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Computing Tchakaloff-like cubature rules
on spline curvilinear polygons
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Abstract

We present an algorithm that computes a PI-type (Positive Interior) algebraic cubature rule of degree n
with at most (n+ 1)(n+ 2)/2 nodes, over spline curvilinear polygons. The key ingredients are a theorem
by Davis on Tchakaloff discretization sets, a specific in-domain algorithm for such spline polygons and
the sparse nonnegative solution of underdetermined moment matching systems by the Lawson-Hanson
NonNegative Least Squares solver. A numerical code (implemented in Matlab) is also provided, together
with several numerical tests.
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1 Introduction
During the last years, there has been an increasing interest on algebraic cubature rules over 2d polygonal and curvilinear domains,
especially in the framework of the numerical solution of PDEs. To quote, among many others, a couple of relevant issues, we may
recall that within Virtual Elements Methods (VEM), there is need for low-cardinality formulae on elements that have nonstandard
shape with possibly curved edges, that could be typically well approximated by parametric splines (see e.g. [1, 3, 4, 6] and the
references therein). In these instances, the required Algebraic Degree of Precision, a term often shortened by the acronym ADE,
is usually low (typically from 2 to 4), but rules of PI-type, i.e. with Positive weights and Interior nodes, are in many senses more
appealing.

On the other hand, the importance of having algebraic cubature rules on general planar domains with curved boundaries,
possibly tracked by splines, has been shown for example also in the framework of Lagrangian flux calculation through a fixed
curve for scalar conservation laws, cf. [30, 31].

In [18, 22] we already coped the problem of determining algebraic cubature rules on general domains with curved boundaries,
approximated by polynomial or piecewise polynomial parametric curves. These rules turn out to be of PI-type only in convex
or special nonconvex regions. When such formulae are available, their cardinality can be reduced by a general method for the
compression of discrete measures, cf. e.g. [23].

Moreover, we have recently introduced in [5] an algorithm that determines a formula of PI-type and prescribed degree of
precision, even on polygons with complicated shapes, that can be nonconvex, not simple and not simply connected. In particular,
if the cardinality of the rule is an issue, we were able to provide rules of PI-type, ADE = n and a number of nodes at most
N = Nn = dim(P2

n) = (n+ 1)(n+ 2)/2 by means of a numerical implementation of Tchakaloff theorem (see [23, 28]). The
corresponding Matlab codes make use of the recent polyshape environment and can be retrieved at [19].

The spline curvilinear counterpart is delicate and we propose here a routine that fills the gap, providing a low-cardinality
rule of PI-type not only over polygons (corresponding to linear splines), but also over Jordan domains with spline curvilinear
boundary (spline curvilinear polygons).

A key tool is a specific in-domain routine that works on any spline curvilinear polygon, say S, by which the algorithm
determines a grid-based discretization X = {Pi} ⊂ S. Then it evaluates the Vandermonde-like matrix V = Vn(X ) = (φ j(Pi))i, j w.r.t.
a certain polynomial basis {φ j} of total degree n over S. Finally, it computes the moments γ j =

∫

S φ j(x , y) d x d y by Gauss-Green
formula and univariate Gaussian quadrature, and resorts to a numerical implementation of Tchakaloff theorem, seeking a sparse
nonnegative solution of the underdetermined system V T u= γ where the vector of the weights u has ν≤ N = (n+ 1)(n+ 2)/2
nonzero components, that determine the weights and nodes of a PI-type cubature rule, say {(w j ,Q j)}νj=1, {Q j} ⊂ X . The existence
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of such a solution relies on a classical and substantially overlooked general result on “Tchakaloff (discretization) sets”, proved in
[29] generalizing a result by Davis [9].

The paper is organized as follows. In section 2, we introduce our in-domain routine, that works not only on linear polygons
but even on spline curvilinear polygons S. In section 3 we briefly recall some relevant results about Tchakaloff theorem and
its numerical implementation. In section 4 we explain our new method for determining Tchakaloff-like cubature rules on S,
pointing out how to compute the required moments {γ j} and how to use the fundamental results of [29]. Finally in section 5 we
show some numerical results on two nonconvex domains, concerning both, the in-domain procedure and the final low-cardinality
PI-type cubature rule.

2 In-domain for spline curvilinear polygons
Let S ⊂ R2 be a Jordan domain and suppose that its boundary ∂ S

1. can be described by parametric equations x = x̃(t), y = ỹ(t), t ∈ [a, b], x̃ , ỹ ∈ C([a, b]), x̃(a) = x̃(b) and ỹ(a) = ỹ(b);

2. there is a partition {I (k)}k=1,...,M of [a, b], and partitions {I (k)j } j=1,...,mk
of each I (k), such that the restrictions of x̃ , ỹ on each

I (k) are splines of degree δk, w.r.t. the subintervals {I (k)j } j=1,...,mk
.

Typical instances are approximations of more general Jordan domains Ω by means of spline curvilinear regions S. To this
purpose, given the vertices Vk ∈ ∂Ω, k = 1, . . . , M + 1, then ∂Ω≈ ∂ S := ∪M

k=1Vk _ Vk+1 where each curvilinear side Vk _ Vk+1 is
tracked by a spline curve of degree δk, interpolating an ordered subsequence of knots P1,k = Vk, P2,k, . . . , Pmk−1,k, Pmk ,k = Vk+1 with

a suitable parametrization that determines each I (k)j (and thus each I (k)).
In this section we introduce an algorithm that establishes if a point P ∈ R2 is inside, outside or on the boundary of ∂ S. The

key point is the well-known Jordan curve theorem that states that a point P belongs to a Jordan domain Ω if and only if, having
taken a point P∗ /∈ Ω then the segment P∗P crosses ∂Ω an odd number c(P) of times.

Algorithms of this type are popular in the polygonal case, where already the determination of the crossing number may be
not straightforward. In fact, when P∗P crosses a vertex of ∂Ω, there are cases in which difficulties may arise. Much worse, the
segment P∗P may include a segment of the polygon and the definition of c(P) is not trivial. These critical situations are usually
treated with care.

P
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Figure 1: Critical situations for establishing the crossing number on spline curvilinear polygons.

Similarly, in the more general instance of spline curvilinear domains S, a difficult situation arises when the boundary ∂ S has
a critical point S = ( x̃(γ), ỹ(γ)) where

lim
t→γ−

ỹ ′(t) lim
t→γ+

ỹ ′(t)< 0,

that geometrically means that there is locally a vertical turn of boundary from left to right (or conversely from right to left). If the
in-domain analysis of the point P is performed by means of vertical segments P∗P with the abscissa of P equal to that of S∗, then
Jordan theorem cannot be applied. Even worse, the vertical segments P∗P may contain a portion of the boundary that consist of
a vertical segment (see Figure 1). These situations are not difficult to be detected, and we will suppose first that the vertical
segment P∗P does not contain any critical point or vertical side.

Under these assumptions, let R be a rectangle, with sides parallel to the cartesian axis, that contains the spline curvilinear
domain S and such that ∂R∩ ∂ S = ;, i.e. their boundaries do not intersect. Let P∗ be the point of ∂R that shares the same
abscissa of P but has ordinate strictly inferior. We want to compute how many times the vertical segment P∗P crosses ∂ S.

The technique that we explain below consists essentially in covering the boundary ∂ S with a region B defined by the union
of certain rectangles whose interiors do not intersect. In particular, the portion of the boundary ∂ S in each of these rectangles
will not have any turning point and will be parametrized by two polynomials. Finally, we will show that if the point P ∈ S\B then
the evaluation of the crossing number c(P) is straightfoward, otherwise it requires the solution of some polynomial equations.

To this purpose, suppose that
I (k)j = [t

(k)
j , t(k)j+1], k = 1, . . . , M , j = 1, . . . , mk − 1,

determines a partition of the interval [a, b] and that ∂ S = {( x̃(t), ỹ(t)), t ∈ [a, b]}, where the restriction of x̃ , ỹ to I (k)j

is a polynomial of degree δk. If x̃ ′ changes sign in (t(k)j , t(k)j+1), then define as N (k)
j = {t( j,k)i }i=1,...,l j,k

the set of all the points

t( j,k)i ∈ (t(k)j , t(k)j+1) such that x̃ ′(t( j,k)i ) = 0 (observe that the restriction to I ( j,k) is a polynomial of degree δk, hence its derivative

exists), otherwise put N (k)
j = ;. Let T ( j,k) = {t(k)j , t(k)j+1} ∪N

(k)
j , where we suppose that its elements, say T ( j,k)i , are in increasing
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Figure 2: A domain S of (spline) curvilinear type and its monotone boxes.

order. Observe that being x̃ a spline of degree δk, the determination of the set N (k)
j requires the solution of a polynomial equation

of degree δk − 1, that can be computed explicitly when δk ≤ 5.
Next introduce the rectangles B( j,k)i , that we will call monotone boxes,

B( j,k)i := [ min
t∈I( j,k)i

x̃(t), max
t∈I( j,k)i

x̃(t)]× [ min
t∈I( j,k)i

ỹ(t), max
t∈I( j,k)i

ỹ(t)].

where I ( j,k)i := [T ( j,k)i , T ( j,k)i+1 ]. Observe that by definition if N (k)
j = ;, then there is only the monotone box B( j,k)1 . Since ỹ restricted

to [T ( j,k)i , T ( j,k)i+1 ] is a polynomial of degree δk, the evaluation of

min
t∈[T ( j,k)i ,T ( j,k)i+1 ]

ỹ(t), max
t∈[T ( j,k)i ,T ( j,k)i+1 ]

ỹ(t)

can be easily determined once the derivative of the polynomial ỹ ′ is at hand, by computing its zeros in [T ( j,k)i , T ( j,k)i+1 ] and the
evaluation of ỹ at T ( j,k)i and T ( j,k)i+1 . Thus, the restrictions of x̃ , ỹ to each I ( j,k)i ⊆ [a, b] are polynomials of degree δk. In particular,
being the restriction of x̃ a monotone function, there are no turning points of ∂ S in the interior of each box B( j,k)i .

Once the set B := {B( j,k)i } is at hand, we apply the crossing theorem to determine if P = (Px , Py) is in the domain S. To this
purpose we the consider the monotone boxes

B(P) = {B = [α1,β1]× [α2,β2] ∈ B : Px ∈ [α1,β1], Py ≥ α2}

Intuitively, B(P) contains all the boxes Bl such that P∗P ∩Bl is not empty, and that actually may contribute to the computation of
the crossing number.

Take the generic monotone box Bl = [α
(l)
1 ,β (l)1 ]× [α

(l)
2 ,β (l)2 ] ∈ B(P). If Py > β

(l)
2 then the point P is over the monotone box Bl

and necessarily the segment P∗P crosses the boundary ∂ S once in Bl and below P, due to the monotonicy of x̃ in Bl . Otherwise
the point P ∈ Bl . Let t∗ be the unique solution of the polynomial equation x̃(t) = Px (notice that uniqueness comes from the
local monotonicity of x̃). Next,

• if ỹ(t∗)< Py then the segment P∗P crosses the boundary ∂ S once in the monotone box, below P;

• if ỹ(t∗)> Py then the segment P∗P does not cross the boundary ∂ S once in B, below P;

• if ỹ(t∗) = Py then P is on the boundary ∂ S.

Thus counting all these crossings, we are usually able to determine if a point P is inside, outside or on the boundary of S. We
point out that if δk ≤ 4 the solution of such polynomial equation can be computed explicitly, while when δ > 4 one must use
specific numerical methods.

In the cases in which the vertical segment P∗P contains a critical point or a vertical side, we have used an algorithm that
is based on the well-known winding theorem to ascertain whether P belongs or not to S. To this purpose, we computed by a
(shifted) Gauss-Legendre rule of sufficiently high degree of precision the so called winding number wind(P, x̃ , ỹ) ∈ Z,

wind(P, x̃ , ỹ) :=
1

b− a

∫ b

a

ỹ ′(t)( x̃(t)− Px )− x̃ ′(t)( ỹ(t)− Py)

( x̃(t)− Px )2 + ( ỹ(t)− Py)2
d t.
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If this quantity is odd then the point belongs to S otherwise is not inside such domain. Such an approach has been used in the
Hormann-Agathos algorithm [11], by a clever computation of this quantity when S is actually a polygon.

We observe that the evaluation of wind(P, x̃ , ỹ) can be difficult when P is close to the boundary, but in general there is no
need to compute such a quantity with high precision, in view of the fact that wind(P, x̃ , ỹ) is an integer.

Remark 1. In our implementation, each monotone box B( j,k)i has abscissae ranging in the interval
�

min( x̃(T ( j,k)i ), x̃(T ( j,k)i+1 )),max( x̃(T ( j,k)i ), x̃(T ( j,k)i+1 ))
�

.

If we partition [T ( j,k)i , T ( j,k)i+1 ] as ∪ni, j,k−1
s=1 [T ( j,k)i,s , T ( j,k)i,s+1] where

T ( j,k)i = T ( j,k)i,1 < T ( j,k)i,2 < . . . T ( j,k)i,ni, j,k
= T ( j,k)i+1

and define the monotone boxes
B( j,k)i,s := [ min

t∈I( j,k)i,s

x̃(t), max
t∈I( j,k)i,s

x̃(t)]× [ min
t∈I( j,k)i,s

ỹ(t), max
t∈I( j,k)i,s

ỹ(t)].

where I ( j,k)i,s = [T ( j,k)i,s , T ( j,k)i,s+1], we have again that ∪B( j,k)i,s ⊆ B contains S, but that can be a strict subset of B.
In such a case, an inferior number of polynomial equations is needed to establish what points of X belong to S. In spite of this, we

observe that there is numerical evidence that a too high number of monotone boxes slows down the in-domain process.

Figure 3: A domain S of (spline) curvilinear type and a smaller set of monotone boxes (compare with Figure 2).

Remark 2. In the implementation of the algorithm, to see if a point P = (Px , Py) belongs to the boundary ∂ S, we solved a polynomial
equation x̃(t∗) = Px and then tested that ỹ(t∗) = Py . In view of numerical errors, we can only establish that a point is very close to
∂ S, that is | ỹ(t∗)− Py | is below a certain threshold.
Remark 3. In the case each degree δk is equal to 1, i.e. S is a polygon, it is more profitable to use to the well-known Hormann-Agathos
algorithm, implemented in Matlab by the inpolygon routine.

3 Tchakaloff-like sampling
The purpose of this section is to show how to extract from a sufficiently dense discretization of a compact set a PI-type cubature
rule with low cardinality (not exceeding the dimension of the exactness polynomial space). To this purpose, a fundamental
existence result is Tchakaloff theorem [27], that we present in a general formulation (cf. e.g. [16]):

Theorem 3.1. Let µ be a positive measure on the compact domain D ⊂ Rd and let n be a positive integer. Then there are
ν≤ dim(Pd

n(D)) points {Q j} ∈ D and positive real numbers {w j} such that
∫

D

p(P) dµ=
ν
∑

j=1

w j p(Q j)

for all p ∈ Pd
n(D) (the space of d-variate polynomials of degree not exceeding n, restricted to D).

Our purpose it to determine numerically a set of such points {Q j} ⊂ D, together with the corresponding positive weights.
A key result was proved by Wilhelmsen in [29] (extending a result of Davis [9] to quite general functional spaces, including
polynomial spaces).

Theorem 3.2. Let Φ be the linear span of continuous, real-valued, linearly independent functions {φk}k=1,...,N defined on a compact
set D ⊂ Rd . Assume that Φ satisfies the Krein condition (i.e. there is at least one f ∈ Φ which does not vanish on D) and that L is a
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positive linear functional, i.e. L f ≥ 0 whenever f ≥ 0. If {Pi}+∞i=1 is an everywhere dense subset of D, then for sufficiently large I, the
set X = {Pi}Ii=1 is a Tchakaloff set, i.e.

L f =
ν
∑

j=1

w j f (Q j), ∀ f ∈ Φ (1)

where w j > 0 ∀ j and {Q j}νj=1 ⊂ X ⊂ D, with ν= card({Q j})≤ N.

Observe that we can apply this theorem to the case of algebraic cubature, setting L f =
∫

D
f (P) dµ (being µ a positive

measure on the compact set D ⊂ Rd) and Φ= Pd
n(D). We may term (1) in this case a “Tchakaloff-like algebraic cubature rule”.

Furthermore, supposing that a Tchakaloff set X is available (how to construct one numerically for dµ = d xd y by a sequence
of increasingly finer grids will be shown in Section 5), given any polynomial basis {φ j} of Pd

n , define the Vandermonde-like matrix

V = Vn(X ) = (φ j(Pi))i, j ∈ RI×N , (2)

let γ= {γ j} be the vector of moments of the polynomial basis {φ j} with respect to µ on D,

γ j =

∫

S
φ j(P) dµ , j = 1, . . . , N , (3)

and consider the (underdetermined) N × I moment system

V T u= γ . (4)

Since X is a Tchakaloff set, there exists a sparse nonnegative solution u to the system above, whose nonvanishing components
(i.e., the weights {w j}) are at most N and determine the corresponding reduced sampling points {Q j} ⊂ X .

The computation of these nodes has been considered in several papers (see e.g. [23], [28]). To our knowledge, essentially
two approaches have been developed to get these rules, i.e. via Linear Programming (LP) and Quadratic Programming (QP).

About the LP approach, it consists in solving via simplex-method
§

minu≥0 cT u
V T u= γ, u≥ 0 (5)

where the constraints identify a polytope (the feasible region) in RM and the vector c is chosen to be linearly independent from
the rows of V T , so that the objective functional is not constant on the polytope [13], [28]. The solution is a vertex of the polytope,
that has at least M −N vanishing components, so that the nonzero components are the weights {w j} and determine the subset of
nodes {Q j}.

The QP based algorithm requires instead the solution of the NonNegative Least Squares (NNLS) problem

compute u∗ : ‖V T u∗ − γ‖2 =min
u
‖V T u− γ‖2 , u≥ 0 , (6)

in which u∗ can be obtained by the well-known Lawson-Hanson active set optimization method [12], which seeks a sparse
solution to (6), whose nonzero components are the weights {w j} and determine the subset of nodes {Q j}. Its application gives a
residual ε= ‖V T u∗ − γ‖2 that is typically very small, say < 10−14 for n≤ 30 in all our numerical tests.

Our numerical experience with the presently available Matlab software has shown that NNLS via Lawson-Hanson iterations
usually performs better than LP in computing the weights {w j}, at least for moderate degrees n [13]. On the other hand, in
the recent paper [10] an acceleration of the Lawson-Hanson iterations has been discussed in the framework of compression of
discrete probability measures and regression, that in perspective could be applied also to the cubature framework. Consequently
all our codes are based on the application of Lawson-Hanson method.

We point out that there are several versions of NNLS codes available in Matlab. One is the built-in function lsqnonneg,
while an open-source version present in the package NNLSlab in [19]. Other alternatives are often obtained by MEX files and in
view of portability will not be used here.
Remark 4. In the cubature framework an algorithm termed Recursive Halving Forest, based on a hierarchical SVD, has been proposed
in the doctoral dissertation [28]. Performances are reported for large scale problems (the size order of N , M is up to 103 − 104), but
essentially only in the compression of tensorial formulae on hypercubes. Unfortunately the software is not available and thus cannot
be applied here as a comparison.

4 Implementing Tchakaloff-like cubature
Let S be Jordan domain whose boundary is defined by parametric splines x̃(t), ỹ(t), as stated at the beginning of Section 2.

As in section 2, we suppose that I (k)s = [t(k)s , t(k)s+1], k = 1, . . . , M , s = 1, . . . , mk − 1, determines a partition of the interval [a, b]
and that ∂ S = {( x̃(t), ỹ(t)), t ∈ [a, b]}, where the restriction of x̃ , ỹ to I (k)s is a polynomial of degree δk.

In this section we describe an algorithm that computes a Tchakaloff-like algebraic cubature formula of degree n over S, i.e.
such that

∫

S
p(x , y) d x d y =

ν
∑

j=1

w j p(Q j) , ν≤ N = dim(P2
n) = (n+ 1)(n+ 1)/2

for any bivariate polynomial p ∈ P2
n (i.e., of total degree at most n).
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We proceed as follows.
First we compute the moments γ j of a certain polynomial basis {φ j} of degree n over S, i.e.

γ j =

∫

S
φ j(x , y) d x d y , j = 1, . . . , N .

These values can be efficiently obtained by means of Gauss-Green theorem and line integrals along the boundary, without the
need of numerical cubature rules over S, only using some Gauss-Legendre formulae.

In our Matlab software as polynomial basis {φ j} we have used the (suitably ordered) total-degree product Chebyshev basis
{Tp(α1(x))Tq(α2(y))}, with p+ q ≤ n and (x , y) ∈R∗ = [a1, b1]× [a2, b2] (being R∗ the smallest cartesian rectangle containing
the domain, easily available when the all the monotone boxes are determined), where Th(·) = cos(h arccos(·)) is the h-degree
Chebyshev polynomial and αi(s) = (2s− bi − ai)/(bi − ai), s ∈ [ai , bi], i = 1,2.

By Gauss-Green theorem (see e.g. [2]),

γ j =

∫

S
φ j(x , y) d x d y =

∮

∂S
Φ j(x , y) d y (7)

where, for some p, q,

Φ j(x , y) =

∫

φ j(x , y) d x = Tq(α2(y))

∫

Tp(α1(x)) d x

In particular, for p = 0
∫

Tp(α1(x)) d x = x ,

for p = 1
∫

Tp(α1(x)) d x =
b1 − a1

4
·α2

1(x),

while for p ≥ 2
∫

Tp(α1(x)) d x =
b1 − a1

2
·
�

p
p2 − 1

Tp+1(α1(x))−
x

p− 1
Tp(α1(x))

�

.

Setting Pk,s = ( x̃(t(k)s ), ỹ(t(k)s )) and denoting with Pk,s _ Pk,s+1 the arc of ∂ S joining Pk,s with Pk,s+1, we have

γ j =

∮

∂S
Φ j(x , y) d y =

∑

k,s

∫

Pk,s_Pk,s+1

Φ j(x , y) d y

=
∑

k,s

∫ t(k)s+1

t(k)s

Φ j( x̃(t), ỹ(t)) ỹ ′(t)d t . (8)

Observing that

• since φ j is a polynomial of total degree n then Φ j is a polynomial of total degree n+ 1,

• in the interval [t(k)s , t(k)s+1] both x̃ , ỹ are polynomials of degree δk,

each integrand in the last sum of (8) is a polynomial of degree (n+ 1)δk +δk − 1= (n+ 2)δk − 1 that can be exactly integrated
by a (shifted) Gauss-Legendre formula with d (n+2)δk

2 e points. In such a way we can compute all the required moments.
On the other hand, we stress that in the present approach Gauss-Green theorem is indeed used only to compute the moments

of the total-degree product Chebyshev basis, whereas the final cubature formula is obtained by the moment matching technique
via Tchakaloff sets as described in the previous section. On the contrary, in our previous spline-based approach [22], Gauss-Green
theorem was directly used to compute the cubature formula, via Gaussian quadrature along the boundary of a numerical primitive
(computed by Gaussian quadrature in one of the variables along suitable parallel segments cutting the domain). Such an approach
is usually faster but, as already observed, in nonconvex instances cannot guarantee a PI formula that is a feature required in many
applications, such as in the discretization of PDEs by VEM-like approaches (cf. e.g. [6]), or in the computation of orthogonal
polynomials on the domain (for example within hyperinterpolation, cf. e.g. [20, 24]).

We turn now to the construction of a Tchakaloff set in S from which we extract the nodes and positive weights of a Tchakaloff-
like algebraic cubature rule. Setting P0 = ;, at the `-th iteration of the algorithm we define a set P`, consisting in the union of
P`−1 with some points that belong to S\P`−1. To this purpose, we introduce a sequence of tensorial grids M` in the rectangle
R∗ := [a1, b1] × [a2, b2] containing S, with M` finer as ` increases, determining by the in-domain algorithm, the new set
P` = P`−1 ∪ (M` ∩ S).

Next, we apply the algorithm that computes the Tchakaloff formula with nodes {(x (`)i , y (`)i )}i=1,...,ν` and positive weights

{w(`)i }i=1,...,ν` , ν` ≤ N , finally testing if the so obtained rule is such that

γ
(`)
j =

ν
∑̀

i=1

w(`)i φ j(x
(`)
i , y (`)i ), j = 1, . . . , N ,
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well approximates the set of moments {γ j}, i.e.

‖γ(`)j − γ j‖2 ≤ ε (9)

where ε is a tolerance fixed by the user. If (9) does not hold we iterate the procedure until (9) is satisfied or a maximum number
of iterations is reached, providing in this case an error message.

In our implementation of Tchakaloff compression we used the Matlab built-in routine lsqnonneg but one can alternatively
use the algorithm proposed in [19]. The fundamental fact that this procedure has finite termination comes from the result by
Wilhelmsen [29] recalled by Theorem 2 above, since the set P` becomes sufficiently dense in a finite number of iterations.

4.1 Boundary approximation and error estimates

As observed in [22], S can be an approximation of a certain compact Jordan domain Ω ⊂ R2 with rectifiable boundary.
Assume that ∂Ω is a piecewise C4 Jordan parametric curve (x(t), y(t)) with a finite number of known breakpoints {Vk} and

∂Ω≈ ∂ S := ∪M
k=1Vk _ Vk+1, where each curvilinear side Vk _ Vk+1 is tracked by a cubic spline curve (i.e. δk = 3), interpolating

an ordered subsequence of knots P1,k = Vk, P2,k, . . . , Pmk−1,k, Pmk ,k = Vk+1. When the boundary curve is given in implicit form
and the breakpoints are not known, one might resort to special methods devoted to the detection of singular points of a curve
(derivative-based as well as derivative-free algorithms being available in the literature); see, e.g., [8] with the references therein.

Moreover, suppose that it is adopted a cumulative chordal parametrization, i.e. each Vk = ( x̃(t(k)), ỹ(t(k))) so that I (k) =
[t(k), t(k+1)], being t(k+1) = t(k) +

∑mk−1
j=1 h j,k, h j,k = |Pj+1,k − Pj,k|. Then, by a result in [7], for h =max j,k h j,k sufficiently small the

spline curve is simple (non self-intersecting), since not only ∂Ω but also its tangent vectors are well approximated and loops of
∂ S are prevented. In such a way the spline interpolating curve is a Jordan curve, i.e. S is a Jordan domain itself as it is required
by our construction.

On the other hand, denoting by

IΩ( f ) =

∫

Ω

f (x , y) d xd y

the integral functional on a compact domain Ω, by

In( f ) =
ν
∑

j=1

w j f (Q j)≈ IS( f ) =

∫

S

f (x , y) d xd y

the positive cubature formula functional on the spline curvilinear domain S ≈ Ω (exact on polynomials in P2
n), by p∗n the best

polynomial in P2
n of uniform approximation for f ∈ C(S)

‖ f − p∗n‖∞,S = En( f ,S) = inf
p∈P2n
‖ f − p‖∞,S ,

and setting Ω∆S = (Ω\S) ∪ (S\Ω), with an approach similar to that adopted in [22], by a result in [17] on cubic spline
approximation of planar curves we can write the chain of estimates (where ` denotes the curve length and A the area measure)

|IΩ( f )− In( f )| ≤ IΩ∆S(| f |) + |IS( f )− In( f )| ≤ ‖ f ‖∞,Ω∆S A(Ω∆S)

+|IS( f )− IS(p
∗
n)|+ |IS(p

∗
n)− In(p

∗
n)|+ |In(p

∗
n)− In( f )|

≤ ‖ f ‖∞,Ω∆S A(Ω∆S) + (‖IS‖+ ‖In‖)‖ f − p‖∞,S

= ‖ f ‖∞,Ω∆S A(Ω∆S) + 2A(S) En( f ,S)

≤ ‖ f ‖∞,Ω∆S `(∂Ω) e(h) + 2A(S) En( f ,S) ,

and thus, since e(h) =O(h4) and S ⊂ Ω+ B[0, e(h)] (the compact e(h)-neighborhood of Ω), we obtain the error estimate

|IΩ( f )− In( f )|=O(h4) +O(En( f ,Ωr)) , (10)

provided that f ∈ C(Ωr) with Ωr = Ω+ B[0, r] suitable compact neighborhood of Ω and e(h)≤ r.
Now, the rate of En( f ,Ωr) can be estimated, as soon as we assume that Ω is a Jackson compact set, i.e. for every s = 0, 1, 2, ...,

there exists a positive integer αs such that for f ∈ Cαs (Ω) there exists a constant Cs( f ) (depending on the partial derivatives of f
up to order αs) for which the Jackson-like inequality En( f ,Ω)≤ Cs( f )n−s holds for n> s; cf. [15] for a survey of known results
on Jackson sets. Two basic examples are hypercubes with αs = s+ 1 and euclidean balls with αs = s. In particular a sufficient
condition is that Ω be Whitney regular and admits a Markov polynomial inequality, which in turn holds whenever Ω is a finite
union of real analytic images of hypercubes (a “subanalytic set”; cf. [14, 26] on deep subanalytic geometrical aspects of such a
theory).

Indeed, in [15] it is proved that a finite union of Jackson sets is a Jackson set. Since Ωr =
⋃

P∈Ω B[P, r] = Ω∪
⋃

P∈∂Ω B[P, r],
so that by compactness of ∂Ω it is the union of Ω with a finite number of euclidean balls of radius r centered at boundary points,
and since a euclidean ball is a Jackson set with αs = s, we get from [15, Thm.1] that Ωr is a Jackson set with α′s =max{s,αs},
and thus

|IΩ( f )− In( f )|=O(h4) +O(n−s) , n> s , (11)

for f sufficiently regular on Ωr .
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Finally, one could observe that the estimates hold if the positive cubature formula is exact on polynomials in P2
n. On the other

hand, our formula is only near-exact, in the sense that the moment residual is less than a tolerance ε by construction. In view of
the estimates obtained in [23], which we do not report for brevity, the effect of ε is that the following overall error estimate holds

|IΩ( f )− In( f )| ≤ ‖ f ‖∞,Ω∆S `(∂Ω) e(h) +
�

2A(S) +
Æ

A(S)
�

En( f ,S)

+ε ‖ f ‖L2(S) =O(h4) +O(En( f ,Ωr)) +O(ε) =O(h4) +O(n−s) +O(ε) , (12)

the latter again for f sufficiently regular on Ωr and n> s.

5 Numerical experiments
The purpose of this section is twofold, on one side we test the new cubature algorithm and on the other the in-domain routines.

As already observed, the Matlab routine splinegauss proposed in [22] is not necessarily of PI-type on nonconvex spline
curvilinear polygons S, since in these instances some nodes could be outside the domain and some weights could be even negative.
However, since it was based on a sequential use of the tensorial Gauss-Legendre formula via a panelization of the domain, the
determination of the cubature rule was rather fast.

For relatively low degrees, say n≤ 10, the new routine splcub, implementing the ideas developed in the previous sections,
has similar cputimes but produces rules of PI-type with a number of nodes ν≤ (n+1)(n+2)/2. This fact has several implications:

• since all the weights positive, the rules are optimally stable, i.e. the cubature condition number

cond({wi}) =

∑ν

i=1 |wi |
�

�

∑ν

i=1 wi

�

�

is equal to 1, the best possible result for rules with ADE ≥ 0;

• the number of nodes is particularly low (though usually not minimal);

• the rules are appropriate for problems were the sampling of the integrand is not possible outside the domain.

We implemented an algorithm, that can be sketched as follows:

1. define a mesh on the smallest rectangle R∗ = [a1, b1]× [a2, b2] containing the domain S; in particular for ADE = n, then
setting τ= bn1.5c, we considered the points Pi j = (x i , y j) where

x i = a1 + i
a2 − a1

τ− 1
, y j = b1 + j

b2 − b1

τ− 1
, 0≤ i, j ≤ k− 1

i.e. a uniform tensor grid mesh M1, based on k equispaced points in each direction;

2. determine the points of M1 strictly inside the spline curvilinear polygon S, say P1, by the in-domain algorithm developed
in section 2;

3. compute the moments over S of the n-th total-degree product Chebyshev basis

{Tp(α1(x))Tq(α2(y))}, (x , y) ∈ [a1, b1]× [a2, b2], 0≤ p+ q ≤ n

with αi(s) = (2s− bi − ai)/(bi − ai), i = 1, 2, by means of Gauss-Green theorem and Gauss-Legendre quadrature along the
spline boundary arcs;

4. extract the nodes of a PI-type formula with ADE = n from P1 and determine the relative weights using the discrete measure
compression technique introduced in [23] and described in section 3 as Tchakaloff-like cubature.

In case of failure, i.e. the 2-norm of the moment error is bigger than a fixed tolerance, say ε = 10−12, we proceed iteratively
by defining finer and finer uniform tensor grids Mk (increasing the value of τ, as τk+1 = bβτkc with e.g. β = 1.5), determining
at the k-th iteration those points belonging to S, say Pk, and performing step 4 of the algorithm above with the set

⋃k
i=1 Pi

instead of P1.
Possible ill-conditioning of Chebyshev-Vandermonde matrices arising at high ADE is managed by suitable discrete orthogonal-

ization of the polynomial basis via the economy size QR factorization (as described for example in [23]). All the Matlab routines
for the numerical experiments are available at [19] and have been tested on a PC with a 2.7 GHz Intel Core i5 CPU, with 16 GB
of RAM.

We start our numerical tests by considering the region S1 containing (0,0), whose boundary is defined componentwise by
linear splines in the first four arcs and by cubic splines in the last five ones. The region is illustrated in Figure 4, on the left. In the
present experiment, if the old routine splinegauss in [22] is applied to these tests, several nodes are external to the domain,
and negative weights are present. The quality of the new rules is summarized in Table 1, which shows that they are numerically
exact since the actual moment residuals are close to machine precision and with positive weights, being the cubature condition
number equal to 1. For ADE < 10, the cputime is particularly low, making these formulas appealing for cubature within Virtual
Elements Methods.

As second domain S2, we considered a hand-shaped domain containing (0,0), whose boundary is defined by x̃ , ỹ, that
are both cubic splines satisfying not-a-knot conditions, having 37 knots (see Figure 4, on the right). The numerical results are
reported in Table 2 and are essentially similar to those on the domain S1, confirming the good quality of the rules.
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Figure 4: The spline curvilinear domains Si with i = 1,2, the grid points P outside the domain or on its boundary (in red), those inside the
domain (in green) and the nodes of a cubature formula of PI-type for n= 5 (black dots).

ADE # cond moment res cpu
5 21 1 6.3e−17 0.01s
10 66 1 1.5e−16 0.05s
15 136 1 1.4e−16 0.09s
20 231 1 1.3e−16 0.81s

Table 1: Cardinality # of the nodes, cubature conditioning and moment residual of the rule on domain S1, and cputime in seconds.

In Figure 5 we illustrate the performance of these new cubature rules to determine

I =

∫

Si

(c0 + c1 x + c2 y)n d x d y , i = 1,2 ,

making 100 trials with uniform random coefficients c j ∈ (0,1), j = 0,1,2 and ADE = n, n= 5,10,15,20. The reference values
of I have been determined by applying Gauss-Green theorem and Gaussian quadrature along the spline boundary, taking into
account that an x-primitive of the polynomial can be readily computed. We have plotted with a dot the relative error REk made
by the rule (log scale), and by a larger circle the logarithmic average on all the trials, i.e.

∑100
k=1 log(REk)/100.

The tests show that in spite of the fact that the moments are computed close to machine precision, there is a little deterioration
of the logarithmic average error for n= 20, while for lower degrees this value remains between −15 and −14. Notice that an
ADE greater than 10 is usually beyond what is needed for example in VEM applications.

5 10 15 20
10

-16

10
-15

10
-14

10
-13

10
-12

10
-11

5 10 15 20
10

-16

10
-15

10
-14

10
-13

10
-12

10
-11

Figure 5: Dots: Relative errors REk , k = 1, . . . , 100, on cubature over random polynomials (c0 + c1 x + c2 y)n on S1 (on the left) and S2 (on the

right). Circles: average logarithmic error, i.e. 10
∑100

k=1 log(REk)/100. The abscissae are the ADE of the formula and are equal to 5, 10, 15, 20.

As a further illustration, we report in Tables 3-4 the relative errors made by the Tchakaloff-like rules when approximating
∫

Si
fk(x , y) d x d y , where

f1(x , y) = exp(−(x2 + y2)) ,

f2(x , y) = (x2 + y2)11/2 ,

f3(x , y) = (x2 + y2)1/2 , (13)
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ADE # cond moment res cpu
5 21 1 5.1e−18 0.01s
10 66 1 3.6e−18 0.03s
15 136 1 3.2e−18 0.09s
20 231 1 4.5e−18 0.62s

Table 2: As in table 2 for the hand-shaped domain S2.

that are examples of functions with different degree of regularity on each domain Si , i = 1, 2. The reference values of the integrals
are those obtained by splinegauss in [22] with ADE = 100. As expected, in both the domains the quality of the approximation
worsens for less regular integrands (indeed f1 ∈ C∞(Si), whereas (0, 0) ∈ Si is a singular point for the first derivatives of f3 and
for 11-th derivatives of f2).

ADE f1 f2 f3
5 1.5e−03 2.0e−01 1.5e−02
10 2.8e−08 4.4e−05 1.4e−03
15 4.3e−11 2.5e−07 1.7e−04
20 1.0e−15 2.0e−09 2.2e−05

Table 3: Relative errors of the new rules on the domain S1, with ADE = 5, 10, . . . , 20.

ADE f1 f2 f3
5 1.9e−08 1.4e−01 1.2e−02
10 2.0e−15 1.1e−04 1.1e−03
15 1.1e−15 6.0e−08 1.2e−03
20 1.5e−15 1.8e−09 5.0e−04

Table 4: As in Table 3 on the hand-shaped domain S2.

K S(1) S(2)

102 4e−03s 7e−03s
103 5e−03s 1e−02s
104 3e−02s 6e−02s
105 2e−01s 3e−01s
106 3e+00s 3e+00s

Table 5: Cputime of the application of the in-domain algorithm for K points, w.r.t. S(1) and S(2) of Figure 4.

As additional information, we show in Table 5 the cputimes necessary to process K in-domain operations, on the regions Si ,
i = 1, 2. To this purpose we have written the Matlab routine incurvpolygon, that implements the ideas introduced in section 2.

The results are quite satisfactory concerning the application of the cubature algorithm at mild degrees. A comparison with
the cputime needed to determine the rules shows that at high degrees the bottleneck is actually the application of the current
implementation of Lawson-Hanson algorithm.
Remark 5. (Nested rules). We point out that, if it is available a formula of PI-type with ADE = n, then one can extract those with
ADE < n, i.e. nested rules, by successive applications of Tchakaloff-like cubature compression (as described in [25]).
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