn) ≈ mn3. Already
for moderate values of m and n, finding a WAM with lower cardinality
could become essential to manage computational complexity and memory
requirements.

In order to reduce the sampling cardinality, we could use the (until now
only experimental) observation that the approximate Fekete points of degree
2n for a d-dimensional compact K, say F̃2n, present low norms in least
squares approximation of degree n, and have clearly cardinality equal to
dim(Pd

2n(K)) (irrespectively of the geometry of the compact). In Figure 5,
we show for illustration the WAM and the approximate Fekete points of
degree 10 on a regular decagon, and the norms of the least squares operator
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for degree n on the approximate Fekete points F̃2n, n = 1, ..., 16.
A possible theoretical interpretation of such a behavior could come from

an open problem stated in [1]: for every (L-regular) compact set in K ⊂ C
d,

does there exist c = c(K) > 1 such that Fekete arrays of degree cn form an
admissible mesh for K? Notice that the fact that univariate Chebyshev-
like algebraic and trigonometric interpolation sets of degree cn, c > 1, form
an admissible mesh, is well-known; cf., e.g., [6, 13, 20]. The notion of L-
regularity arises in pluripotential theory, and has strong connections with
multivariate polynomial approximation. In the real case, a sufficient con-
dition for L-regularity is for example that the compact domain is fat (i.e.,
Ko = K), and subanalytic [15], which is essentially equivalent to the prop-
erty that K is a finite union of images of cubes by open analytic mappings;
we refer the reader to [16] for a survey on pluripotential theory and suban-
alytic geometry. In the present framework, it is not difficult to show that
a cone or a solid of rotation are fat and subanalytic, and thus L-regular,
whenever the planar compact set Ω is fat and subanalytic as a subset of the
two real dimensional affine plane in which it lies. This is the case in all of
our examples.

In general, given a P
d
n(K)-determining finite set Xn ⊂ K, the least

squares operator is a projection operator on the polynomial space, that can
be written as LXn

f(x) =
∑

ξ∈Xn
f(ξ)φξ(x), where {φξ} is a suitable array

of generators of Pd
n(K), from which we get ‖LXn

‖ = maxx∈K
∑

ξ∈Xn
|φξ(x)|

and ‖LXn
f‖K ≤ ‖LXn

‖ ‖f‖Xn
; cf., e.g., [4].

Then, (1) holds for the planar compact Ω with An = Xn = F̃2n, namely

‖p‖Ω ≤ ‖L
F̃2n

‖ ‖p‖
F̃2n

, ∀p ∈ P
d
n(Ω) , (11)

i.e., F̃2n is a WAM, at least for the range of degrees that have been experi-
mentally tested. This entails that the corresponding WAM of the cone with
base Ω, or of the solid of rotation with cross-section Ω, say Bn, will have
C(Bn) = O(‖L

F̃2n
‖ log n) and card(Bn) ≈ 2n3 (irrespectively of the geom-

etry of Ω). A further reduction of the sampling cardinality, which becomes
(2n + 1)(2n + 2)(2n + 3)/6 ≈ 4

3n
3, can be obtained resorting again to the

approximate Fekete points of degree 2n extracted from B2n: a numerical
test is shown in Figure 6.
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[16] W. Pleśniak, Multivariate polynomial inequalities via pluripotential
theory and subanalytic geometry methods. Approximation and proba-

11



Figure 5: Top: WAM (dots) and corresponding approximate Fekete points
(small circles) of degree 10 on a regular decagon. Bottom: norm of the
least squares projection operator on approximate Fekete points of degree
2n, n = 1, . . . , 16.

0 2 4 6 8 10 12 14 16
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

bility, 251–261, Banach Center Publ., 72, Polish Acad. Sci., Warsaw,
2006.
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