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Abstract

We present a numerical code for the computation of nodes and weights
of a low-cardinality positive quadrature formula on spherical triangles,
nearly exact for polynomials of a given degree. The algorithm is based on
subperiodic trigonometric gaussian quadrature for planar elliptical sectors
and on Caratheodory-Tchakaloff quadrature compression via NNLS.

1 Introduction

In this note we develop an algorithm for the computation of nodes and positive

weights of a quadrature formula on spherical triangles, which is nearly exact for
algebraic polynomials of a given degree n on the 2-sphere, and whose cardinality
does not exceed the dimension of the corresponding polynomial space, namely
dim(P3

n(S
2)) = (n+ 1)2. One of our main goals is also to provide easily usable

numerical codes.
Indeed, despite of the relevance of spherical triangles in the field of Geo-

mathematics, the topic of numerical quadrature on spherical triangles, starting
from a classical paper by K. Atkinson in the ’80s [3], has received some attention
in the literature of the last decades, with however a substantial lack of easily
available numerical software (at least to our knowledge); cf. [4, 5, 6, 7] and
[16, §7.2] for an overview. Some of the methods have been developed in the
framework of numerical PDEs on the sphere, cf. e.g. among others [15, 17].
Notable exceptions are [19, 20], where however the algorithms are not tailored
to polynomial spaces, the problem being discussed in the framework of local
RBF interpolation on scattered data.
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In Section 2 we describe our algorithm (implemented in Matlab) for the con-
struction of the quadrature formula, based on subperiodic trigonometric gaus-
sian quadrature for planar elliptical sectors [8] and on Caratheodory-Tchakaloff
quadrature compression via NNLS [18], and in Section 3 we present some nu-
merical tests.

2 Quadrature on spherical triangles

We shall concentrate on spherical triangles T =
⌢

ABC with centroid (A + B +
C)/‖A+B +C‖2 at the north pole (with no loss of generality, up to a suitable
rotation) that are not “too large” in the sense that they are completely contained
in the northern hemisphere, and do not touch the equator. Then we can write
the surface integral of a continuous function f(x, y, z) on such a spherical triangle
in cartesian coordinates (cf. e.g. [1])

∫

T

f(x, y, z) dσ =

∫

Ω

f(x, y, g(x, y))
1

g(x, y)
dx dy , (1)

where g(x, y) =
√

1− x2 − y2 and Ω is the projection of T onto the xy-

plane, that is the curvilinear triangle whose vertices, say Â, B̂, Ĉ, are the xy-
coordinates of A,B,C; see Fig. 3.

Notice that the sides of Ω are arcs of ellipses centered at the origin, being
the projections (and thus transformations by an affine mapping) of great circle
arcs (the sides of T ). Then we can split the planar integral into the sum of
the integrals on three elliptical sectors, obtained by joining the origin with the
vertices Â, B̂, Ĉ, namely

∫

Ω

f(x, y, g(x, y))
1

g(x, y)
dx dy =

3
∑

i=1

∫

Si

f(x, y, g(x, y))
1

g(x, y)
dx dy . (2)

Now, we seek a quadrature formula which as close as possible to an algebraic
formula (at machine precision), when f is a polynomial in P

3
n, that is f(x, y, g) is

a spherical polynomial. This is possible since we have at hand algebraic quadra-
ture formulas on circular and elliptical sectors, that have been constructed in [8]
by means of arc blending and subperiodic trigonometric gaussian quadrature [9].
We have already used such formulas, via subdivision into sectors, in quite dif-
ferent applications, for example algebraic quadrature on geographic rectangles
[14], on the intersection and union of planar disks [22], on curvilinear elements
obtained by intersection/difference of a polygonal element with a disk in VEM
methods for PDEs [2].

Clearly f(x, y, g)/g in general is not a polynomial in (x, y), but let us focus
on the monomial basis

f(x, y, z) = xαyβzγ = xαyβgγ , 0 ≤ α+ β + γ ≤ n (3)

(which on T is not a basis but a set of generators for the spherical polynomials).
We have two distinct situations:
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• if γ is odd, then f(x, y, g)/g is a polynomial in (x, y) of degree at most
n− 1, namely f(x, y, g)/g ∈ P

2
α+β+γ−1 ⊆ P

2
n−1;

• on the other hand, if γ is even (including γ = 0), then gγ = (g2)γ/2 is a
polynomial of degree γ and f(x, y, g)/g ∈ 1

g P
2
α+β+γ ⊆ 1

g P
2
n.

In the second instance, let pε(x, y) be a polynomial of degreem = m(ε) such that
|pε − 1/g| ≤ ε (1/|g|), then fpε ∈ P

2
n+m approximates f/g up to ε. This entails

that a quadrature formula with nodes {(xj , yj)} and positive weights {wj} of
exactness degree n + m on Ω will be nearly exact for f(x, y, g)/g if f ∈ P

3
n,

and thus a formula with nodes {(xj , yj, g(xj , yj))} and weights {wj/g(xj , yj)}
will be near-algebraic (nearly exact) in P

3
n(T ), i.e. for spherical polynomials

restricted to the spherical triangle T .
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Figure 1: The degree m(ε) as a function of ρ.

In order to find m = m(ε), recalling that g(x, y) =
√

1− (x2 + y2) and

0 ≤ x2 + y2 ≤ ρ = max
{

‖Â‖22, ‖B̂‖22, ‖Ĉ‖22
}

< 1 , (x, y) ∈ Ω , (4)

it is sufficient to find the degree of a (near) optimal univariate polynomial ap-
proximation (up to ε) to the function 1/

√
1− t for t ∈ [0, ρ]. Though a theo-

retical analysis could be done, for example by means of Jackson theorem, this
would typically produce overestimates of the actual degree. We have then cho-
sen a numerical approach. To this purpose, we have used the powerful Chebfun
package [12] (which eventually works with Chebyshev-like approximation), tab-
ulating the degrees ν = ν(ε, ρ) at machine precision ε on a fine discretization
of ρ ∈ (0, 0.99]. Once we have found the appropriate ν, which is the degree
(the “length” minus 1) of the Chebfun representing 1/

√
1− t, we simply take

m = 2ν, since the underlying univariate polynomial has to be composed with
t = x2 + y2. To give an idea of the size increase, in Fig. 1 we have plotted a
least squares fit of the values of m computed by Chebfun as a function of ρ.
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Concerning the quadrature formula of exactness degree n + m on Ω, we
observe that each elliptical sector Si, where ∪3

i=1Si = Ω, can be seen as an
affine transformation of a circular sector of the unit disk with arclength equal
to the length of the great circle arc projected onto the elliptical arc. Such an
affine transformation is completely determined by mapping the planar triangle
with the same vertices of the circular sector, onto the planar triangle given by
the vertices of the elliptical sector (keeping the origin fixed); see Fig. 2.

Figure 2: Circular and elliptical sectors with quadrature nodes.

We can then take the algebraic quadrature formula of exactness degreem+n
for the circular sector, whose Nn+m = (n+m+ 1)⌈n+m+2

2
⌉ nodes are mapped

to each elliptical sector and whose positive weights have to be multiplied by the
absolute value of the transformation matrix determinant. Finally, the collection
of all nodes, say {(xj , yj)}, 1 ≤ j ≤ 3Nn+m, is lifted to the overhanging spherical
triangle and the corresponding weights, say {wj}, are multiplied by 1/g(xj, yj),
to get the resulting quadrature formula on the spherical triangle

IT (f) =

∫

T

f(x, y, z) dσ ≈
3Nn+m
∑

j=1

wj
√

1− x2
j − y2j

f
(

xj , yj ,
√

1− x2
j − y2j

)

,

(5)
which is nearly exact for spherical polynomials of degree not exceeding n; see
Fig. 3.

Our Matlab codes implementing all the steps of the procedure just described
are available at [23]. Moreover, we have performed a further compression step
of the resulting quadrature formula on spherical triangles, since its cardinality
3Nn+m ≈ 3

2
(n + m)2 can be very high, especially for spherical triangles with

long sides, where ρ in (4) approaches 1. To give an idea, already for ρ = 0.5 we
have m = 40 (see Fig. 1), so that the overall number of nodes is more than 2000
even for small n. For example, for n = 5 it is about 3200, while the dimension
of the spherical polynomials is only 62 = 36.

Indeed, starting from [21], in a series of papers we have implemented what
we have called CATCH (Caratheodory-Tchakaloff) compression of multivari-
ate discrete measures, in particular multivariate quadrature formulas. Based
on the Tchakaloff theorem on positive quadrature, that in the framework of
discrete measures can be proved via the Caratheodory theorem on conical lin-
ear combinations of finite-dimensional vectors (applied to the columns of the
Vandermonde-like matrix of a moment matching system, cf. [18]), we can
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compress the quadrature formula obtained above to another one with positive
weights, having the same moments up to degree n and as support a subset of the
nodes with cardinality not exceeding dim(P3

n(T )) = dim(P3
n(S

2)) = (n + 1)2.
The compression technique adopts an accelerated version of the Lawson-Hanson
active-set method for NonNegative Least Squares (NNLS) to solve the underde-
termined moment matching system, automatically adapting to the appropriate
polynomial space on algebraic varieties such as the sphere; cf. [11] and the
routine dCATCH in the recent d-variate package [10].

Figure 3: Quadrature nodes on a spherical triangle lifted from the projected
elliptical triangle, before compression.

3 Numerical examples

In this section we present several numerical tests, in order to assess the quality of
our compressed near-algebraic quadrature formulas on three spherical triangles
with different extension (the key parameter being ρ in (4)). In particular, the
triangle of Table 3 is the sphere octant with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1).
In Tables 1-3 we show the cardinalities of the basic and of the compressed
formula, the corresponding compression ratio and the CPU time needed for the
computation of the compressed formula, on a sequence of polynomial degrees.
All the numerical results have been obtained in Matlab R2018a, on a 2,7GHz
Intel Core i5 CPU with 16GB of RAM. It is worth noticing that using the
accelerated version [11] of the Lawson-Hanson active-set method for NNLS in
the compression stage (which is the computational bulk), gives a speed-up by a
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factor 3-4 with respect to the standard lsqnonneg Matlab implementation.
Moreover, we measure the quality of the formulas by computing the average

relative errors in integrating the Spherical Harmonic basis, after having filtered
out the integrals that are null or tiny (below a given tolerance, say e.g. 10−12);
the reference values have been obtained by the basic formula at higher degree,
with an additional check by an adaptive code implemented along the lines of
[3].

We see that the compression ratios are remarkable, especially at low degrees
and “large” ρ, and that both the basic and the compressed formula have a very
good quality, the compressed exhibiting a limited loss of precision with respect
to the basic one (within one order of magnitude in this degree range).

n # basic # compr Cratio CPU Ebasic(SPH) Ecompr(SPH)
5 936 36 26:1 0.03s 1e-15 3e-15
10 1305 121 11:1 0.04s 2e-15 1e-14
15 1836 256 7:1 0.1s 3e-15 3e-14
20 2340 441 5:1 0.8s 3e-15 2e-14
25 3036 676 4:1 5s 4e-15 1e-14
30 3675 961 4:1 22s 5e-15 2e-14

Table 1: Cardinalities, compression ratio, CPU time in seconds and average relative
errors on Spherical Harmonics (SPH) for a spherical triangle with ρ ≈ 0.077.

n # basic # compr Cratio CPU Ebasic(SPH) Ecompr(SPH)
5 1632 36 45:1 0.03s 2e-15 2e-15
10 2109 121 17:1 0.04s 2e-15 2e-15
15 2772 256 11:1 0.3s 5e-15 1e-14
20 3384 441 8:1 0.7s 4e-15 1e-14
25 4212 676 6:1 8s 1e-14 1e-14
30 4959 961 5:1 31s 3e-14 4e-14

Table 2: As in Table 1 for a spherical triangle with ρ ≈ 0.27.

n # basic # compr Cratio CPU Ebasic(SPH) Ecompr(SPH)
5 5580 36 155:1 0.02s 3e-15 4e-15
10 6435 121 53:1 0.1s 1e-14 1e-14
15 7560 256 30:1 0.3s 1e-14 3e-14
20 8550 441 19:1 1s 1e-14 5e-14
25 9840 676 15:1 4s 1e-14 6e-14
30 10965 961 11:1 19s 3e-14 1e-13

Table 3: As in Table 1 for a sphere octant (ρ ≈ 0.67).

In Table 4 we show the quadrature errors on five test functions:

f1(x, y, z) = 1 + x+ y2 + x2y + x4 + y5 + x2y2z2 ,
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f2(x, y, z) = cos(10(x+ y + z)) ,

f3(x, y, z) = 0.75 exp (−(9x− 4)2/4− (9y − 2)2/4− (9z − 2)2/4)

+0.75 exp(−(9x+ 1)2/49− (9y + 1)/10− (9z + 1)/10)

+0.5 exp (−(9x− 7)2/4− (9y − 3)2/4− (9z − 5)2/4)

−0.2 exp (−(9x− 2)2 − (9y − 7)2 − (9z − 5)2) ,

f4(x, y, z) = (1 + tanh(9x− 9y + 9z))/9 ,

f5(x, y, z) = (1 + sign(9x− 9y + 9z))/9 ,

on the sphere octant of Table 3 (ρ ≈ 0.67). Functions of this kind have been
used in the literature on numerical integration on the sphere, cf. [13, 24]. In
particular, f1 is a polynomial of degree 6, f2, f3 and f4 are smooth, but f4 has a
steep gradient and f5 is discontinuous, both at a great circle arc (the intersection
of the plane x − y + z = 0 with the octant). For completeness we give also the
values of the integrals at machine precision, say Ij = IT (fj), computed by an
adaptive method, that are: I1 = 3.66706142481523, I2 = −0.492762315715176,
I3 = 0.265883813176965, I4 = 0.273012443544125, I5 = 0.273546537186839.

n Ecompr(f1) Ecompr(f2) Ecompr(f3) Ecompr(f4) Ecompr(f5)
5 1e-05 4e-03 6e-02 3e-02 9e-02
10 2e-15 3e-06 9e-04 2e-03 1e-02
15 2e-15 2e-11 2e-04 1e-04 3e-03
20 1e-15 5e-15 2e-05 4e-04 6e-03
25 1e-15 3e-15 2e-07 5e-05 5e-03
30 6e-16 4e-15 4e-08 3e-05 2e-03

Table 4: Relative errors in the integration of the test functions defined above by the
compressed formula, on the sphere octant of Table 3.

The results generally agree with expectations for these functions by an alge-
braic formula, in particular slower convergence for the rapidly varying functions,
since the quadrature errors are substantially ruled only by the best uniform ap-
proximation with spherical polynomials of degree not exceeding n. We do not
report the errors of the basic formula, that are several orders of magnitude below
those of the compressed formula (except for the discontinuous function), which
is however not surprising due to the huge number of nodes before compression.

All the codes and the demos are available at [23].
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